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Abstract – The aim of the present study was to evaluate the subchronic effects of 3,4-methylenedioxymethamphetamine 
on several oxidative stress markers: index of lipid peroxidation (ILP), superoxide dismutase (SOD) activity, superoxide 
radical (O2

.-) levels, and reduced glutathione (GSH) levels in the frontal cortex, striatum and hippocampus of the rat. The 
study included 64 male Wistar rats (200-250 g). The animals were treated per os with of 5, 10, or 20 mg/kg of 3,4-meth-
ylenedioxymethamphetamine (MDMA) every day for 15 days. The subchronic administration of MDMA resulted in an 
increase in ILP, SOD and O2

.-  , and a decrease in GSH, from which we conclude that oxidative stress was induced in rat 
brain.
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INTRODUCTION

Oxidative stress and oxygen free radicals are 
thought to play an important role in both the acute 
and chronic effects of a number of neurotoxic proc-
esses. Superoxide radicals and hydrogen peroxide are 
produced during electron transport in the mitochon-
dria (Fiaschi et al., 2010). Cells protect themselves 
against reactive oxygen intermediates (ROI) by us-
ing antioxidants such as the superoxide-scavenging 
enzyme superoxide dismutase (SOD) (Touati, 1988), 
catalase and glutathione peroxidase and other nonen-
zymatic agents such as glutathione, other thiols and 
vitamin E (Cadet, 1988).

3,4-Methylenedioxymethamphetamine (MDMA 
or “Ecstasy”), an amphetamine analog, is a popular 
recreational drug of abuse and has been shown to be 

potentially toxic to the serotoninergic nerve termi-
nals of the brains of rodents and humans (Semple et 
al., 1999). MDMA-induced 5-HT toxicity is based 
on long-term biochemical effects such as a decrease 
in the tissue concentration of 5-HT (Turrillazi et al., 
2010) and its major metabolite 5-hydroxyindolacetic 
acid, a decrease in the activity of tryptophan hydrox-
ylase (Stone et al., 1987) and a reduction in the (3H)-
paroxetine-labeled 5-HT reuptake sites (Bataglia et 
al., 1987). The mechanism of MDMA-induced 5-HT 
depletion has been proposed to involve the induction 
of oxidative stress (Sprague et al., 1998). In addition, 
treatments with antioxidants (Barbosa et al., 2012), 
as well as free radical scavengers, are neuroprotective 
against MDMA-induced 5-HT depletion.

Although the acute effect of MDMA on the brain 
has been well documented, the potential functional 
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consequences associated with long-term MDMA 
administration have not yet been thoroughly evalu-
ated. In the present study, the neurochemical re-
sponses to repeated administration of MDMA were 
evaluated.

MATERIALS AND METHODS

Investigations were made on 64 6 weeks old male 
Wistar rats weighing about 250 g. The rats were di-
vided into four groups (according to drug treatment) 
and each group consisted of 16 animals. The rats 
were housed in Makrolon cages, 4 per cage (Erath, 
FRG). Animals had free access to food and water. 
Average microclimate conditions were as follows: 
temperature (22±2°C), relative humidity (60-70%), 
and dark/light cycles (12 h). Food (commercial rat 
diet) and water were not restricted. MDMA was dis-
solved in distilled water and administered perorally 
at 5, 10 and 20 mg/kg once per day for 15 days. The 
control group received the same volume of distilled 
water. The animals were killed by decapitation 15 
days after the treatment. Brain tissues of the ipsilater-
al forebrain cortex, hippocampus and striatum from 
individual animals were quickly isolated on ice and 
homogenized in an ice-cold buffer containing 0.25 
mol sucrose, 1 mM EDTA, 10 mmol K-Na phosphate 
buffer, pH 7.0. Homogenates were centrifuged twice 
at 3 500 rpm for 15 min at 4°C. The supernatant ob-
tained by this procedure was then frozen and stored 
at -70°C (Gurd et al., 1974). 

Protein measurement

The content of protein in the rat brain homogenates 
was measured by the method of Lowry et al. (1974) 
using bovine serum albumin (Sigma) as standard. 

Biochemical analysis

Superoxide dismutase (SOD) activity was deter-
mined as inhibition of epinephrine autooxidation at 
480 nm. After adding 10mM of epinephrine (Sigma), 
the kinetics were monitored in sodium carbonate 
buffer (50 mM, pH 10.2; Serva) containing 0.1 mM 
EDTA (Sigma) (Sun et al., 1978).

The superoxide anion content was determined 
by the reduction of nitroblue-tetrazolium (Merck) 
in an alkaline, nitrogen-saturated medium. Analysis 
was performed at 515 nm (Auclair et al., 1985.).

The lipid peroxidation index was measured as 
malondialdehyde produced after stimulated per-
oxidation with 0.01 mM ferrosulfate (Merck) and 
0.5 mM ascorbic acid (Serva). Thiobarbituric acid 
reagent (TBAR), consisting of trichloroacetic acid 
(Merck), thiobarbituric acid and HCl, reacts with 
malondialdehyde, the final product of polyunsatu-
rated fatty acid peroxidation, measured at 533 nm 
(Villacara et al., 1989).

The content of reduced glutathione (GSH) was 
determined using 5,5-dithiobis-2-nitrobenzoic acid 
(DTNB, 36.9mg in 10ml of methanol) that reacts 
with aliphatic thiol compounds in tris-HCl buffer 
(0.4M, pH-8.9), producing a yellow-colored p-ni-
trophenol anion. Intensity of the color was used for 
spectrophotometrical measurement of GSH concen-
tration at 412 nm (Anderson, 1986).

Data presentation and analysis

Data are expressed as means ± SD. Differences 
between groups were examined using a Student’s in-
dependent t-test. Statistical significance was accepted 
at p<0.05.

RESULTS

As can be observed in Fig. 1, the daily pero-
ral administration of a MDMA for 15 days caused 
a significant increase in SOD activity in all three 
brain regions examined in the rats. Fig. 2 shows no 
significant changes following administration of 5 
mg/kg MDMA in the tissue concentration of O2

.- 
. The other MDMA-treated groups show increased 
levels of O2

.- . In MDMA-treated rats, the levels of 
ILP were significantly elevated relative to those for 
the controls (Fig. 3). MDMA caused slight decreas-
es in GSH activity in the 5 mg/kg group, significant 
decreases in the 20 mg/kg group and no significant 
changes in the 10 mg/kg group (Fig 4).



The subchronic effects of MDMA 1077

Fig. 1. Effects of methylendioxymetamphetamine on levels on SOD in forebrain cortex, hippocampus and striatum

Fig. 2. Effects of methylendioxymetamphetamine on levels on O2
.- in forebrain cortex, hippocampus and striatum
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Fig. 3. Effects of methylendioxymetamphetamine on levels on ILP in forebrain cortex, hippocampus and striatum

Fig. 4. Effects of methylendioxymetamphetamine on levels on GSH in forebrain cortex, hippocampus and striatum
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DISCUSSION

Although the exact mechanism of MDMA-induced 
neurotoxicity is unknown, there is increasing evi-
dence in support of the hypothesis that oxidative 
stress due to the formation of free radicals may be 
involved in MDMA-induced damage to 5-HT ter-
minals. The findings that free-radical scavengers and 
antioxidants attenuate the MDMA-induced depletion 
of 5-HT (Gudelsky, 1996) provide indirect evidence 
of the involvement of free radicals in the mechanism 
of MDMA neurotoxicity.

Several theories have been proposed to explain 
the toxicity of MDMA. Colado et al. (1997) have 
postulated that free radicals produced by MDMA 
are formed within the 5-HT terminal and are gener-
ated by the oxidative quinone metabolites of MDMA 
itself. One possibility is that toxic 5-HT metabolite 
may be transported into the 5-HT axon and produce 
oxidative stress and terminal degeneration (Berger et 
al., 1992).

Excessive extracellular dopamine may give rise 
to the formation of reactive oxygen species or ROS 
(Cadet et al., 1998), and the MDMA-induced in-
crease in hydroxyl radical formation may simply be 
a consequence of the increase in the extracellular 
concentration of dopamine. Huang et al. (1997) have 
reported that the administration of amphetamine 
alone does not increase hydroxyl radical formation. 
These results suggest that the generation of hydroxyl 
radicals is not simply the result of an increase in the 
extracellular concentration of dopamine. Neverthe-
less, there is recent for a role of dopamine in the 
MDMA-induced generation of hydroxyl radicals, 
as well as the long-term depletion of striatal 5-HT 
(Shankaran et al., 1999). Sprague et al. (1998) have 
speculated that dopamine released by MDMA may 
enter the 5-HT terminal through an activated 5-HT 
transporter and be oxidized by monoamine oxidase-
B enzyme present within the 5-HT terminal, leading 
to the generation of free radicals.

It was shown that MDMA administration de-
creased the cytochrome oxidase complex IV of the 

electron transport chain in dopamine-rich areas 
(Burrows et al., 2000) It may be that the MDMA-
induced release of dopamine compromised mito-
chondrial function because of auto-oxidation of 
dopamine metabolites to form quinones and reactive 
oxygen species. Quinones and ROS have been shown 
to inhibit mitochondrial enzymes (Ben-Schachar et 
al., 1995) and lead to the disruption of mitochondrial 
function and to an increase in intracellular calcium 
levels (Khodrow et al., 1999) and activation of both 
nNOS and eNOS (Stuehr et al., 1992).

The role of cell stress- and apoptosis-associated 
pathways in amphetamine neurotoxicity was also 
investigated (Stumm et al., 1999). Expression of the 
immediate early transcription factor, c-jun, and the 
translation initiation inhibitor, p97, are restricted 
to the non-methylated DA and MDA analogs and 
thereby to high neurotoxic potential.

Our data suggest that free radicals could be in-
volved in MDMA-induced damage in rats. Over the 
15 days following MDMA treatment, there were sig-
nificant differences between the vehicle and drug-
treated groups

The former (multiple-dose) protocol more reli-
ably produces neurotoxicity. In monkeys that self-
administer MDMA over several months, for a total 
drug exposure similar to a corresponding acute dos-
ing protocol, no signs of neurotoxicity were observed 
(Fantegrossi et al., 2004). The data suggest that a crit-
ical threshold concentration of neurotoxic metabo-
lites must be reached to produce a permanent neu-
rotoxic response, with such a threshold only achiev-
able either at very high doses or after repeated dosing 
regimens over a relatively short period of time.

It is not possible to exclude completely the pos-
sibility that pharmacokinetic tolerance contributes 
to the diminished functional responses to an acute 
injection (Simic et al., 2008) of MDMA following 
repeated administration of the drug. Three under-
lying mechanisms for chronic tolerance to psycho-
active drugs are traditionally described as hepatic/
metabolic, neurochemical and behavioral (Leonard, 
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1997; Julien, 1998). Following its administration, 
MDMA forms an intermediate metabolite complex 
with CYP2D6, leading to the almost complete loss of 
the enzyme for several days, then gradual recovery 
over the subsequent 2-3 weeks (Heydari et al., 2002). 
In terms of enzymatic induction, a literature review 
uncovered no repeated dose investigations. Also of 
potential concern are the 5-9% of Caucasians defi-
cient in CYP2D6, and it has been suggested that they 
could be particularly susceptible to the adverse effects 
of MDMA (Tucker et al., 1994). Aguirre et al. (1995) 
found that an intensive repeated dose regimen (30 
mg i.p. twice daily over 4 successive days), led to an 
increase in 5-HT1A receptor density in the frontal 
cortex, together with a parallel decrease in 5-HT1A 
receptor density in the dorsal raphe region. The 
frontal cortex post-synaptic receptor density chang-
es were interpreted as possibly indicating ‘adaptive 
changes to compensate for the loss of serotonin nerve 
terminals’ (also in the hippocampus) (Aguirre et al., 
1995). Because MDMA acutely stimulates 5-HT1A 
autoreceptors in the raphe region, equivalent neu-
roadaptive mechanisms were proposed to explain 
the decrease in somatodendritic autoreceptors after 
repeated dosing. Reneman et al. (2002) demonstrat-
ed a time-dependent increase in cortical 5-HT2A 
receptor density, which was strongly correlated with 
the extent of MDMA-induced serotonin loss; again, 
this was interpreted as compensatory upregulation.

In summary, the repeated administration of 
MDMA resulted in a decrease in the concentration 
of GSH and an increase in the generation of SOD,    
O2

.- and ILP in the brain. These data support the con-
clusion that MDMA-induced neurotoxicity involves 
the induction of oxidative stress resulting from an 
increased generation of free radicals and a decreased 
antioxidant capacity of the brain. More studies are 
needed in order to further identify other key physi-
ological and molecular events that are involved in 
the neurotoxic effects of the drug.
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