Selection principles and double sequences II

Agata Caserta * , Dragan Djurčić ${ }^{\dagger}$ and Melanija Mitrović ${ }^{\ddagger}$

Received 23: 05:2013 : Accepted 12: 08:2013

Dedicated to Prof. Ljubiša Kočinac on the occasion of his 65th birthday

Abstract

This paper is a continuation of the research on selection properties of certain classes of double sequences of positive real numbers that was began in [6].

2000 AMS Classification: 40A05, 54A20.
Keywords: Pringsheim convergence, selection principles, translationally rapidly varying sequence.

1. Introduction

In recent years a number of papers concerning relations between selection principles theory and the theory of convergence/divergence of sequences of positive real numbers appeared in the literature $[1,2,3,4,7]$. Special attention have been paid to connections between α_{i} selection principles [12] and classes of sequences important in Karamata's theory of regular variation (see the papers [1, 3] and references therein, and also the papers $[13,17]$ for important applications). On the other hand, in [6] the authors introduced modified α_{i} selection properties for double real sequences and gave their relations with Pringsheim's convergence of double sequences (see [14] and also [9, 10, 15]).

In this note we continue investigation began in [6] and extend results from this paper considering the class of translationally rapidly varying double sequences following some ideas from [3, 16].

[^0]Recall definitions of two selection principles that we consider in this note. If \mathcal{A} and \mathcal{B} are families of subsets of an infinite set X, then:
(1) $\mathrm{S}_{1}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(A_{n}: n \in \mathbb{N}\right)$ in \mathcal{A} there is a sequence $\left(b_{n}: n \in \mathbb{N}\right)$ such that for each $n, b_{n} \in A_{n}$ and $\left\{b_{n}: n \in \mathbb{N}\right\} \in \mathcal{B}$.
(2) $\alpha_{2}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis that for each sequence $\left(A_{n}: n \in \mathbb{N}\right)$ in \mathcal{A} there is an element $B \in \mathcal{B}$ such that for each $n, B \cap A_{n}$ is infinite (see [12]).

For more details on selection principles see [11].

2. Results

Given $a \in \mathbb{R}$, by c_{2}^{a} we denote the set of double sequences of real numbers which converge to a in the sense of Pringsheim [14]. Let

$$
c_{2,+}^{a}:=\left\{\mathbf{x}=\left(x_{m, n}\right)_{m, n \in \mathbb{N}} \in c_{2}^{a}: x_{m, n}>0 \text { for all } m, n \in \mathbb{N}\right\} .
$$

We say that a positive double sequence $\mathbf{x}=\left(x_{m, n}\right)_{m, n \in \mathbb{N}}$ belongs to the class $\operatorname{Tr}\left(\mathrm{R}_{-\infty, s_{2}}\right)$ of translationally rapidly varying double sequences if

$$
\lim _{\min \{m, n\} \rightarrow \infty} \frac{x_{[m+\alpha],[n+\beta]}}{x_{m, n}}=0
$$

for each $\alpha \geq 0$ and each $\beta \geq 0$ such that $\max \{\alpha, \beta\} \geq 1$. Here $[x]$ denotes the integer part of $x \in \mathbb{R}$.

Notice that the class $\operatorname{Tr}\left(\mathrm{R}_{-\infty, s_{2}}\right)$ is nonempty, because it contains the double sequence $\left(x_{m, n}\right)$ defined by

$$
x_{m, n}=\frac{1}{(m+n)!}, m \in \mathbb{N}, n \in \mathbb{N} .
$$

2.1. Theorem. $\operatorname{Tr}\left(\mathrm{R}_{-\infty, s_{2}}\right) \varsubsetneqq c_{2,+}^{0}$.

Proof. Let $\mathbf{x}=\left(x_{m, n}\right)_{m, n \in \mathbb{N}} \in \operatorname{Tr}\left(\mathrm{R}_{-\infty, \mathrm{s}_{2}}\right)$. Let $\varepsilon=\frac{1}{2}$ and $\alpha=\beta=1$. There is $N_{0}=N_{0}(1 / 2,1,1) \in \mathbb{N}$ such that

$$
\frac{x_{m+1, n+1}}{x_{m, n}} \leq \frac{1}{2}
$$

for all $m, n \geq N_{0}$. Therefore, for $m=n \geq N_{0}$ we have $x_{n+1, n+1} \leq \frac{1}{2} x_{n, n}$, and it follows that $\lim _{n \rightarrow \infty} x_{n, n}=0$. Similarly, for $\varepsilon=\frac{1}{2}$ and $\alpha=1, \beta=0$, there is $N_{1}=$ $N_{1}(1 / 2,1,0) \in \mathbb{N}$ such that $x_{m+1, n} \leq \frac{1}{2} x_{m, n}$ for all $m, n \geq N_{1}$. It implies that for $n \geq N_{1}$ we have $\lim _{m \rightarrow \infty} x_{m, n}=0$. Finally for $\varepsilon=\frac{1}{2}, \alpha=0, \beta=1$ there is $N_{2}=N_{2}(1 / 2,0,1) \in$ \mathbb{N} such that $x_{m, n+1} \leq \frac{1}{2} x_{m, n}$ for all $m, n \geq N_{2}$. From here we obtain $\lim _{n \rightarrow \infty} x_{m, n}=0$, for each $m \geq N_{2}$.

Let $\varepsilon>0$ be arbitrary (and fixed). Then there is $n_{\varepsilon} \in \mathbb{N}$ such that $x_{n, n} \leq \varepsilon$ for each $n \geq n_{\varepsilon}$. Set $n_{*}=\max \left\{n_{\varepsilon}, N_{1}, N_{2}\right\}$. Then $x_{m, n} \leq \varepsilon$ for each $m, n \geq n_{*}$, which means that $\mathbf{x} \in c_{2,+}^{0}$.

The double sequence $\mathbf{x}=\left(x_{m, n}\right)_{m, n \in \mathbb{N}}$ defined by

$$
x_{m, n}= \begin{cases}1 / m & \text { for } m \in \mathbb{N}, n \in\{1,2, \cdots, m\} \\ 1 / n & \text { for } n \in \mathbb{N}, m \in\{1,2, \cdots, n\}\end{cases}
$$

evidently belongs to the class $c_{2,+}^{0}$, but it does not belong to $\operatorname{Tr}\left(\mathrm{R}_{-\infty, s_{2}}\right)$ because for $\alpha=\beta=1$ and $m=n$ we have

$$
\lim _{n \rightarrow \infty} \frac{x_{m+1, n+1}}{x_{m, n}}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1 .
$$

In what follows we need two definitions from [6].
Let \mathcal{A} and \mathcal{B} be as above. Then:
(a) $\mathrm{S}_{1}^{(\mathrm{d})}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis: for each double sequence $\left(A_{m, n}\right.$: $m, n \in \mathbb{N}$) of elements of \mathcal{A} there are elements $a_{m, n} \in A_{m, n}, m, n \in \mathbb{N}$, such that the double sequence $\left(a_{m, n}\right)_{m, n \in \mathbb{N}}$ belongs to \mathcal{B}.
(b) $\alpha_{2}^{(d)}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis: for each double sequence $\left(A_{m, n}\right.$: $m, n \in \mathbb{N}$) of elements of \mathcal{A} there is an element B in \mathcal{B} such that $B \cap A_{m, n}$ is infinite for all $(m, n) \in \mathbb{N} \times \mathbb{N}$.
2.2. Theorem. The selection principle $\mathrm{S}_{1}^{(d)}\left(c_{2,+}^{0}, \operatorname{Tr}\left(\mathrm{R}_{-\infty, \mathrm{s}_{2}}\right)\right)$ is satisfied.

Proof. Let $\left(x_{m, n, j, k}\right)$ be a double sequence of double sequences such that for a fixed $\left(j_{0}, k_{0}\right) \in \mathbb{N} \times \mathbb{N},\left(x_{m, n, j_{0}, k_{0}}\right) \in c_{2,+}^{0}$. We create a new double sequence $\mathbf{y}=\left(y_{j, k}\right)_{j, k \in \mathbb{N}}$ in the following way.
$1^{0} . y_{1,1}=x_{m, n, 1,1}$ for an arbitrary fixed $(m, n) \in \mathbb{N} \times \mathbb{N}$;
2^{0}. $y_{1,2}=x_{m, n, 1,2}$ such that $y_{1,2}<\frac{1}{2} y_{1,1}, y_{2,1}=x_{m, n, 2,1}$ such that $y_{2,1}<\frac{1}{2} y_{1,1}$, and $y_{2,2}=x_{m, n, 2,2}$ such that $y_{2,2}<\frac{1}{2} \min \left\{y_{1,2}, y_{2,1}\right\}$.
$p^{0}, p \geq 3$. Choose $y_{p, 1}=x_{m, n, p, 1}$ so that $y_{p, 1}<\left(\frac{1}{2}\right)^{p} y_{p-1,1}$. For $\ell \in\{2,3, \cdots, p-1\}$ pick $y_{p, \ell}=x_{m, n, p, \ell}$ such that $y_{p, \ell}<\left(\frac{1}{2}\right)^{p} y_{p, \ell-1}$ and $y_{p, \ell}<\left(\frac{1}{2}\right)^{p} y_{p-1, \ell}$. Similarly, let $y_{1, p}=x_{m, n, 1, p}$ be such that $y_{1, p}<\left(\frac{1}{2}\right)^{p} y_{1, p-1}$. Choose also $y_{\ell, p}=x_{m, n, \ell, p}$ such that $y_{\ell, p}<\left(\frac{1}{2}\right)^{p} y_{\ell-1, p}$ and $y_{\ell, p}<\left(\frac{1}{2}\right)^{p} y_{\ell, p-1}$. Finally, take $y_{p, p}$ to be some $x_{m, n, p, p}$ such that $y_{p, p}<\left(\frac{1}{2}\right)^{p} \min \left\{y_{p, p-1}, y_{p-1, p}\right\}$.

We prove that $\mathbf{y} \in \operatorname{Tr}\left(\mathrm{R}_{-\infty, s_{2}}\right)$. Let $\varepsilon>0$ and $\alpha, \beta \geq 0$ with $\max \{\alpha, \beta\} \geq 1$ be given. Set $h=h(\alpha, \beta)=[\alpha]+[\beta]$. There is $s_{0} \in \mathbb{N}$ such that $\left(\frac{1}{2}\right)^{s} \leq \varepsilon$ for each $s \geq s_{0}$. For $j \geq s_{0}, k \geq s_{0}$ we have

$$
\frac{y_{j+1, k}}{y_{j, k}} \leq\left(\frac{1}{2}\right)^{s_{0}+1} \quad \text { and } \quad \frac{y_{j, k+1}}{y_{j, k}} \leq\left(\frac{1}{2}\right)^{s_{0}+1}
$$

and thus we have

$$
\frac{y_{[j+\alpha],[k+\beta]}}{y_{j, k}}=\frac{y_{j+[\alpha], k+[\beta]}}{y_{j, k}} \leq\left(\frac{1}{2}\right)^{\left(s_{0}+1\right) h} \leq\left(\frac{1}{2}\right)^{s_{0}} \leq \varepsilon
$$

which means that $y \in \operatorname{Tr}\left(R_{-\infty, s_{2}}\right)$.
2.3. Theorem. The selection principle $\alpha_{2}^{(d)}\left(c_{2,+}^{0}, \operatorname{Tr}\left(\mathrm{R}_{-\infty, s_{2}}\right)\right)$ is satisfied.

Proof. Let $\left(x_{m, n, j, k}\right)$ be a double sequence of double sequences such that for a fixed $\left(j_{0}, k_{0}\right) \in \mathbb{N} \times \mathbb{N},\left(x_{m, n, j_{0}, k_{0}}\right) \in c_{2,+}^{0}$. Form a double sequence $\mathbf{y}=\left(y_{p, t}\right)_{p, t \in \mathbb{N}}$ as follows.

Step 1. Using some standard method arrange the given double sequence of double sequences in a sequence $\left(x_{n, m, r}\right)$ of double sequences, where for each $r_{0} \in \mathbb{N}$ the double sequence ($x_{m, n, r_{0}}$) belongs to $c_{2,+}^{0}$.

Step 2. Consider the sequence of sequences $\left(x_{n, n, r}\right), r \in \mathbb{N}$. Observe that for each $r_{0} \in \mathbb{N}$ it holds $\left(x_{n, n, r_{0}}\right) \in \mathbb{S}_{0}$, where \mathbb{S}_{0} denotes the set of all sequences of positive real numbers converging to 0 (see, for instance, [7]). Let $J=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \mathbb{S}: a_{1}>0, a_{n+1} \leq\right.$ $\left.\frac{a_{n}}{n+1}\right\}$, where \mathbb{S} is the set of all sequences of positive real numbers. It holds $J \varsubsetneqq \mathbb{S}_{0}$ and the selection principle $\mathrm{S}_{1}\left(\mathbb{S}_{0}, J\right)$ is satisfied.

Step 3. (In this part of the proof we use some techniques from [2]) Take an increasing sequence $\left(p_{i}\right)_{i \in \mathbb{N}}$ of prime numbers, $\left(p_{1}=2\right)$, and a fixed $r \in \mathbb{N}$. Consider subsequences $\left(x_{p_{i}^{n}, p_{i}^{n}, r}\right), i \in \mathbb{N}$, of the sequence $\left(x_{n, n, r}\right)$. These subsequences are in the class \mathbb{S}_{0}. Varying i and r in \mathbb{N}, arrange those subsequences in a sequence of sequences of \mathbb{S}_{0}.

Applying $\mathrm{S}_{1}\left(\mathbb{S}_{0}, J\right)$ one finds a sequence $\left(z_{j}\right) \in J$ such that $\left(z_{j}\right)$ has infinitely many elements with the sequence $\left(x_{n, n, r}\right)$ for each $r \in \mathbb{N}$. In other words, we conclude that the selection principle $\alpha_{2}\left(\mathbb{S}_{0}, J\right)$ is true.

Let now $y_{j, j}=z_{j}, j \in \mathbb{N}$. For $j \geq 2$ we choose $y_{s, j}=\sqrt{s+1} \cdot y_{s+1, j}$ for $s \in$ $\{1,2, \cdots, j-1\}$, and $y_{j, s}=\sqrt{s+1} \cdot y_{j, s+1}$. It is easy to see that the double sequence $\mathbf{y}=\left(y_{p, t}\right)$ obtained in this way has infinitely many common elements with each double sequence $\left(x_{m, n, j . k}\right)$ for arbitrary and fixed $(j, k) \in \mathbb{N} \times \mathbb{N}$.

It remains to prove $\mathbf{y} \in \operatorname{Tr}\left(\mathrm{R}_{-\infty, s_{2}}\right)$. Let $\varepsilon>0$ and $\alpha \geq 0, \beta \geq 0$ with $\max \{\alpha, \beta\} \geq 1$, be given. Set $h=[\alpha]+[\beta]$. There is $N_{0} \in \mathbb{N}$ such that $\left(\frac{1}{\sqrt{N+1}}\right)^{h} \leq \varepsilon$ for each $N \in \mathbb{N}$ with $N \geq N_{0}\left(N_{0} \geq \varepsilon^{-(2 / h)}-1\right)$. For $p, t \geq N_{0}$ we have

$$
\frac{y_{p+1, t}}{y_{p, t}} \leq \frac{1}{\sqrt{N_{0}+1}} \text { and } \frac{y_{p, t+1}}{y_{p, t}} \leq \frac{1}{\sqrt{N_{0}+1}} .
$$

So we have

$$
\frac{y_{[p+\alpha],[t+\beta]}}{y_{p, t}}=\frac{y_{p+[\alpha], t+[\beta]}}{y_{p, t}}\left(\frac{1}{\sqrt{N_{0}+1}}\right)^{h} \leq \varepsilon
$$

i.e. $\mathbf{y} \in \operatorname{Tr}\left(\mathrm{R}_{-\infty, s_{2}}\right)$.
2.4. Remark. (1) The selection principles $\alpha_{i}^{(d)}\left(c_{2,+}^{0}, \operatorname{Tr}\left(\mathrm{R}_{-\infty, \mathrm{s}_{2}}\right)\right), i=3,4$, are also satisfied; see the papers [8,6] in connection with these selection principles.
(2) From the proof of Theorem 2.3 it follows that selection principles $\alpha_{i}\left(c_{2,+}^{0}, \operatorname{Tr}\left(\mathrm{R}_{-\infty, s_{2}}\right)\right)$, $i \in\{2,3,4\}$, are true; see [12] for these selection properties.
(3) From the proof of Theorem 2.2 one concludes that this theorem remains true if the first coordinate $c_{2,+}^{0}$ in it is replaced by the class of double sequences of positive real numbers which possesses at least one Pringsheim's limit point equal to 0 (see, for instance, [6]).
(4) Similarly, Theorem 2.3 remains true if the first coordinate $c_{2,+}^{0}$ is replaced by the class of double sequences $\left(x_{m, n}\right)$ having property that the sequence $\left(x_{n, n}\right)$ contains a subsequence converging to 0 .

For a double sequence $\mathbf{x}=\left(x_{m, n}\right)$ we define

$$
\omega_{n}(\mathbf{x}):=\sup \left\{\left|x_{j, k}-x_{r, s}\right|: j \geq n, k \geq n, r \geq n, s \geq n\right\}, n \in \mathbb{N} .
$$

The sequence $\left(\omega_{n}(\mathbf{x})\right)$ is called the Landau-Hurwicz sequence of \mathbf{x} (compare with [4]).
2.5. Proposition. A double sequence $\mathbf{x}=\left(x_{m, n}\right)$ belongs to the class $c_{2}^{a}, a \in \mathbb{R}$, if and only if $\lim _{n \rightarrow \infty} \omega_{n}(\mathbf{x})=0$.

Proof. (\Rightarrow) Assume that $\mathbf{x}=\left(x_{m, n}\right)$ is a double sequence from c_{2}^{a} for some arbitrary and fixed $a \in \mathbb{R}$. Let $\varepsilon>0$ be given. There is $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ such that $\left|x_{j, k}-a\right| \leq \varepsilon / 2$ for each $j \geq n_{0}$ and each $k \geq n_{0}$. Therefore we have

$$
\left|x_{j, k}-x_{r, s}\right|=\left|x_{j, k}-a+a-x_{r, s}\right| \leq\left|x_{j, k}-a\right|+\left|x_{r, s}-a\right| \leq \varepsilon / 2+\varepsilon / 2
$$

for all $j, k, r, s \geq n_{0}$. This implies that for each $n \geq n_{0}$ we have

$$
0 \leq \omega_{n}(\mathbf{x}) \leq \sup \left\{\left|x_{j, k}-x_{r, s}\right|: j \geq n_{0}, k \geq n_{0}, r \geq n_{0}, s \geq n_{0}\right\} \leq \varepsilon
$$

i.e. $\lim _{n \rightarrow \infty} \omega_{n}(\mathbf{x})=0$.
(\Leftarrow) Let $\mathbf{x}=\left(x_{m, n}\right)$ be a double sequence with $\lim _{n \rightarrow \infty} \omega_{n}(\mathbf{x})=0$. For a given $\varepsilon>0$, there is $n_{1}=n_{1}(\varepsilon) \in \mathbb{N}$ such that $0 \leq\left|x_{j, k}-x_{r, s}\right| \leq \varepsilon / 2$ for $j \geq n_{1}, k \geq n_{1}, r \geq n_{1}$, $s \geq n_{1}$, because

$$
0 \leq \omega_{n}(\mathbf{x})=\sup \left\{\left|x_{j, k}-x_{r, s}\right|: j \geq n_{1}, k \geq n_{1}, r \geq n_{1}, s \geq n_{1}\right\} \leq \varepsilon / 2
$$

for $n \geq n_{1}$. Since for all $j, r \geq n_{1}$ it holds $\left|x_{j, j}-x_{r, r}\right| \leq \varepsilon / 2$, it follows that the sequence $\left(x_{t, t}\right)$ is convergent (as a Cauchy sequence), i.e. there is $A \in \mathbb{R}$ such that $\lim _{t \rightarrow \infty} x_{t, t}=A$. This implies there is $n_{2}=n_{2}(\varepsilon) \in \mathbb{N}$ such that $\left|x_{t, t}-A\right| \leq \varepsilon / 2$ for each $t \geq n_{2}$. Therefore, for $n_{0}=\max \left\{n_{1}, n_{2}\right\}$ and all $j, k \geq n_{0}$ we have

$$
\left|x_{j, k}-A\right| \leq\left|x_{j, k}-x_{j, j}\right|+\left|x_{j, j}-A\right| \leq \varepsilon .
$$

For $a \in \mathbb{R}$ we define

$$
c_{\operatorname{Tr}\left(\mathrm{R}_{-\infty, \mathrm{s}), 2}^{a}\right.}^{a}:=\left\{\mathbf{x} \in c_{2}^{a}:\left(\omega_{n}(\mathbf{x})\right) \in \operatorname{Tr}\left(\mathrm{R}_{-\infty, \mathrm{s}}\right)\right\} .
$$

(For the definition of $\operatorname{Tr}\left(\mathrm{R}_{-\infty, \mathrm{s}}\right)$ see [3].)
2.6. Example. Given $a \in \mathbb{R}$, consider the double sequence $\mathbf{x}=\left(x_{j, k}\right)$ defined by

$$
x_{j, k}= \begin{cases}a & \text { for } j \neq k \\ a+1 / j & \text { for } j=k\end{cases}
$$

It is clear that $\mathbf{x} \in c_{2}^{a}$. However, $\mathbf{x} \notin c_{\operatorname{Tr}\left(\mathbb{R}_{-\infty, \mathrm{s}), 2}\right.}^{a}$ because $\omega_{n}(\mathbf{x})=1 / n$ for each $n \in \mathbb{N}$ and

$$
\lim _{n \rightarrow \infty} \frac{\omega_{n+1}(\mathbf{x})}{\omega_{n}(\mathbf{x})}=1
$$

2.7. Theorem. The following selection principles are satisfied:
(1) $\mathrm{S}_{1}^{(d)}\left(c_{2,+}^{0}, c_{\operatorname{Tr}\left(R_{-\infty, s}\right), 2,+}^{0}\right)$;
(2) $\alpha_{2}^{(d)}\left(c_{2,+}^{0}, c_{\operatorname{Tr}\left(R_{-\infty, s}\right), 2,+}^{0}\right)$.

Proof. (1) Consider the double sequence $\mathbf{y}=\left(y_{j, k}\right)$ which was the selector in the proof of Theorem 2.2. We have

$$
\omega_{n}(\mathbf{y})=\sup \left\{\left|y_{j, k}-y_{r, s}\right|: j \geq n, k \geq n, r \geq n, s \geq n\right\}=y_{n, n}, n \in \mathbb{N},
$$

which implies

$$
\lim _{n \rightarrow \infty} \frac{\omega_{n+1}(\mathbf{y})}{\omega_{n}(\mathbf{y})}=\lim _{n \rightarrow \infty} \frac{y_{n+1, n+1}}{y_{n, n}} \leq \lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n+1}=0
$$

i.e. (1) is true.
(2) Consider the double sequence $\mathbf{y}=\left(y_{j, k}\right)$ which was the selector in the proof of Theorem 2.3. For this double sequence we have $\omega_{n}(\mathbf{y})=y_{n, n}, \quad n \in \mathbb{N}$. Since

$$
\lim _{n \rightarrow \infty} \frac{\omega_{n+1}(\mathbf{y})}{\omega_{n}(\mathbf{y})}=\lim _{n \rightarrow \infty} \frac{y_{n+1, n+1}}{y_{n, n}} \leq \lim _{n \rightarrow \infty} \frac{1}{n+1}=0
$$

one concludes that (2) is satisfied.
We recall a definition from [6]. Let \mathcal{A} and \mathcal{B} be as in Introduction. Then $\mathrm{S}_{1}^{\varphi}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis: for each sequence $\left(A_{t}\right)$ of elements from \mathcal{A} there is an element $B=\left(b_{j, k}\right) \in \mathcal{B}$ such that $b_{j, k} \in A_{t}$ for $t=\varphi(j, k)$, where $\varphi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is a given bijection.
2.8. Theorem. The selection principle $\mathrm{S}_{1}^{\varphi}\left(c_{2,+}^{0}, \operatorname{Tr}\left(\mathrm{R}_{-\infty, s_{2}}\right)\right)$ is satisfied.

Proof. Suppose that $\left(A_{t}\right)$ is a sequence of double sequences $A_{t}=\left(x_{m, n, t}\right)$ in $c_{2,+}^{0}$. Let us consider the double sequence of double sequences ($x_{m, n, j, k}$) (constructed from the sequence $\left(A_{t}\right)$), where $(j, k)=(j(t), k(t))=\varphi^{-1}(t), t \in \mathbb{N}$. To this double sequence of double sequences apply the procedure from the proof of Theorem 2.2 to obtain the double sequence $\mathbf{y}=\left(y_{j, k}\right)$ which will witness that the theorem is true.

From the proof of Theorem 2.8 and Theorem 2.7(1) we have the following corollary.
2.9. Corollary. The selection principle $\mathrm{S}_{1}^{\varphi}\left(c_{2,+}^{0}, c_{\operatorname{Tr}\left(\mathrm{R}_{-\infty, s}\right), 2,+}^{0}\right)$ is satisfied.

References

[1] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Some properties of rapidly varying sequences, J. Math. Anal. Appl. 327 (2007), 1297-1306.
[2] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Relations between sequences and selection properties, Abst. Appl. Anal. 2007 (2007), Article ID 43081, 8 pages.
[3] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Classes of sequences of real numbers, games and selection properties, Topology Appl. 156 (2008), 46-55.
[4] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Rapidly varying sequences and rapid convergence, Topology Appl. 155 (2008), 2143-2149.
[5] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, A few remarks on divergent sequences: rates of divergence, J. Math. Analysis Appl. 360 (2009), 588-598
[6] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Double sequences and selections, Abst. Appl. Anal. 2012 (2012), Article ID 497594, 6 pages.
[7] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, On the class $\mathbb{S}_{\underline{0}}$ of real sequences, Appl. Math. Letters 25 (2012), 1296-1298.
[8] D. Djurčić, M.R. Žižović, A. Petojević, Note on selection principles of Kočinac, Filomat 26 (2012), 1291-1295.
[9] G.H. Hardy, On the convergence of certain multiple series, Math. Proc. Cambridge Phil. Soc. 19 (1917), 86-95.
[10] E.W. Hobson, The Theory of Functions of a Real Variable, Vol. II (2nd edition), Cambridge University Press, Cambridge, 1926.
[11] Lj.D.R. Kočinac, Selected results on selection principles, in: Proc. Third Sem. Geom. Topology (July 15-17, 2004, Tabriz, Iran), pp. 71-104, 2004.
[12] Lj.D.R. Kočinac, On the α_{i}-selection principles and games, Contem. Math. 533 (2011), 107-124.
[13] S. Matucci, P. Řehák, Rapidly varying decreasing solutions of half-linear difference equations, Math. Comp. Modelling 49 (2009), 1692-1699.
[14] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321.
[15] G.M. Robison, Divergent double sequences and series, Trans. Amer. Math. Soc. 28 (1926), 50-73.
[16] M. Tasković, Fundamental facts on translationally O-regularly varying functions, Math. Morav. 7 (2003), 107-152.
[17] J. Vítovec, Theory of rapid variation on time-scales with applications to dynamic equations, Arch. Math. (Brno) 46 (2010), 263-284.

[^0]: *Department of Mathematics, Second University of Naples
 Caserta, Italy
 Email: agata.caserta@unina2.it
 ${ }^{\dagger}$ University of Kragujevac, Faculty of Technical Sciences in Čačak Svetog Save 65, 32000 Čačak, Serbia
 Email:dragandj@tfc.kg.ac.rs Corresponding author.
 ${ }^{\ddagger}$ University of Niš, Mechanical Engineering Faculty, 18000 Niš, Serbia
 Email:meli@masfak.ni.ac.rs
 Supported by the Ministry of Education and Science, Serbia, Grants 174026 and 174032.

