
Orthogonal polynomials and generalized Gauss-Rys quadrature formulae

Orthogonal polynomials and the corresponding quadrature formulas of Gaussian type concern-
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1 − t2)λ−1/2 on (−1, 1), with parameters

− and , are considered. For these quadrature rules reduce to the so-
called Gauss-Rys quadrature formulas, which were investigated earlier by several authors, e.g.,

Dupuis at al 1976 and 1983; Sagar 1992; Schwenke 2014; Shizgal 2015; King 2016; Milo-

vanović 2018, etc. In this generalized case, the method of modified moments is used, as well as

a transformation of quadratures on (−1, 1) with N nodes to ones on (0, 1) with only (N + 1)/2 
nodes. Such an approach provides a stable and very efficient numerical construction.

Keywords: Nodes; orthogonal polynomials; quadrature rule; recurrence relation; weights.

1. Introduction and preliminaries

In this paper, we consider a problem of construction of the quadrature formulas of Gaussian

type on [−1, 1], concerning the following two-parametric weight function

ωλ(t; x) = e−xt2(1− t2)λ−1/2, (1)

where x is a positive parameter and λ > −1/2, i.e.,

∫ 1

−1

f(t)ωλ(t; x) dt =
N∑

ν=1

Aνf(τν) +RN(f), (2)

which are exact for all polynomials of degree at most 2N − 1 (in notation P2N−1), i.e., with

remainder term RN (f) ≡ Rλ
N(f ; x) = 0 for each f ∈ P2N−1. For an even number of nodes,

i.e., when N = 2n, the quadrature sum in (2) can be written in the form

Q2n(f ; x) =

n∑

k=1

Ak[f(τk) + f(−τk)], (3)

where τk = τ
(N)
k (x;λ), Ak = A

(N)
k (x;λ) > 0, and 0 < τ1 < · · · < τn < 1.
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The main tool for constructing weighted Gaussian quadrature rules are orthogonal polyno-

mials with respect to the same weight function. In our case, let πk(t) ≡ πλ
k (t; x) be polynomials

orthogonal on [−1, 1], with respect to the weight function given by (1). Since this weight func-

tion is even, the monic orthogonal polynomials t 7→ πλ
k (t; x) satisfy the three-term recurrence

relation for k ≥ 0,

πλ
k+1(t; x) = (t− αk)π

λ
k (t; x)− βkπ

λ
k−1(t; x), (4)

with πλ
0 (t; x) = 1 and πλ

−1(t; x) = 0. The recursion coefficients βk are positive and depend on

the parameters x and λ. Thus, βk = βλ
k (x) > 0, k = 1, 2, . . ., where x > 0 and λ > −1/2.

Here, αk = αλ
k(x) = 0, because the weight function is even on [−1, 1]. The coefficient βλ

0 (x)
in (4) may be arbitrary, but it is conveniently defined as the first moment of the weight function

t 7→ ωλ(t; x),

βλ
0 (x) =

∫ 1

−1

ωλ(t; x) dt =
√
π
Γ(λ+ 1

2
)

Γ(λ+ 1)
1F1

(1
2
, λ+ 1,−x

)
, (5)

where 1F1(a; b; z) is the Kummer confluent hypergeometric function; see the Kummer proba-

bility distribution (Ostrovska & Turan 2017).

Otherwise, in this paper, we use the generalized hypergeometric function pFq, defined by

pFq(a1, ..., ap; b1, ..., bq;z)=

∞∑

ν=0

(a1)ν · · · (ap)ν
(b1)ν · · · (bq)ν

zν

ν!

for different p and q, where the Pochhammer symbol (λ)ν is given by

(λ)ν = λ(λ+ 1) · · · (λ+ ν − 1) =
Γ(λ+ ν)

Γ(λ)
,

and Γ(λ) is Euler’s gamma function

Γ(λ) =

∫ ∞

0

tλ−1e−t dt for Re (λ) > 0.

In Wolfram’s MATHEMATICA the function pFq is implemented as HypergeometricPFQ

and suitable for both symbolic and numerical calculation. For p = q + 1, it has a branch cut

discontinuity in the complex z plane running from 1 to ∞. When p ≤ q this series converges for

each z ∈ C. For some recent results on this subject, especially on transformations, summations

and some applications see (Milovanović et al. 2018, Milovanović & Rathie 2019).

The nodes ±τk k = 1, . . . , n, in the quadrature formula (3) are zeros of the orthogonal

polynomial πλ
N(t; x) of degree N = 2n, and the weight coefficients Ak, k = 1, . . . , N , are the

corresponding Christoffel numbers (Gautschi 2004, Mastroianni & Milovanović 2008)).

This kind of quadrature formulas are very close to the so-called Rys quadrature formulas

introduced in 1976 by Dupius, Rys and King (Dupuis et al. 1976) as an attractive method in

computational quantum chemistry, for evaluating two-electron repulsion integrals, which appear

in molecular quantum mechanical calculations involving Gaussian Cartesian basis functions. It

was shown that such integrals can be reduced to the one-dimensional integrals of the form∫ 1

0
φm(t) exp(−xt2) dt, where φm(t) are even algebraic polynomials of very high degree 2m.

In a recent paper H.K. King (King 2016) discussed existing strategies for evaluation of Rys

nodes and weights; see (Sagar & Smith 1992). An efficient and stable method for constructing

Gauss-Rys quadratures have been recently given in (Milovanović 2018).
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As we mention at the beginning here we consider more general case with respect to the

weight function (1), which is a product of Gegenbauer weight function and the Rys exponential

function. Since our quadrature rules reduce to the Rys quadrature for λ = 1/2, we will call

them as the generalized Gauss-Rys quadrature formulae.

In the case x → 0, our problem is reduced to the Gauss-Gegenbauer rule, where ωλ(t; 0) =

(1 − t2)λ−1/2, λ > −1/2, and πλ
k (t; 0) = Ĉλ

k (t) are monic Gegenbauer polynomials, which

satisfy three-term recurrence relation (4), with the coefficients; see (Mastroianni & Milovanović

2008, p. 102)

αλ
k(0) = 0 (k ∈ N), βλ

0 (0) =
√
π
Γ(λ+ 1

2
)

Γ(λ+ 1)
,

βλ
k (0) =

k(2λ+ k − 1)

4(λ+ k − 1)(λ+ k)
, k ∈ N, (6)

except the case λ = 0, when β0
1(0) = 1/2. Otherwise, our weight function t 7→ ωλ(t; x)

belongs to Szegő’s class; see Definition 2.2.1 in (Mastroianni & Milovanović 2008), because

the integral ∫ 1

−1

logωλ(t; x)√
1− t2

dt = −π

2

[
(2λ− 1) log(4) + x

]

is a finite number (> −∞), and therefore we have the following asymptotic property

lim
k→+∞

βλ
k (x) =

1

4
. (7)

To construct the Gaussian formula (2), i.e., (3), with at most N nodes, using the Golub-

Welsch algorithm (Golub & Welsch 1969), we need the first N recursive coefficients in (4),

βk = βλ
k (x), k = 0, 1, . . . , N − 1, which must be constructed numerically for this non-

clasical case. Such approaches belong to the so-called constructive theory of orthogonal poly-

nomials developed by Walter Gautschi in the 1980s; see (Gautschi 1982); (Gautschi 2004);

(Milovanović 2014). In general, in numerical construction of the recursive coefficients an im-

portant aspect is the sensitivity of the problem concerning a small perturbation in the input.

However, recent progress in variable-precision arithmetic and symbolic computation enables

us to generate recursive coefficients directly by applying the original Chebyshev method of

moments, but by using sufficiently high precision arithmetic to overcome the numerical in-

stability. Sometimes, we can even obtain these coefficients in symbolic form (usually for

small N). Today, symbolic/variable-precision software for orthogonal polynomials is available:

Gautschi’s package SOPQ in MATLAB (Gautschi 2005); (Gautschi 2018) and our MATHEMAT-

ICA package OrthogonalPolynomials (Cvetković & Milovanović 2004); (Milovanović

& Cvetković 2012), and both packages are freely downloadable.

Let µλ
k(x) be moments defined by

µλ
k(x) =

∫ 1

−1

tke−xt2(1− t2)λ−1/2 dt, k ∈ N0.

Evidently, µλ
k(x) = 0 for odd k. Using the integral formula for the Kummer confluent hyperge-

ometric function 1F1(a; b; z),

1F1(a; b; z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ta−1(1− t)b−a−1e−zt dt, (8)
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Fig. 1. Non-stability in calculating three-term recursive coefficients for small x (case β0
5(x)).

we can get µλ
k(x), for each even k, in the form

Γ
(
k+1
2

)
Γ
(
λ+ 1

2

)

Γ
(
k
2
+ λ+ 1

) 1F1

(k + 1

2
;
k

2
+ λ+ 1;−x

)
.

In order to get N recurrence coefficients βλ
k (x), k = 0, 1, . . . , N − 1 (the correspond-

ing αλ
k(x) = 0, because the weight is an even function on (−1, 1)), we need the first 2N

moments µλ
k(x). By the command aChebyshevAlgorithm in MATHEMATICA package

OrthogonalPolynomials, in symbolic mode, we can obtain the recursion coefficients

βλ
k (x) in symbolic form. For example, for λ = 0 and small k ≤ 10, we get them in terms of the

modified Bessel functions of the first kind I0(x/2) and I1(x/2),

β0
0(x) = πe−x/2I0

(x
2

)
,

β0
1(x) =

I0
(
x
2

)
− I1

(
x
2

)

2I0
(
x
2

) ,

β0
2(x) =

xI0
(
x
2

)2 − 2I1
(
x
2

)
I0
(
x
2

)
− xI1

(
x
2

)2

2xI0
(
x
2

) (
I0
(
x
2

)
− I1

(
x
2

)) ,

etc. The obtained expressions for higher k are very complicated and unusable. Their com-

putation for x near zero is not stable and requires an arithmetic of high precision. Non-

stability in calculating β0
5(x) in standard double precision arithmetic, with machine precision

MP≈ 2.22× 10−16 ($MachinePrecision in the Wolfram MATHEMATICA), is presented in

Figure 1. Only the use of high arithmetic, here with WP=50 (WorkingPrecision->50),

leads to a stable calculation (dark line in Figure 1). With such a calculation the recursive coef-

ficients β0
k(x) for k = 1, . . . , 6 are shown in Figure 2, when x runs over (0, 30).

According to the previous, we have to use numerical mode in our construction, i.e., the

following commands

<<orthogonalPolynomials‘

% mom=...(sequence of the length 2N)

{alpha,beta}=aChebyshevAlgorithm[mom, WorkingPrecision->WP];

4
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Fig. 2. The coefficients β0
k(x) for x ∈ (0, 30) for k = 1 (magenta), k = 2 (red), k = 3 (blue),

k = 4 (orange), k = 5 (green), and k = 6 (brown).

in order to get the sequences of the recurrence coefficients (of the length N), denoted by alpha

(in this case, a zero sequence) and beta, with the maximal relative error

errλN (x; WP) = max
0≤k≤N−1

∣∣∣∣∣
βλ
k (x)− β̂λ

k (x)

β̂λ
k (x)

∣∣∣∣∣ .

Here, the “exact values” of the desired recurrence coefficients β̂λ
k (x) can be obtained using the

same procedure, but with the higher working precision WP1 (e.g., WP1= 2WP).

As in the special case (λ = 1/2) of the Rys polynomials (Milovanović 2018), this construc-

tion of the coefficients βλ
k (x) is unstable, again especially for small values of x. For example,

to get the first N = 50 (100) coefficients for x = 1/10, with more than 16 exact decimal digits,

i.e., when errλN(1/10; WP) < 10−16, we need the working precision at least WP= 48 (86) for

λ = 0, WP= 46 (84) for λ = 1, and WP bigger than 105 (124) in the Legendre case λ = 1/2.

Therefore, in the next section, we construct polynomials orthogonal concerning the weight

function t 7→ ωλ(
√
t; x)/

√
t on (0, 1), using the method of modified moments (Gautschi 1982),

as well as the corresponding quadrature rules of Gaussian type on (0, 1). This approach enables

us to have a stable and much easier construction of recursive coefficients and quadratures of the

original problem on (−1, 1), which is given in Section 3.

2. Orthogonal polynomials and Gaussian quadratures on (0,1)

Instead of construction the polynomials t 7→ πλ
k (t; x) orthogonal on (−1, 1), as well as the

corresponding Gaussian formulas (2), with an even number of nodes N = 2n, with respect

to the weight function defined in (1), in this section we use Theorem 2.2.11, p. 102, from

(Mastroianni & Milovanović 2008), to transform the problem to the interval (0, 1) for a new

weight function t 7→ Ωλ(t; x), given by

Ωλ(t; x) =
ωλ(

√
t; x)√
t

=
exp(−xt)√

t
(1− t)λ−1/2.

Such an approach in construction the N-point Gaussian formulas, for the even weight function

on a symmetric interval, needs only N/2 = n nodes in the corresponding rules on the half
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interval. In this manner, the influence of numerical instabilities in the process of construction

can be significantly reduced, because the dimension of the Jacobi matrix is halved. Also, as we

mentioned in the previous section, our construction is based on modified moments, which is an

additional advantage over the direct construction of formulas on a symmetric interval.

Remark 1. If we want the rules (2), with an odd number of nodes N = 2n+1, then the previous

Ωλ(t; x) should be replaced by the weight function t 7→
√
t ωλ(

√
t; x). Such a construction is

very similar to one for even N and we will consider only the case when N is even.

Let pλk(t; x) be monic orthogonal polynomials for the weight function Ωλ(t; x) on (0, 1).
They satisfy the three-term recurrence relation for k = 0, 1, . . .; theorem 2.2.12, p. 102, in

(Mastroianni & Milovanović 2008)

pλk+1(t; x) = (t− ak)p
λ
k(t; x)− bkp

λ
k−1(t; x) (9)

with pλ0(t; x) = 1, pλ−1(t; x) = 0. The recursion coefficients in (9) depend on λ and x and they

are connected with ones in (4), i.e., a0 = β1 and

ak = β2k + β2k+1, bk = β2k−1β2k. (10)

According (7) we conclude that

lim
k→+∞

ak =
1

2
, lim

k→+∞
bk =

1

16
. (11)

Also, the parameters of the Gauss-Christoffel formula on (0, 1),
∫ 1

0

Ωλ(t; x)g(t) dt =
n∑

k=1

Bkg(ξk) + R̂n(g), (12)

which is exact for all g ∈ P2n−1, are connected with parameters of (3). Namely,

±τk =
√
ξk, Ak =

1

2
Bk, k = 1, . . . , n. (13)

For details see (Masjad-Jamei & Milovanović 2017).

To construct recursive coefficients in (9) we use the modified moments of the weight func-

tion Ωλ(t; x) on (0, 1) with respect to a system of polynomials {φk} (deg φk = k), chosen to

be close in some sense to the desired orthogonal polynomials pλk(t; x). In our case an appro-

priate system of such polynomials are the monic Gegenbauer polynomials φk(t) = pλk(t; 0) =

Ĉλ
2k(

√
t), k ≥ 0.

These polynomials also satisfy a three-term recurrence relation

φk+1(t) = (t− aMk )φk(t)− bMk φk−1(t) (14)

for k ≥ 0, with φ0(t) = 1 and φ−1(t) = 0. After some little calculations, we can obtain its

recursive coefficients (Milovanović 2019):

aM0 =
1

2(λ+ 1)
, bM0 =

√
πΓ

(
λ+ 1

2

)

Γ(λ+ 1)
,

aMk =
4k2 + 4λk + λ− 1

2(2k + λ− 1)(2k + λ+ 1)
, k ≥ 1,

bM1 =
2λ+ 1

4(λ+ 1)2(λ+ 2)
,

bMk =
k(2k − 1)(k + λ− 1)(2k + 2λ− 1)

4(2k + λ− 2)(2k + λ− 1)2(2k + λ)
,

6



for k ≥ 2.

For constructing the first n recurrence coefficients in (9), ak and bk, k = 0, 1, . . . , n− 1, the

method needs the first 2n modified moments

mλ
k(x) =

∫ 1

0

Ĉλ
2k(

√
t)Ωλ(t; x) dt, 0 ≤ k ≤ 2n− 1.

2.1 Calculation of modified moments

In this subsection we calculate the modified moments.

Theorem 1. Let Ĉλ
k (t) be monic Gegenbauer polynomials orthogonal for the weight function

t 7→ (1− t2)λ−1/2, λ > −1/2, on (−1, 1). The modified moments

mλ
k(x) =

∫ 1

0

Ĉλ
2k(

√
t)
e−xt

√
t
(1− t)λ−1/2 dt,

where k = 0, 1, 2, . . ., can be expressed via the Kummer confluent hypergeometric function as

mλ
k(x) =

(−1)kπ(2k + λ)(2k)!

24k+2λ(k + λ)k!

Γ(2k + 2λ+ 1)

Γ(2k + λ+ 1)2
xk

1F1

(
k +

1

2
; 2k + λ+ 1;−x

)
.

Alternatively,

mλ
k(x) =

(−1)ke−x/2xk

22k+λ(k + λ)k
Qλ

k(x), k ∈ N0, (15)

where Qλ
k(x) is an integral defined by

Qλ
k(x) =

∫ π

0

e−
x

2
cos θ sin2k θ(1− cos θ)λ dθ. (16)

Proof. We start with a formula for Gegenbauer polynomials; see p. 529, Eq. 10, in (Prudnikov

et al. 1986)

I =

∫ a

0

xα−1(a2 − x2)λ−1/2e−px2

Cλ
2k+ε

(x
a

)
dx

=
(−1)kaα+2λ−1

2(2k + ε)!
(2λ)2k+ε

(
1 + ε− α

2

)

k

× Γ(λ+ 1
2
)Γ(α+ε

2
)

Γ(b2)
2F2

(
a1, a2; b1, b2;−a2p

)
, (17)

which holds for ε = 0 or 1, a > 0, Reα > −ε, and

a1 =
α

2
, a2 =

α + 1

2
,

b1 =
1 + α− ε

2
− k, b2 =

1 + α + ε

2
+ λ+ k.

Since

Cλ
2k(x) =

22k(λ)2k
(2k)!

Ĉλ
2k(x),

7



putting a = 1, ε = 0 and x =
√
t, the integral I in (17) reduces to

22k−1(λ)2k
(2k)!

∫ 1

0

tα/2−1(1− t)λ−1/2e−ptĈλ
2k

(√
t
)
dt,

and for α = 1 and p = x it becomes

I =
22k−1(λ)2k

(2k)!
mλ

k(x). (18)

However, the right hand side in (17) is undetermined for α = 1. Therefore, we will make

some transformations of the expression on the right side and then let α → 1.

With Sk ≡ S
(α,λ)
k (x) we denote the expression

Sk =
(1− α

2

)
k
2F2 (a1, a2; b1, b2;−x) ,

with parameters a1, a2, b1, b2 given before. Since

A :=
(1− α

2

)
k
= (−1)k

(α + 1

2
− k

)
k
=

(−1)kΓ(α+1
2
)

Γ(α+1
2

− k)
,

we have that

Sk = A

∞∑

ν=0

(α
2
)
ν
(α+1

2
)
ν

(α+1
2

− k)
ν
(α+1

2
+ k + λ)

ν

(−x)ν

ν!

=

∞∑

ν=0

(−1)k(α
2
)
ν
Γ(α+1

2
+ ν)

Γ(α+1
2

− k + ν)(α+1
2

+ k + λ)
ν

(−x)ν

ν!
.

When α → 1, the first k terms in the sum S
(α,λ)
k (x) vanish, so that S

(1,λ)
k (x) = limα→1 S

(α,λ)
k (x),

after changing the index ν := ν + k, we get S
(1,λ)
k (x) in the following form

(−1)k
∞∑

ν=0

(1
2
)
ν+k

Γ(1 + ν + k)

Γ(1 + ν)(1 + k + λ)ν+k

(−x)ν+k

(ν + k)!
.

Since (γ)ν+k = (γ)k(γ + k)ν it reduces to

xk(1
2
)
k

(1 + k + λ)k

∞∑

ν=0

(1
2
+ k)ν

(1 + 2k + λ)ν

(−x)ν

ν!
,

i.e., S
(1,λ)
k (x) can be expressed in terms of the Kummer confluent hypergeometric function

(1
2
)
k
xk

(k + λ+ 1)k
1F1

(
k +

1

2
; 2k + λ+ 1;−x

)
.

Thus, the right hand side of (17), for a = 1, ε = 0, p = x and α → 1, becomes

(−1)k(2λ)2k
2(2k)!

Γ(λ+ 1
2
)
√
π

Γ(k + λ + 1)
S
(1,λ)
k (x). (19)

8



Finally, equating the expressions in (18) and (19) and using the well-known Legendre du-

plication formula

Γ(2z) =
22z−1

√
π

Γ(z)Γ
(
z +

1

2

)
,

as well as the properties of gamma function, we obtain the modified moments mλ
k(x) as given

in the statement of this Theorem.

Using the integral form (8) of the Kummer hypergeometric function 1F1(a; b; z), when z =
−x, a = k + 1

2
and b = 2k + λ + 1, after changes the variables t = cos2 θ, we obtain the

alternative expression (15) for the modified moments mλ
k(x).

Two interesting and important cases with the Chebyshev weights of the first kind (λ = 0)
and the second kind (λ = 1) can be obtained as corollaries of the previous theorem.

Corollary 1. Let T̂k(t) be monic Chebyshev polynomials of the first kind orthogonal with re-

spect to the weight function t 7→ (1− t2)−1/2 on (−1, 1). The modified moments

m0
k(x) =

∫ 1

0

T̂2k(
√
t)

e−xt

√
t(1− t)

dt (k ∈ N0)

can be expressed via the Kummer confluent hypergeometric function as

m0
0(x) = π 1F1

(1
2
; 1;−x

)
= πe−x/2I0

(x
2

)

and for k ∈ N

m0
k(x) =

(−1)kπ

24k−1k!
xk

1F1

(
k +

1

2
; 2k + 1;−x

)(−1)kπ

22k−1
e−x/2Ik

(x
2

)
,

where Ik(z) is the modified Bessel functions of the first kind and order k. Alternatively,

m0
k(x) =

(−1)k e−x/2 xk

22k(k)k
Q0

k(x), k ∈ N0,

where Q0
k(x) is the integral defined by Eq. (16).

Corollary 2. Let Ûk(t) be monic Chebyshev polynomials of the second kind orthogonal with

respect to the weight function t 7→ (1− t2)1/2 on (−1, 1). The modified moments

m1
k(x) =

∫ 1

0

Û2k(
√
t)e−xt

√
1− t

t
dt (k ∈ N0)

can be expressed via the Kummer confluent hypergeometric function as

m1
k(x) =

(−1)kπ

24k+1k!
xk

1F1

(
k +

1

2
; 2k + 2;−x

)
.

Alternatively,

m1
k(x) =

(−1)ke−x/2xk

22k+1(k + 1)k
Q1

k(x) (k ∈ N0),

where Q1
k(x) is the integral defined by Eq. (16).

9



2.2 Numerical construction

The MATHEMATICA package OrthogonalPolynomials provides also routines for a

work with modified moments for generating the coefficients ak and bk in the relation (9). Alter-

native commands are

<<orthogonalPolynomials‘

% akM=... (sequence of the length 2n)

% bkM=... (sequence of the length 2n)

% Mmom=...(sequence of the length 2n)

{a,b}=aChebyshevAlgorithmModified[Mmom,akM,bkM,

WorkingPrecision->WP];

where akM and bkM are coefficients in the three-term recurrence relation (14), and Mmom is

the sequence of modified moments given in Theorem 1 by (15). For numerical calculating

the integral Qλ
k(x), given in Eq. (16), we can use the standard command NIntegrate in

MATHEMATICA, with the options

Method->"DoubleExponential" and WorkingPrecision->WP,

where WP is a given working precision.

For given λ, n and x, as well as the working precision WP, the coefficients ak and bk, k =
0, 1, . . . , n − 1, in the recurrence relation (9) are obtained as the sequences a and b. Their

maximal relative error is given by

errλn(x; WP) = max
0≤k≤n−1

{∣∣∣∣
ak − âk

âk

∣∣∣∣,
∣∣∣∣
bk − b̂k

b̂k

∣∣∣∣

}
,

where, as before, the “exact values” of the desired coefficients âk and b̂k can be obtained using

the same procedure, but with the higher working precision WP1. For example, if we take λ = 0
(see Corollary 1), n = 100 and x = 1, for WP=30 we get the first 100 recurrence coefficients

ak and bk:

k sequence a for x=1

0 0.378750193709599027324648823248

1 0.558108977120640683421160182517

2 0.500638815763627602857962430445

3 0.500002010402165855585412829707

4 0.500000003001355138913484171981

5 0.500000000002610206433841003986

6 0.500000000000001484867909740311

7 0.500000000000000000595403462627

8 0.500000000000000000000177314407

9 0.500000000000000000000000040763

10 0.500000000000000000000000000007

>10 0.500000000000000000000000000000

k sequence b for x=1

0 2.02643806694935530514336305543

1 0.114048678184139268042120835991
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2 0.0644019873749736944597342268427

3 0.0625100250180638822043294025279

4 0.0625000209807900172326264490836

5 0.0625000000234725623589669607001

6 0.0625000000000163246186141457655

7 0.0625000000000000077372313620488

8 0.0625000000000000000026589417479

9 0.0625000000000000000000006928113

10 0.0625000000000000000000000001416

>10 0.0625000000000000000000000000000

without loss of digits. As we can see the convergence of the previous sequences to the limit

values (11) is very fast. These coefficients ak and bk, k = 0, 1, . . . , 99, give a possibility to

construct Gaussian quadratures (12) for each n ≤ 100, as well as the original rules (3) on

(−1, 1), i.e., (2), for each N = 2n ≤ 200. Note that the rule (2), with N = 200 nodes is exact

for all polynomials of degree at most 2N − 1 = 399. The complete procedure is very fast.

We pay special attention to two interesting (Chebyshev) cases, when λ = 0 and λ = 1.

In order to analyse stability in our construction we use two different arithmetics, WP=30 and

the standard double precision arithmetic (WP=MP). In Table 1 we present the maximal relative

errors of the recurrence coefficients errλ100(x; WP) for x = 15, 20, 30, when λ = 0 and λ = 1.

Table 1. Maximal relative errors of the recurrence coefficients errλ100(x; WP) for x = 15, 20, 30
in two different arithmetics

λ = 0
WP x = 15 x = 20 x = 30

30 2.× 10−29 6.30× 10−27 1.29× 10−22

MP 1.12× 10−13 3.05× 10−11 3.74× 10−6

λ = 1
30 1.4× 10−28 3.03× 10−26 1.03× 10−21

MP 3.95× 10−13 1.26× 10−10 6.01× 10−6

The loss of digits practically does not exist for values of x ≤ 12 for these values of λ. In both

of these cases we have a loss of at most two, five or ten decimal digits, when x = 15, x = 20 or

x = 30, respectively, regardless of which arithmetic we use. Thus, for x < 12, our method (the

mapping of moments into recurrence coefficients) is well-conditioned and its condition number

is near 1. Otherwise, roughly speaking, if the condition number of a mapping is 10m, then

approximately m decimal digits are lost. Therefore, we can conclude here that the condition

number is approximately 102, 105 and 1010 for the previously mentioned values of x = 15, 20
and 30. In such cases, if we need the accuracy of ℓ decimal digits in the recurrence coefficients

ak and bk for each k < n, then we must use the working precision, which is at least WP= ℓ+m
(Milovanović 2015). This means that for getting the first n = 100 recurrence coefficients with

16 exact decimal digits, our method needs only standard double precision arithmetics (WP=MP)

when x < 12, but for larger x it needs WP=MP+m. For example, for x ≤ 30 we should use

WP=26.

Now, for given λ and X > 0, we want to determine the coefficients ak(x) and bk(x) for each

x ∈ [0, X ] and k = 0, 1, . . . , n− 1. Following Shizgal (Shizgal 2015), we first select a system
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of points S = {xν} in the interval [0, X ], determine the corresponding values of the coefficients

ak(xν) and bk(xν), k = 0, 1, . . . , n−1, and then construct the corresponding interpolating func-

tions for each of these coefficients, which can be realized very easy in MATHEMATICA, using

the function Interpolation[{{x1, f1}, {x2, f2}, . . .}]. It constructs an interpolation of the

function values fν corresponding to x values xν , and returns an InterpolatingFunction

object, which can be used like any other pure function. Interpolation works by fitting

polynomial curves between successive data points, by degree of the polynomial curves which

can be specified by the option InterpolationOrder->r, with default setting r=3, which

is quite satisfactory for our purpose.
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Fig. 3. The recurrence coefficients ak(x) for x ∈ (0, 30) in the case λ = 0.
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Fig. 4. The recurrence coefficients bk(x) for x ∈ (0, 30) in the case λ = 0.

We illustrate this procedure for λ = 0, X = 30, and, because of simplicity, we take an

equidistant system of points, e.g.,

S =
{
xν =

ν

10

∣∣∣ ν = 0, 1, . . . , 300
}
,
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although it is also possible with fewer points with a significantly larger spacing in the second

half of the interval. The obtained interpolating functions for our coefficients we will denote by

again as functions x 7→ ak(x) and x 7→ bk(x), k = 0, 1, . . . , 99. In Figures 3 and 4 we present

these coefficients. The corresponding graphics for λ = 1 are displayed in Figures 5 and 6.
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Fig. 5. The recurrence coefficients ak(x) for x ∈ (0, 30) in the case λ = 1.
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Fig. 6. The recurrence coefficients bk(x) for x ∈ (0, 30) in the case λ = 1.

These coefficients enable us to obtain the parameters of the quadrature formula (12), the

nodes ξk and the weight coefficients Bk, k = 1, . . . , n for each n (in our example ≤ 100), using

the Golub-Welsch algorithm (Golub & Welsch 1969), with the corresponding three-diagonal
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Jacobi matrix Jn(Ω
λ( · ; x), given by




a0(x)
√

b1(x) O

√
b1(x) a1(x)

√
b2(x)√

b2(x) a2(x)
. . .

. . .
. . .

√
bn−1(x)

O
√
bn−1(x) an−1(x)




,

whose eigenvalues are the nodes ξk, k = 1, . . . , n, and the weight coefficients Bk can be ob-

tained from the first component of the normalized eigenvectors corresponding to ξk. This al-

gorithm is also included in the MATHEMATICA package OrthogonalPolynomials. The

corresponding command is

{xi,B}=aGaussianNodesWeights[n,a,b,

WorkingPrecision->WP,Precision->PR]

where a and b are sequences of recurrence coefficients, and PR is a required precision of the

sequences xi (nodes) and B (weight coefficients). This process is stable, so that we usually set

WP=PR+5.

3. Gaussian quadratures and orthogonal polynomials on (-1,1)

With the obtained parameters of the n-point quadrature rule (12) on (0, 1), ξk and Bk, we can

get easily the quadrature parameters τk and Ak in the original quadrature formula (3) on (−1, 1),
using the relations (13). In this way, we get parameters in this 2n-point symmetric quadrature

rule by solving the eigenvalue problem with the Jacobi matrix of the order only n.
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Fig. 7. Case λ = 0: The recurrence coefficients x 7→ βk(x), for k = 2, 4, 6, 10 and 199, when x
runs over [0, 30].

Also, we can easily get the coefficients βk in the three-term recurrence relation (4) for poly-

nomials πλ
k (t; x) orthogonal on (−1, 1) with respect to the weight function t 7→ ωλ(t; x) given
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in (1), using the relations (10). Namely, knowing ak and bk for k = 0, 1, . . . , n− 1, we have

β0 =
√
π
Γ(λ+ 1

2
)

Γ(λ+ 1)
1F1

(1
2
, λ+ 1,−x

)
, β1 = a0,

and

β2k =
bk

β2k−1
, β2k+1 = ak − β2k, k = 1, . . . , n− 1,

for which we can also construct the corresponding interpolating functions on the set S as in

the previous section for coefficients in the three-term recurrence relation (9). In Figures 7 and

8 we present graphics for some selected coefficients βk in the cases when λ = 0 and λ = 1,

respectively.
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Fig. 8. Case λ = 1: The recurrence coefficients x 7→ βk(x), for k = 2, 4, 6, 10 and 199, when x
runs over [0, 30].

4. Conclusion

In this paper we propose a stable and efficient algorithm for constructing orthogonal polynomi-

als and the corresponding quadrature formulas of Gaussian type with respect to the even weight

function ωλ(t; x) = exp(−xt2)(1− t2)λ−1/2 on (−1, 1), with parameters λ > −1/2 and x > 0.

For λ = 1/2 these quadrature rules reduce to the so-called Gauss-Rys quadrature formulas,

which were investigated earlier by several authors. Two advantages of the proposed approach

are the transformation of the original problem from (−1, 1) to one on (0, 1) and the use the

method of modified moments for achieving the stability and reduction of numerical complexity

of the algorithm. As a possible applications of these quadrature formulas we mention an appli-

cation in solving Fredholm integral equations with the kernel K(x, t) = e−xt2(1 − t2)λ−1/2 on

[−1, 1], see (Asanov et al. 1917, Mastroianni & Milovanović 2009).
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