
In-silico Research Platform in the Cloud -
Performance and Scalability Analysis

1st Miloš Ivanović
Faculty of Science

University of Kragujevac
BIOIRC d.o.o.

Kragujevac, Serbia
0000-0002-8974-2267

2nd Andreja Živić
Faculty of Science

University of Kragujevac
BIOIRC d.o.o.

Kragujevac, Serbia
andrejazivic2@gmail.com

3rd Nikolaos Tachos
Dept. of Materials Science and Engineering

University of Ioannina
Ioannina, GR45110, Greece

0000-0002-8627-6352

4th George Gois
Dept. of Materials Science and Eng.

University of Ioannina
Ioannina, GR45110, Greece

gkois@yahoo.com

5th Nenad Filipović
Faculty of Engineering

University of Kragujevac
BIOIRC d.o.o.

Kragujevac, Serbia
0000-0001-9964-5615

6th Dimitrios I. Fotiadis
Dept. of Materials Science and Eng.

University of Ioannina
Ioannina, GR45110, Greece

fotiadis@cc.uoi.gr

Abstract—The paper describes experiences from building and
cloudification of the in-silico research platform SilicoFCM, an
innovative in-silico clinical trials’ solution for the design and
functional optimization of whole heart performance and moni-
toring effectiveness of pharmacological treatment, with the aim
to reduce the animal studies and the human clinical trials. The
primary aim of cloudification was to prove portability, improve
scalability and reduce long-term infrastructure costs. The most
computationally expensive part of the platform, the scientific
workflow manager, was successfully ported to Amazon Web
Services. We benchmarked the performance on three distinct
research workflows, each of them having different resource
requirements and execution time. The first benchmark was pure
performance of running workflow sequentially. The aim of the
second test was to stress-test the underlying infrastructure by
submitting multiple workflows simultaneously. The benchmark
results are promising, painting the infrastructure launching
overhead almost negligible in this kind of heavy computational
use-case.

Index Terms—scientific workflow, cloud computing, in-silico
platform, scalability, portability

I. INTRODUCTION

Biomedical and bio-engineering research is becoming in-
creasingly dependent on secure and scalable services for com-
puting, storage, and networking. Traditionally, these infras-
tructural elements are deployed and maintained on-premises of
research institutions. Recently, for various kinds of biomedical
applications, cloud computing has emerged as an alternative to
locally maintained infrastructures. Cloud computing services
offer secure on-demand computing, storage, and platform ser-
vices which are clearly differentiated from high-performance
computing by their rapid availability and scalability. As such,
cloud services are successfully addressing a large class of

SilicoFCM H2020 funding

biomedical problems and enhance the likelihood of data and
workflows sharing, reproducibility, and reuse.

There are a lot of examples of successful cloud plat-
forms for biomedical research. For example, Galaxy, an open-
source, web-based scientific workflow platform, is used for
data–intensive biomedical research [1]. For large-scale data
analysis, Galaxy can be hosted in cloud IaaS, as described
in [18]. Reliable and highly scalable cloud-based workflow
systems for next-generation sequencing analyses have been
achieved by integrating the Galaxy workflow system with
Globus Provision [4]. The Bionimbus Protected Data Cloud
(BPDC) is a private cloud-based infrastructure for manag-
ing, analyzing, and sharing large amounts of genomics and
phenotypic data in a secure environment, which was used
for gene fusion studies [2]. BPDC is primarily based on
OpenStack1, open-source software that provides tools to build
cloud platforms, with a service portal for a single point of entry
and a single sign-on for various available BPDC resources.

The complete cloud platforms nowadays provide an en-
vironment for establishing an end-to-end pipeline for data
acquisition, storage, and analysis. For example, Seven Bridges
Genomics (SBG) offers both genomics SaaS and PaaS and em-
ploys AWS as backend. SBG Platform also enables researchers
to collaborate on the analysis of large cancer genomics
data sets in a reproducible and scalable manner. They base
all their workflow management on a standardized Common
Workflow language (CWL) to facilitate developers, analysts,
and biologists to deploy, customize, and run reproducible
analysis methods. Users may choose from over 200 tools and
workflows covering many aspects of genomics data processing
to apply to TCGA data or their own data sets. A lot more

1https://www.openstack.org/



examples of successful biomedical cloud platforms can be
found in [5].

Public clouds also provide batch processing capabilities
(AWS Batch, EKS and ECS, etc.) that automatically provision
the optimal quantity and type of compute resources based on
the volume and specific resource requirements of the batch
jobs submitted, thereby significantly facilitating analysis at
scale.

For practical reasons, but also to promote open-science
approach, all data, analytical tools and methods should be
findable, accessible, inter-operable and reusable (FAIR prin-
ciples). The FAIR principles serve as a guideline for data
producers and researchers to be interoperable as much as
possible. The individual tools are organized and interconnected
in a standardized way. This automatically implies packaging
software using Linux container technologies, such as Docker
or Singularity2, and then orchestrating workflows and pipelines
using domain-specific workflow language such WDL (Work-
flow Description Language) and CWL (Common Workflow
Language).

In this paper, we provide the experience of porting Sil-
icoFCM research platform3 to AWS and discuss different
aspects of such undertake. The paper is organized as follows.
After the introduction, the second section describes hardware
and virtualization layers of the platform hosted locally. The
third section provides specifics of AWS deployment and
workflow management in that environment. The benchmark
results are given and discussed in Section IV.

II. LOCAL DEPLOYMENT OF THE PLATFORM

At the beginning of the platform development, the decision
has been made to make SilicoFCM platform portable across
different virtualization providers, including public clouds. The
development has begun using the infrastructure on premises
of one of the partners.

A. Hardware base

Physical servers are deployed in a physically isolated rack,
which belongs to the isolated network domain. It consists of
3 hypervisor nodes (32 cores, 128GB RAM) aggregated into
a Proxmox VE cluster, one storage server, and a dedicated
hardware router/firewall providing VPN access. The above
sums up to 108 CPU cores, 416 GB RAM, and 22 TB raw
storage, interconnected with 10 Gbps internal network, 1 Gbps
management network, and 1 Gbps uplink.

As depicted in Figure 1, a cluster management network
(red lines) acts as a separate VLAN (Virtual LAN) to the
data network (blue lines). The storage is accessible only from
the internal network. This architecture decision provides an
additional layer of data security.

2https://www.docker.com/, https://sylabs.io/singularity/
3https://silicofcm.eu/

Fig. 1. Hardware foundations of the SilicoFCM platform

B. Logical architecture

Two separate platform deployments have been established
from the very beginning: Development and Testing. Develop-
ment platform is the fast-changing one and acts as an upstream
for Testing. Figure 2 depicts the logical architecture of the
platform. It consists of:

• Reverse HTTP(S) proxy,
• Nodes belonging to the Development group,
• Nodes belonging to the Testing group,
• Common services used by both Development and Testing.
NodeWebApp is a web application server based on NodeJS

framework. DBServer provides SQL and NoSQL services to
the other modules, while AuthServer provides OAuth2 com-
patible authentication. The most resource-demanding compo-
nent is FunctionalEngineServer, responsible for the execution
of the CWL4 compatible scientific workflows. As stated above,
the virtual machines that make up the Development deploy-
ment are identical to their counterparts in Testing.

The services that belong to the Common Services group
are already well-established, adopted, and thoroughly tested
modules. They do not require a separate development branch
due to a slower pace of development compared to the core
SilicoFCM modules.

C. Platform security

Besides the hardware firewall, the SilicoFCM platform
makes use of the reverse proxy to fine-tune the OSI Layer 7

4Common Workflow Language - https://www.commonwl.org/



Fig. 2. Logical architecture of the SilicoFCM platform

access to the platform services. Nginx5 in reverse proxy mode
is employed to control all HTTP(S) traffic from the Internet,
as depicted in Fig. 2. Due to the strict security requirements
during the development phase, but still, to provide a sufficient
degree of user-friendliness, Nginx was configured to provide
limited access based on the GeoIP approach. This policy is
subject to change in the future releases. The gateway also
provides SSL support for the whole platform.

III. THE ELEMENTS OF THE AWS DEPLOYMENT

As stated above, the complete platform twin has also been
ported on Amazon Web Services. The major motivations for
this porting effort were to:

• Test and improve portability of the platform compo-
nents and the platform as a whole.

• Provide sufficient computational scalability for the
platform users. Running multiple workflows by multiple
users simultaneously can cause bottlenecks.

• Provide sufficient storage capacity. Despite 22 TB raw
storage available locally, heavy platform usage can lead
to a lack of storage space, especially on FES permanent

5https://www.nginx.com/

and temporary storage, but also the back-end file manager
based on Kitware Girder6.

• Automate resource provisioning, including both virtual
machines and storage space to avoid unnecessary IaaS
costs. Since the platform’s demands are quite high, leav-
ing “dangling” resources can cause significant issues.

Starting from the scheme shown in Figure 2, the specific
architectural solution for AWS resulted in the scheme shown
in Figure 3. It employs the following services offered by AWS:

• AWS EC2 - Creating, managing, and maintaining virtual
machines. The core platform instances NodeWebApp,
DBServer, AuthServer, and FunctionalEngineServer, to-
gether with supporting Common Services were created
and synced with the Testing deployment.

• AWS S3 (Simple Storage Service) - The object storage
service has been employed for three distinct purposes: (1)
Storage back-end for SilicoFCM’s back-end file manager,
(2) Permanent storage for FunctionalEngineServer to
store workflows’ inputs and outputs, and (3) Temporary
storage used during the execution of the workflows.

• AWS Route 53 - DNS service for domain name resolu-
tion.

However, there are two major differences if we compare
on-premise deployment to AWS deployment. The first one is
the usage of S3 object storage to provide almost ”infinite”
storage space for DBServer and a collocated Girder back-end
file manager. Thanks to the incorporation of Girder API into
FunctionalEngineServer, the workflow engine is capable of
seamlessly handling files, using them either as workflow inputs
or workflow outputs.

The second difference from the on-premise deployment is
heavy usage of the cloud features by FunctionalEngineServer
thanks to the clustering and resource provisioning features
provided by the back-end TOIL7 workflow manager. Func-
tionalEngineServer now directly interacts with AWS EC2 API,
launching and terminating virtual instances according to the
current and provisioned workload, as depicted in Figure 3.

A. Workflow management in AWS environment

For compatibility purposes and to stay on track with modern
trends and portability requirements, the SilicoFCM platform
opted for CWL to provide all the workflows, including ge-
nomics, but also single-scale and multi-scale mechanics, CFD,
electrodynamics, post-processing and many others. A special
API entitled Functional Engine Server (FES-API) has been
developed within SilicoFCM, capable of handling the entire
life-cycle of multiple workflows simultaneously.

FES-API’s responsibility is management of the workflows’
life-cycle, including creation, execution, handling inputs and
outputs, etc. FES-API is capable of using official CWL exe-
cution engine cwltool as an execution back-end, but also
TOIL workflow executor. The latter has better capabilities to
interface with AWS API directly, especially S3 and EC2 and

6https://girder.readthedocs.io/
7https://toil.readthedocs.io



Fig. 3. SilicoFCM’s deployment on AWS

to handle resource requests automatically. The architecture of
the TOIL engine is shown in Figure 4. The only instance to be
manually deployed is so-called Leader. In the auto-scale mode,
the Node provisioner launches an appropriate EC2 instance if
necessary, and joins it to the automatically managed Apache
Mesos8 cluster. As soon as an instance joins cluster, it is ready
to execute a workflow requested by FES-API.

The scalability is not only provided when the load is
increasing. One of the useful features of TOIL is that a
provisioned EC2 instance automatically switches off upon
completing the requested workflow and transferring the results
to the appropriate S3 bucket. This feature contributes to
infrastructure cost savings significantly, resolving the problem
with “dangling” resources.

IV. RESULTS AND DISCUSSION

Since the scaling policy of the Mesos cluster is fully dy-
namic, one has to count on certain provisioning overhead. EC2
launch penalty has to be added to each workflow’s execution
time. The alternative is to maintain a pool of ready EC2
instances all the time. However, if the overhead is acceptable,
it is better to keep full auto-scaling on, for the sake of cost
savings.

8http://mesos.apache.org/

Fig. 4. The architecture of TOIL workflow manager in the AWS environment

In the local deployment, on each users’ request, the work-
flow executes on an already up and running virtual ma-
chine. Contrary to that, on AWS deployment, a new VM
launches whenever a user starts a workflow. We opted for
t3.2xlarge instances, which are similar to our local cluster
nodes in terms of computing power.

A. Performance comparison between local and cloud deploy-
ments

To benchmark the overhead, we took three representative
workflows which significantly differ in execution time and
required computing resources:

1) O’Hara - O’Hara model provides Calcium concentra-
tion given the parameters such as rate constant for de-
phosphorylation, fraction of active binding sites with a
Ca2+/calmodulin complex on them, rate constant for
calmodulin complex binding to CaMK, as explained
in [6] and [3].

2) Pak-fs-patient - Fluid-structure simulation on patient
specific geometry Based on experimental data and DI-
COM files obtained from CT scanner. The realistic heart
model consists from 35948 tetrahedral 3D elements,
divided by 35948 nodes. The methodology is described
in [10], [7], and [11].

3) Torso-cwl - Finite element model for ventricular activa-
tion sequence from ECG measurement. Determination
of ventricular activation sequence from clinical ECG
measurement using detailed heart and torso model of
electrical field. More detail can be found in [8] and [9].

TABLE I
EXECUTION TIMES OF CERTAIN WORKFLOWS ON LOCAL DEPLOYMENT

COMPARED TO AWS DEPLOYMENT

Local (s) AWS (s)
O’Hara 123 381
Pak-fs-patient 497 612
Torso-cwl 4344 4896



Looking at O’Hara workflow in Table I and Figure 5,
one can see that VM launch overhead on AWS takes up to
3 minutes, which is a significant amount for such a short
workflow. However, the relative effect of this overhead is
fading away for the long-running workflows such as Pak-fs-
patient and Torso-cwl.

Fig. 5. The architecture of TOIL workflow manager in the AWS environment

B. Scalability and stress testing

The primary aim of the scalability feature in the SilicoFCM
platform deployed on AWS is to provide enough resources
under the heavy workload posed by the number of users
running multiple workflows simultaneously. In order to test the
behavior of the underlying AWS infrastructure effectively, we
pursued a similar benchmark as the previous one but multiplied
by a factor of 5. The main idea was to launch 5 instances of
each kind of workflow simultaneously, measure execution time
and variance, and compare them with the counterparts shown
in Figure 5. The user launches the workflows using SilicoFCM
web user interface, in order to mimic the real use case, i.e.
performing a parameter study.

According to the benchmark results shown in Table II and
Figure 6, there is a considerable variance column-wise for all
three workflows. It is most visible in a short running workflow,
such as O’Hara. If we look at O’Hara run number 3, it is much
shorter than the others. The most likely cause for this result
is the immediate availability of a proper cluster node in the
Mesos cluster, without the need to launch a new EC2 node.
Thus the launch overhead is negligible in run number 3.

TABLE II
SCALABILITY AND STRESS TEST - RUNNING MULTIPLE WORKFLOWS IN

PARALLEL ON AWS

Execution no. O’Hara Pak-fs-patient (s) Torso-cwl (s)
1 302 781 5764
2 359 658 8343
3 186 662 8281
4 295 597 8276
5 304 650 7794

While launch overheads are significant for the short-running
workflows, for the long-running ones, such as Torso-cwl,

Fig. 6. Scalability and stress test - running multiple workflows in parallel

the most visible influence is that of CPU speed and the
possible effect of over-provisioning and other similar effects
characteristic for EC2 environment. Comparing Figs. 5 and
6, it is obvious that the times when the workflows run in
parallel are from 18% to 70% longer than the situation when
running only a single workflow. The obvious explanation is
that underlying infrastructure (IaaS) is certainly non-linear in
terms of performance metrics. EC2 service launches virtual
instances sometimes on different physical servers, but some-
times a number of instances share the same physical server.
In those situations, the instances also share resources such as
I/O, system bus, etc. That is why one cannot expect the system
to behave the same under multiplied load.

The workflow engine ported to AWS showed good per-
formance when put to stress. The performance numbers are
relatively stable and predictable. We can conclude that the
SilicoFCM platform deployed on AWS is capable of sustaining
sufficient performance under stress.

V. CONCLUSIONS

The primary aim of the cloudification of the SilicoFCM
platform was to prove portability, improve scalability and
reduce long-term infrastructure costs. The first objective is
completely met, including certain added values. According
to the demonstrated results, the second objective, scalability
improvement, is also met. The system behaves predictive under
moderate load, but also when put under stress. There is a cer-
tain launch overhead, which is relatively significant with com-
putationally moderate workflows. However, the infrastructure
launching overhead is almost negligible with any considerably
computationally complex use-case. We have not yet carried
out any study to analyze long-term infrastructure costs on
AWS and compare them to the on-premise deployments, but
it is planned for the future. The overall experience shows that
a very complex multi-vendor and multi-component research
platform can be ported to a public cloud without sacrificing the
degree of control and performance, paving the way to similar
undertakings in the future.



ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 777204 (SILICOFCM project –
www.silicofcm.eu ). This article reflects only the author’s view.
The Commission is not responsible for any use that may be
made of the information it contains.

REFERENCES

[1] Enis Afgan, Dannon Baker, Marius Van den Beek, Daniel Blankenberg,
Dave Bouvier, Martin Čech, John Chilton, Dave Clements, Nate Coraor,
Carl Eberhard, et al. The galaxy platform for accessible, reproducible
and collaborative biomedical analyses: 2016 update. Nucleic acids
research, 44(W1):W3–W10, 2016.

[2] Allison P Heath, Matthew Greenway, Raymond Powell, Jonathan Spring,
Rafael Suarez, David Hanley, Chai Bandlamudi, Megan E McNerney,
Kevin P White, and Robert L Grossman. Bionimbus: a cloud for
managing, analyzing and sharing large genomics datasets. Journal of
the American Medical Informatics Association, 21(6):969–975, 2014.

[3] Milos Kojic, Miljan Milosevic, Vladimir Simic, Vladimir Geroski,
Arturas Ziemys, Nenad Filipovic, and Mauro Ferrari. Smeared mul-
tiscale finite element model for electrophysiology and ionic transport
in biological tissue. Computers in biology and medicine, 108:288–304,
2019.

[4] Bo Liu, Ravi K Madduri, Borja Sotomayor, Kyle Chard, Lukasz Lacin-
ski, Utpal J Dave, Jianqiang Li, Chunchen Liu, and Ian T Foster. Cloud-
based bioinformatics workflow platform for large-scale next-generation
sequencing analyses. Journal of biomedical informatics, 49:119–133,
2014.

[5] Vivek Navale and Philip E Bourne. Cloud computing applications
for biomedical science: A perspective. PLoS computational biology,
14(6):e1006144, 2018.

[6] Thomas O’Hara, László Virág, András Varró, and Yoram Rudy. Simula-
tion of the undiseased human cardiac ventricular action potential: model
formulation and experimental validation. PLoS computational biology,
7(5):e1002061, 2011.

[7] A van Oosterom. Source models in inverse electrocardiography. 2003.
[8] Alfonso Santiago. Fluid-electro-mechanical model of the human heart

for supercomputers. 2018.
[9] Gerhard Sommer, Andreas J Schriefl, Michaela Andrä, Michael

Sacherer, Christian Viertler, Heimo Wolinski, and Gerhard A Holzapfel.
Biomechanical properties and microstructure of human ventricular my-
ocardium. Acta biomaterialia, 24:172–192, 2015.

[10] A van Oosterom. The spatial covariance used in computing the
pericardial potential distribution. Computational Inverse Problems in
Electrocardiography, pages 1–50, 2001.

[11] A Van Oosterom. The equivalent double layer: source models for
repolarization. In Comprehensive Electrocardiology. 2009.


