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Some Conjectures and

Properties on Distance Energy

Gilles Caporossi

GERAD & HEC Montréal
3000, chemin de la Côte-Sainte-Catherine
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Abstract

The distance energy of a graph G is defined as ED(G) =
P

|µi|, where µi is the ith eigenvalue of the
distance matrix of G. In this paper, we express the distance spectra and distance energy of complete split
graphs and graphs composed of two cliques joined by a matching. We also give some spectral properties
of complete multipartite graphs. Finally, we identify structural and numerical conjectures on ED for
graphs with number of vertices n and number of edges m are fixed.

Key Words: Distance energy, Eigenvalues, Distance matrices of graphs

Résumé

L’énergie de distance d’un graphe G est définie par ED(G) =
P

|µi|, où µi représente la iième valeur
propre de la matrice des distances de G. Dans cet article, nous exprimons le spectre des distances et
l’énergie de distance de graphes fendus complets, et de graphes composés de deux cliques reliées par un
couplage. Nous donnons aussi des propriétés spectrales de graphes multiparti complets. Finalement,
nous identifions des conjectures structurelles et numériques sur ED pour des graphes avec le nombre de
sommets n et d’arêtes m fixés.
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1 Introduction

Topological descriptors play significant role in the theoretical chemistry, especially in QSPR/QSAR re-

searches. Nowadays, there are hundreds topological indices that found some applications in chemistry [1].

Among them topological indices based on spectrum of graphs play significant role. Maybe, the most used

and investigated is so–called graph energy (E) [2]. It is defined as follows:

E(G) =

n
∑

i=1

|λi|

where λi is the ith eigenvalue of adjacency matrix A .

This invariant had been introduced in 1978. but only recently it attracted attention of researches and
now there are more than 200 papers dealing with this quantity [3]. Some recent results about graph energy

can be found in [4, 5, 6, 7, 8, 9, 10].

Nowadays, there are a number of energy–like invariants such as laplacian energy [12], laplacian–energy–

like invariant [13], incidence energy [14], distance energy [17], etc. The general formulation of energy–like

quantities was given by Connsoni and Todeschini [11]. They defined energy–like quantity for any n×n matrix
as follows:

Egeneral(M, w) =

n
∑

i=1

∣

∣ξi − ξ
∣

∣ (1)

where M is the some n × n matrix, calculated with the weighting scheme w, ξi is the set of corresponding

eigenvalues. The ξ is the arithmetic mean of all eigenvalues.

When ξ is equal to 0, as it is case for eigenvalues of adjacency and distance matrix the equation (1) is
reduced to:

Egeneral =

n
∑

i=1

|ξi| when ξ = 0

Distance energy is a recently introduced energy–like invariant and it is defined in following manner [17]:

ED(G) =

n
∑

i=1

|µi| (2)

where µi are the eigenvalues of distance matrix of a graph G.

Even though this quantity is a new one there are a number of papers (especially mathematical) dealing

with this index [16, 17, 18, 19, 20, 21, 22, 23, 24, 11].

In the remaining of this paper, we denote by n the order, or number of vertices of the graph G, by m

its size or the number of its edges and D(G) denotes the distance matrix of the graph G. All the graphs

considered in this paper are simple graphs, i.e., without loops or multiple edges, indeed, these graphs are

connected.

Some properties of distance energy and distance spectra for some families of graphs are discussed in

Section 2 and conjectures obtained with AutoGraphiX on ED when n and m are fixed will be given in
Section 3.



2 G–2009–64 Les Cahiers du GERAD

2 Distance spectrum and distance energy of special families of

graphs

A complete multipartite graph CMG is a graph such that if it is properly colored (with the minimum required

colors such that two adjacent vertices do not share the same color) any pair of vertices of different colors

corresponds to an edge. The special nature of the distance matrix of complete multipartite graphs has a
direct impact on their corresponding D-spectrum. The family of complete multipartite graphs includes the

complete graphs, the stars, the complete bipartite graphs and the complete split graphs. Note that complete

multipartite graphs have diameter 2 (2 vertices of the same color are adjacent to all vertices of other colors),

so that D(CMG) only has entries of value 1 or 2.

After giving some useful lemmas, we describe the D-spectra of complete split graphs and complete bipartite

graphs.

Lemma 1 Let CMG be a complete multipartite graph. Let nk be the number of colors that have k vertices.

Then the D-spectrum of CMG has the eigenvalue k − 2 with multiplicity at least nk − 1.

Proof. It is possible to label the vertices of CMG in such a way that vertices with the same color are

consecutive. It is also possible that colors are ordered in decreasing values of k.

After reordering the vertices, D(CMG) will have all its 2’s as blocks around the main diagonal. Con-

sider now two blocks corresponding to the same value k and concentrate on the corresponding rectangular

submatrix D′(2k × n).

Each column of D′ is either composed of 1’s only, or of k times 1, k − 1 times 2 and a 0. The sum on

each column is either 2k or k + 2k − 2 = 3k − 2.

Replacing the entry 0 by −µ = −(k−2), all the columns will sum up to 2k, then Det(D(CMG)−µI) = 0,

which indicates that one of these lines is a linear combination of the others and hence µ = k−2 is an eigenvalue

of D(CMG).

If there are more than two colors with the same cardinality, the corresponding eigenvalue will have an

algebraic multiplicity of nk − 1.

Note that if k = 1, each block only has one line and the value µ = −1 is an eigenvalue of D(CMG) with
multiplicity at least nk − 1.

Lemma 2 Let CMG be a complete multipartite graph and nk be the number of colors that have k ≥ 2
vertices. Then the D-spectrum of CMG has the eigenvalue −2 with multiplicity at least

∑

k≥2
nk(k − 1).

Proof. After ordering the vertices in the same way as for the proof of Lemma 1, consider the one block

of lines of D(CMG) corresponding to vertices of a given color. Replacing the entries 0 by −µ = 2 will

yield k similar lines, which indicates that the value −2 is an eigenvalue of D(CMG) with multiplicity k − 1.

Repeating this operation for each color will lead to the result.

Corollary 1 If G is a complete multipartite graph with only two values k, then all eigenvalues of D(G) are
known except at most 2.

Proof. For each value of k, k − 1 eigenvalues are identified for each color according to Lemma 2 and

nk − 1 additional values are found according to Lemma 1. Overall, considering all the knk vertices involved,

(k − 1)nk + nk − 1 = knk − 1 eigenvalues are identified.

From Corollary 1, in the case of complete split graphs as well as complete bipartite graphs, all the

D-eigenvalues are known except at most 2.
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Theorem 1 Let G be either a complete split graph or a complete bipartite graph. Note µi (i = 3 . . . n) the
known D-eigenvalues of G according to Lemma 1 and Lemma 2. The remaining two D-eigenvalues of G are

the following :

µ1 =

−∑n

i=3
µi +

√

2
(

∑

1≤i,j≤n d2
ij −

∑n

i=3
µ2

i

)

− (
∑n

i=3
µi)

2

2
(3)

µ2 =

−∑n

i=3
µi −

√

2
(

∑

1≤i,j≤n d2
ij −

∑n

i=3
µ2

i

)

− (
∑n

i=3
µi)

2

2
(4)

Note that µ2 is not necessarily the second largest D-eigenvalue of CMG.

Proof. Let

R =
∑

1≤i,j≤n

d2
ij

S = −
n

∑

i=3

µi

and T =

n
∑

i=3

µ2
i .

As Tr(D) = 0 =
∑n

i=1
µi, we have

S = µ1 + µ2. (5)

After some simple substitutions, we obtain

2µ1µ2 = S2 − R + T. (6)

From equations (5) and (6), µ1 and µ2 are the roots of the following second degree equation:

µ2 − Sµ +
S2 − R + T

2
= 0. (7)

Solving (7) gives the solutions:

µ1 =
S +

√

2(R − T )− S2

2
(8)

µ2 =
S −

√

2(R − T )− S2

2
. (9)

Replacing R, S and T by their expressions completes the proof.

Corollary 2 Let CSG be a complete split graph of order n ≥ 7 and stability number 3 ≤ s ≤ n− 3, then the

distance energy of CSG is ED(CSG) = 2(n + s − 3).

Proof. According to Lemma 1 and Lemma 2 we have:

µ3 . . . µn−s+1 = −1 (10)

µn−s+2 . . . µn = −2 (11)
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Using these values and the special structure of the distance matrix of a complete split graph we have:

R = n(n − 1) + 3s(s − 1)

S = 2(s − 1) + n − s − 1 = n + s − 3

T = 4(s − 1) + n − s − 1 = n + 3s − 5.

Replacing R, S and T in (8) and (9) gives

µ1 =
n + s − 3 +

√

n(n − 2s + 2) + s(5s − 6) + 1

2
(12)

µ2 =
n + s − 3 −

√

n(n − 2s + 2) + s(5s − 6) + 1

2
(13)

Since µi < 0 ∀i = 3 . . . n, we have S =
∑n

i=3
|µi|. As

∑n

i=1
µi = 0, µ1 which is the largest D-eigenvalue of

CSG is greater than 0, there remains to prove that µ2 ≥ 0 or, equivalently, that µ1µ2 = n(s−2)+2−s2 ≥ 0.

Clearly, it is not the case when s ≤ 2. If s ≥ 3, the relation may be expressed as

n ≥ s2 − 2

s − 2

⇔ n ≥ s + 2 +
2

s − 2

For s = 3 and s = 4, we have n ≥ 7. When s ≥ 5, 2/(s− 2) < 1 and, since s and n are integers, the relation

becomes

n ≥ s + 3.

Corollary 3 Let CBG be a complete bipartite graph of order n ≥ 4 and note 2 ≤ a ≤ n − 2 the number of
vertices in one of its parts. The distance energy of CBG is 4(n − 2).

This result was proved by Stevanović and Indulal [19], but may also be found proved in a similar way as

Corollary 2 using

R = n(n − 1) + 3a(a − 1) + 3(n − a)(n − a − 1)

S = 2(n − 2)

T = 4(n − 2).

Some of the D-eigenvalues of complete multipartite graphs are known by Lemma 1 and Lemma 2. Un-

fortunately, when we have more than 2 values of k, more than 2 D-eigenvalues are then unknown. A study

of complete multipartite graphs achieved with AutoGraphiX led to the following conjecture:

Conjecture 1 Let CMG be a complete multipartite graph with γ as chromatic number and at least 2 vertices
of each color, then the distance energy of CMG is ED(CMG) = 4(n − γ).

Theorem 2 Let G be a graph made of two k-cliques connected in such a way that each vertex of a clique is

connected to exactly one vertex of the other, then the distance spectrum of G is the followings:

specD(G) =

(

3k − 2 −k 0 −2
1 1 k − 1 k − 1

)

,

the eigenvalues being on the first line and their associated algebraic multiplicity on the second one.

Proof. The proof of this theorem is based upon the following lemma from [15].



Les Cahiers du GERAD G–2009–64 5

Lemma 3 [15] Let

D =

[

D0 D1

D1 D0

]

be a symmetric 2 × 2 block matrix. Then the spectrum of D is the union of the spectra of D0 − D1 and
D0 + D1.

It is possible to number the vertices of G in such a way that vertex i (i ≤ k) is connected to vertex k + i.

Then, the distance matrix D of G is made of four k × k blocks: the 2 blocks on the diagonal have all their

values being 1’s, except 0’s on the main diagonal. We shall call D0 one of those blocks. The 2 other blocks
of the distance matrix are made of 2’s, except 1’s on their main diagonal ; we will call those blocks D1.

D0−D1 being a k×k block, which values are all -1’s, then 0 is an eigenvalue for D0−D1, with multiplicity

at least k − 1. And Det(D0 − D1 + kI) = kk − kkk−1 = 0 implies that −k is also an eigenvalue od D.

D0 +D1 is a k× k block, which values are all 3’s, except 1’s on the diagonal. -2 is therefore an eigenvalue

of D0 + D1 with multiplicity at least k − 1. Each rows (or column) of D0 + D1 has k − 1 3’s and 1, which

sums to 3k− 3 + 1 = 3k− 2, which is also an eigenvalue of D. All the n eigenvalues of D are thus found.

From this result, we directly deduce that the distance energy of a graph which is composed of two k-cliques

connected by a matching is 6k − 4.

3 Conjectures obtained with AutoGraphiX

The AutoGraphiX (AGX) system aims to help graph theorists in their tasks. One of its most important
feature is to find extremal (or close to extremal) graphs by the use of an optimization routine using the

variable neighborhood search (VNS) metaheuristic [25, 26]. A complete description of AGX is given in [28]

and [27] and it will be omitted here. In the present application, AGX was used to identify graphs minimizing

or maximizing distance energy given the number of vertices n and the number of edges m.

The results when attempting to find graphs minimizing of maximizing ED for all possible values of
12 ≤ n ≤ 30 and n − 1 ≤ m ≤ n(n − 1)/2 provides a set of about 8000 graphs. All these graphs are not

necessarily optimal because the heuristic sometimes fails, but a careful look at them allow us to make some

conjectures.

The first remark is that if we only consider the order n of the graphs, the complete graphs seems to

minimize ED while paths seems to maximize ED. This lower bound was already conjectured by Ramane et
al. [20], but the upper bound could be expressed as the following conjecture:

Conjecture 2 Let G be a graph of order n. Then, the distance energy of G, ED(G) is less than or equal to

ED(Path).

We do not know the analytical formula for ED(Path) but one may easily notice that the distance spectra
only has one positive eigenvalue, which indicates that ED(Path) = 2µ1.

The numerical values of ED(Path) indicates a quadratic relation between n and ED(Path) as follows:

ED(Path) ≈ 0.69482n2 − 0.7964 .

Unfortunately, this relation is not strictly respected but the the relative error is very small (erel =
|e|/ED < 10−5 when n ≥ 10) and seems to be decreasing when n grows.

Using AGX to find a lower bounds on ED given n and m, yields the following conjecture:
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Conjecture 3 Let G be a graph of order n and size m. Then, the distance energy of G, ED(G) is greater
than or equal to 4(n − 1 − m/n).

The upper bounds ED as a function of n and m involves a more complicated structure. When m is less

than or equal to (n − 2)(n − 3)/2, the following structural conjecture describes the graphs for which ED is

maximized.

Conjecture 4 Let G be a graph on n vertices and m ≤ (n − 2)(n − 3)/2 edges, then G is composed of a

path appended to a clique with possibly some edges between vertices of the clique and the vertex of the path

adjacent to the clique.

If the number of edges is larger, ED may be bounded by one of the two following conjectures.

Conjecture 5 Let G be a graph on n vertices and (n − 2)(n − 3)/2 ≤ m ≤ n(n − 3)/2 edges, then

ED(G) ≤ 4n(n2 − 2m− n)

n2 − 2m
,

and the bound is tight if G is a complete multipartite graph.

Conjecture 6 Let G be a graph on n vertices and m ≥ n(n − 3)/2 edges, then

ED(G) ≤ 2(n − 1) +

(

n(n − 1)

2
− m

)

5n + 6

3n
.

4 Conclusion

In this paper, we found some results and spectral properties on special families of graphs. We also provide

6 conjectures that are still remains open and could be of interest for some future work on distance energy, a

topic that is still in its early phase of study.
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