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Preface

In the recent years, the mathematical–chemistry literature is flooded by countless graph–based topo-
logical indices, proposed to serve as molecular structure descriptors.

Topological indices have attracted much attention of chemical and mathematical researchers, espe-
cially those focussing on graph theory, from all over the world. Nowadays many interesting results and
lot of open problems on it have been reported in literature. In most cases, the mathematical investigation
of these indices consist of finding lower and upper bounds for them, and characterizing the graphs for
which these inequalities become equalities. Again, the number of results obtained along these lines,
and the number of respective publications, is so large that no human can satisfactorily follow them and
recognize what is significant and what is not.

In order to help colleagues to find their way through the data jungle, we decided to devote one book
in our “Mathematical Chemistry Monographs” series to bounds on topological indices and the related
extremal graphs. To this end, in the Summer of 2016 we invited a number of colleagues to contribute
chapters to our book. The scholars invited were among those who are currently active and who publish in
this field of chemical graph theory. Their response was beyond anything what we could have expected.

Thus, instead of a single “Mathematical Chemistry Monograph”, we had to produce three volumes,
that is:

• Mathematical Chemistry Monograph No. 19:
Bounds in Chemical Graph Theory – Basics
Faculty of Science & University, Kragujevac, 2017

• Mathematical Chemistry Monograph No. 20:
Bounds in Chemical Graph Theory – Mainstreams
Faculty of Science & University, Kragujevac, 2017

• Mathematical Chemistry Monograph No. 21:
Bounds in Chemical Graph Theory – Advances
Faculty of Science & University, Kragujevac, 2017

The present book is the “Mathematical Chemistry Monograph” No. 21, completed in February 2017.

Editors:

Ivan Gutman
Boris Furtula
Kinkar Ch. Das
Emina I. Milovanović
Igor Ž. Milovanović
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Abstract

Let G(n) denote the class of simple graphs of order n (n ≥ 2) and G(n,m) the subclass of
G(n) in which every graph has n vertices and m edges. Give a graph parameter f(G) and a posi-
tive integer n, the Nordhaus–Gaddum Problem is to determine sharp bounds for f(G) + f(G) and
f(G) · f(G), as G ranges over the class G(n) or G(n,m), and characterize the extremal graphs,
i.e., graphs that achieve the bounds. A further problem is to determine the set of all integer pairs
(x, y) such that f(G) = x and f(G) = y for some graph G of order n. We refer to this latter prob-
lem as the Realizability Problem. In their paper, Nordhaus and Gaddum [121] determined bounds
for χ(G) + χ(G) and χ(G) · χ(G), where χ(G) denotes the chromatic number of graph G. The
characterization of the corresponding extremal graphs and the realizability problem were resolved
by Finck [52]. Nordhaus–Gaddum type relations have received wide attention; see the survey [7]
by Aouchiche and Hansen. Let k ≥ 2 be an integer. A k-decomposition (G1, G2, . . . , Gk) of a
graph G is a partition of its edge set to form k spanning subgraph G1, G2, . . . , Gk. That is, each Gi

has the same vertices as G, and every edge of G belongs to exactly one of G1, G2, . . . , Gk. For a
graph parameter f , a positive integer k, and a graph G, the Generalized Nordhaus–Gaddum Prob-
lem is to determine sharp bounds for

{∑k
i=1 f(Gi) : (G1, G2, . . . , Gk) is a decomposition of G

}

and
{∏k

i=1 f(Gi) : (G1, G2, . . . , Gk) is a decomposition of G
}

. In this chapter we summarize
the known results on the (generalized-) Nordhaus–Gaddum type results in chemical graph theory.
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1. Distance–based parameters

All graphs in this chapter are undirected, finite and simple. We refer to [11] for graph theoretical notation
and terminology not described here. For a graph G, let V (G), E(G), e(G), G and L(G) denote the set
of vertices, the set of edges, the size, the complement, and the line graph of G, respectively. Distance
is one of the basic concepts of graph theory [12]. If G is a connected graph and u, v ∈ V (G), then the
distance d(u, v) between u and v is the length of a shortest path connecting u and v. If v is a vertex of
a connected graph G, then the eccentricity e(v) of v is defined by e(v) = max{d(u, v) |u ∈ V (G)}.
Furthermore, the radius rad(G) and diameter diam(G) of G are defined by rad(G) = min{e(v) | v ∈
V (G)} and diam(G) = max{e(v) | v ∈ V (G)}. These last two concepts are related by the inequalities
rad(G) ≤ diam(G) ≤ 2rad(G). Goddard and Oellermann gave a survey paper on this subject [55].

In this section, we assume that G and G are both connected. In the sequel, the set of neighbors of a
vertex v in a graph G is denoted by NG(v). Let NG[v] = NG(v) ∪ {v}. For any subset X of V (G), let
G[X] denote the subgraph induced by X , and E[X] the edge set of G[X]; similarly, for any subset F of
E(G), let G[F ] denote the subgraph induced by F . We use G−X to denote the subgraph of G obtained
by removing all the vertices of X together with the edges incident with them from G; similarly, we use
G \ F to denote the subgraph of G obtained by removing all the edges of F from G. If X = {v} and
F = {e}, we simply write G − v and G \ e for G − {v} and G \ {e}, respectively. For two subsets X
and Y of V (G) we denote by EG[X,Y ] the set of edges of G with one end in X and the other end in Y .
If X = {x}, we simply write EG[x, Y ] for EG[{x}, Y ].

The path of order n is denoted by Pn, and the star of order n is denoted by Sn. A complete graph

is a graph in which every pair of vertices are adjacent, and a complete graph on n vertices is denoted by
Kn. A graph is bipartite if its vertex set can be partitioned into two subsets X and Y so that every edge
has one end in X and the other end in Y ; such a partition (X,Y ) is called a bipartition of the graph,
and X and Y its parts. If each vertex in X is adjacent to every vertex in Y , then G is called a complete

bipartite graph. Let Ks,t denote a complete bipartite graph the cardinalities of whose two parts are s, t,
respectively. A path on n vertices is denoted by Pn, and a cycle on n vertices is denoted by Cn. A
connected graph without any cycles is called a tree. A forest is a graph whose every component is a tree.
A subtree of a graph is a subgraph of the graph which is a tree. If this subtree is a spanning subgraph, it
is called a spanning tree of the graph.

The degree of a vertex v in a graph G, denoted by dG(v), is the number of edges of G incident with
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v. A vertex of degree zero is called an isolated vertex. We denote by δ(G) and ∆(G) the minimum and
maximum degrees of the vertices of G. A graph G is called k-regular if dG(v) = k for every v ∈ V (G).
A 3-regular graph is called a cubic graph. The distance between two vertices u and v in a connected
graph G, denoted by dG(u, v), is the length of a shortest path between them in G. The eccentricity of a
vertex v is ecc(v) := maxx∈V (G) d(v, x). The diameter of G is diam(G) := maxx∈V (G) ecc(x).

Two graphs are called disjoint if they have no vertex in common, and edge–disjoint if they have no
edge in common. The union G∪H of two graphs G and H is the graph with vertex set V (G)∪V (H) and
edge set E(G)∪E(H). If G and H are disjoint, we refer to their union as a disjoint union. It can be seen
that every graph may be expressed uniquely (up to order) as a disjoint union of connected graphs, and
these graphs are called the connected components, or simply components, and we denote the number of
components of a graph G by ω(G). If G is the disjoint union of k copies of a graph H , we simply write
G = kH . The join G ∨ H of two disjoint graphs G and H is the graph with vertex set V (G) ∪ V (H)

and edge set E(G) ∪ E(H) ∪ {uv |u ∈ V (G), v ∈ V (H)}.
The following Table 1.1 shows the authors contributing the Nordhaus–Gaddum problem for distance–

based parameters.

Distance-based Parameters Authors contributing N-G Problem

Wiener index Zhang and Wu [144]

Das and Gutman [26]

Li, Wu, Yang, and An [100]

Wiener-type invariant Hamzeh, Hossein–Zadeh, and Ashrafi [74]

Wiener polarity index Zhang and Hu [143]

Hua and Das [83]

Hyper-Wiener index Zhang, Wu, and An [145]

Su, Xiong, Sun, and Li [129]

Reverse Wiener Index Cai and Zhou [13]

Reciprocal reverse Wiener index Zhou, Yang, and Trinajstić [164]

Reciprocal complementary Wiener index Zhou, Cai, and Trinajstić [155]

Steiner Wiener index Mao, Wang, Gutman, and Li [113]

Harary index Zhou, Cai, and Trinajstić [154]

Das, Zhou, and Trinajstić [37]

Szeged index Das and Gutman [27]

Vertex PI index Das and Gutman [29]

Co-PI index Su, Xiong, and Xu [131]

Second geometric-arithmetic index Das, Gutman, and Furtula [32]

Third geometric-arithmetic index Das, Gutman, and Furtula [31]

Eccentric distance sum Hua, Zhang, and Xu [84]

Table 1.1. Distance–based parameters
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1.1 Wiener index

The Wiener index is defined as the sum of ordinary distances of all pairs of vertices of the underlying
graph, i.e., as

W (G) =
∑

u,v∈V (G)

d(u, v)

and its mathematical theory is nowadays well elaborated. For details see the surveys [38, 141].

1.1.1 Norhaus–Gaddum type results

A tree is called a double star Sp,q if it is obtained from Sp and Sq by connecting the center of Sp with
that of Sq. Since the Wiener index is connected with the distance of vertices, the diameter is important
for us to study the index. The following facts might be found in some graph theory textbook.

Lemma 1.1. [11] Let G be a connected graph with the connected complement. Then

(1) if diam(G) > 3, then diam(G) = 2;

(2) if diam(G) = 3, then G has a spanning subgraph which ia s double star.

Proof. (1) is an easy exercise. To prove (2), we take two vertices u, v in G such that dG(u, v) = 3.
Then, w /∈ NG(u) ∩ NG(v) for any vertex w ∈ V (G)\{u, v}, which means w ∈ NG(u) ∪ NG(v) in G.
Therefore, G contains a spanning double star whose two centers are u and v.

Entringer, Jackson, and Snyder [44] obtained the following result for trees.

Lemma 1.2. [44] Among all trees with n vertices, Pn is the unique extremal structure with the largest

Wiener index.

Note that P4 is the unique graph of order 4 whose complement is connected, and P 4
∼= P4. So,

W (P4) + W (P 4) = 2W (P4) = 20. Next, we calculate the value of W (Pn) + W (P n) for n ≥ 5. Let
Pn = v1v2 · · · vn. Then dPn(vi, vi+k) = k for i = 1, 2, · · · , n − k and those pairs of vertices are all the
pairs with distance k in Pn. Therefore,

W (Pn) =
n−1∑

i=1

i(n− i) = n

n−1∑

i=1

i−
n−1∑

i=1

i2 =
n3 − n

6
.

On the other hand, since diam(P n) = 2, it follows that W (P n) = e(P n) + 2e(Pn) = [
(
n
2

)
− (n −

1)] + 2(n− 1) = n2

2
+ n

2
− 1. Hence, W (Pn) +W (P n) =

n3−n
6

+ n2

2
+ n

2
− 1 = n3+3n2+2n−6

6
.

Lemma 1.3. [144] Let G ∈ G(n) (n ≥ 5) be a graph. If diam(G) = 2, then

W (G) +W (G) ≤ W (Pn) +W (P n).

Proof. Let T be a spanning tree of G. Then G ia a spanning subgraph of T has diameter 2. Therefore,
W (G) +W (G)−W (T ) = W (G) + (e(T )− e(G)) = W (G) + (e(G)− e(T )) ≤ W (T ) ≤ W (Pn) by
Lemma 1.2.

In [144], Zhang and Wu studied the Nordhaus–Gaddum problem for the Wiener index.
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Theorem 1.1. [144] Let G ∈ G(n) (n ≥ 5) be a connected graph. Then

3

(
n

2

)
≤ W (G) +W (G) ≤ 1

6
(n3 + 3n2 + 2n− 6) . (1)

Proof. The lower bound is immediate from

W (G) +W (G) ≥ (e(G) + 2e(G)) + (e(G) + 2e(G)) = 3

(
n

2

)
.

For the upper bound, it remains to consider the case diam(G) = diam(G) = 3 in view of Lemmas
1.1 and 1.3. Let si be the number of pair of vertices with distance i in G, for i = 1, 2, 3, and si be that in
G. Then W (G)+W (G) =

∑3
i=1 i(si+ si) = s1+ s1+2(s2+ s2+ s3+ s3)+ s3+ s3 = 3

(
n
2

)
+ s3+ s3.

By Lemma 1.1, let Sp1,q1 be spanning subgraph of G and Sp2,q2 be that of G, where pi + qj = n for
j = 1, 2. Hence, s3 ≤ (p1 − 1)(q1 − 1) = p1q1 − n + 1 and s3 ≤ p2q2 − n + 1. Since piqi ≤ g(n)

for i = 1 and 2, where g(n) = n2

4
if n is even, and otherwise n2−1

4
, we have s3 ≤ g(n) − n + 1 and

s3 ≤ g(n) − n + 1, and thus W (G) + W (G) ≤ 3
(
n
2

)
+ 2(g(n) − n + 1). One can easy to check that

3
(
n
2

)
+ 2(g(n)− n+ 1) ≤ n3+3n2+2n−6

6
if n ≥ 5. This completes the proof.

Note that bounds are sharp. Obviously. the upper bound can be obtained on the graph Pn. To see
the lower bound is best possible,we construct a sequence of graphs. Let Gn be a graph of order n,which
is obtained from C5 by replacing a vertex of C5 by complete graph of order n − 4. It is easy to see that
diam(Gn) = diam(Gn) = 2 and so W (Gn) +W (Gn) = 3

(
n
2

)
.

1.1.2 Norhaus–Gaddum type results in terms of diameter, size and order

Denote by G∗ a graph of diameter d (3 ≤ d ≤ 4 and |V (G∗)| ≥ d + 2), having the following property.
Let Pd+1 be a (d + 1)-vertex path contained in G∗. Then for any vertex vi ∈ V (G∗) \ V (Pd+1) and for
any vertex vj ∈ V (G∗), j 6= i, it should be either dG∗(vi, vj) = 1 or dG∗(vi, vj) = 2. In Table 1.2 are
depicted two examples of G∗-type graphs.

u u u u
u

u
�
�
�

L
L
L

�
�
�

L
L
L u u u u uuu

u
�
�
�

\
\
\

�
�

�

\
\

\

"
""

b
bb

A1 A2

Table 1.2 Two graphs of G∗ type.

Das and Gutman [26] gave lower and upper bounds for the Wiener index in terms of the number of
vertices n, the number of edges m, and the diameter d.

Lemma 1.4. [26] Let G ∈ G(n,m) (n ≥ 2) be a connected graph with diameter d. Then

W (G) ≥ 1

6
(d− 2)(d− 1) + n(n− 1)−m, (2)
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and

W (G) ≤ 1

2
n(n− 1)d− 1

3
(d− 2)(d− 1)− (d− 1)m, (3)

Equality in (2) holds if and only if G is a graph of diameter at most 2 or G ∼= Pn or G is isomorphic to

some G∗. Equality in (3) holds if and only if G is a graph of diameter at most 2 or G ∼= Pn.

By the above bound, they obtained a lower bound for W (G) +W (G).

Theorem 1.2. [26] Let G ∈ G(n) (n ≥ 2) be a connected graph with diameter d. Then

W (G) +W (G) ≥ 3n(n− 1)

2
+

1

6
(d− 2)(d− 1)d, (4)

with equality holding in (4) if and only if G is a graph of diameter 2 or G ∼= Pn or G is isomorphic to

some G∗ and G is a graph of diameter 2.

Proof. Using (2) from Lemma 1.4, we arrive at

W (G) +W (G) ≥ 2n(n− 1)− (m+m) +
1

6
(d− 2)(d− 1)d+

1

6
(d− 2)(d− 1)d, (5)

where m and d are, respectively, the number of edges and diameter of G. Since (m + m) = n(n−1)
2

,
(d− 2)(d− 1)d ≥ 0, we get (4) from (5).

Suppose now that equality holds in (4). Then all inequalities in the above argument must be equali-
ties. Then from equality in (5) we conclude that G is a graph of diameter 2 or G ∼= Pn or G is isomorphic
to some G∗, and G is a graph of diameter 2 or G ∼= Pn or G is isomorphic to some G∗, from equality
holds in (4), we get d ≤ 2. Hence G is a graph of diameter 2 or G ∼= Pn or G is isomorphic to some G∗

and G is a graph of diameter 2.
Conversely, let G be a graph of diameter 2 and let G be a graph of diameter 2. So d = d = 2, and

thus
W (G) +W (G) = n(n− 1)−m+ n(n− 1)−m =

3

2
n(n− 1)

as m+m = n(n−1)
2

.
Let G ∼= Pn and let G be a graph of diameter 2. For d = 2 and d = 3,

W (G) +W (G) = n(n− 1)−m+ 1 + n(n− 1)−m =
3

2
n(n− 1) + 1

whereas for d = 2 and d = 4,

W (G) +W (G) = n(n− 1)−m+ 4 + n(n− 1)−m =
3

2
n(n− 1) + 4.

Hence the theorem.

Remark 1.1. [26] One can easily check that our lower bound in (4) on W (G)+W (G) is always better

than (1) as (d− 2)(d− 1)d ≥ 0.

An upper bound for W (G) + W (G) in terms of the number of vertices n, and diameters d, d̄ of G
and G, respectively, is also obtained.
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Theorem 1.3. [26] Let G ∈ G(n) (n ≥ 2) be a connected graph with a connected G. If k = max{d, d̄},
then

W (G) +W (G) ≤ n(n− 1)

2
(k + 1)− 1

3
(k − 2)(k − 1)k, (6)

where d and d̄ are the diameters of G and G, respectively. Moreover, equality holds if and only if both G

and G have diameter 2.

Proof. We start by (3). Since G and G are connected, it follows that d, d ≥ 2. Without loss of generality,
we can assume that d ≥ d. So we have k = d. Let m be the number of edges of G. Then

W (G) +W (G) ≤ n(n− 1)(d+ d)

2
− (d− 2)(d− 1)d

3
− (d− 2)(d− 1)d

3

− (d− 1)m− (d− 1)m (7)

=
n(n− 1)(d+ d+ 1)

2
− (d− 2)(d− 1)d

3
− (d− 2)(d− 1)d

3

− dm− d

(
n(n− 1)

2
−m

)
as m+m =

n(n− 1)

2
,

=
n(n− 1)(d+ 1)

2
− (d− 2)(d− 1)d

3
− (d− 2)(d− 1)d

3
−m(d− d)

≤ n(n− 1)(k + 1)

2
− (k − 2)(k − 1)k

3
as k = d and d ≥ d. (8)

Now supposed that the equality in (6). Then (7) and (8) hold. From (7), we conclude that G is a
graph of diameter at most 2 or G ∼= Pn and that G is a graph of diameter at most 2 or G ∼= Pn. From (8),
we must have k = d = d and d ≤ 2. Hence both G and G have diameter 2.

Conversely, one can easily see that the equality in (6) if G and G have diameter 2.

Remark 1.2. [26] For k ≤ n
3
, we have

n3 + 3n2 + 2n− 6

6
≥ n(n− 1)(k + 1)

2
.

From this we conclude that the upper bound (6) is always better than the upper bound (1), provided

k ≤ n
3
.

Remark 1.3. [26] The lower and upper bounds given by (4) and (6), respectively, are equal when both

G and G have diameter 2.

1.1.3 Generalized Norhaus–Gaddum type results

Theorem 1.1 indicates that for any n ≥ 5 and 2-decomposition (G1, G2) of Kn, if G1 and G2 are
connected, then 3

(
n
2

)
≤ W (G) +W (G) ≤ 1

6
(n3 + 3n2 + 2n− 6).

Later, Li, Wu, Yang, and An [100] turned their attention to the generalized Nordhaus–Gaddum prob-
lem.

The following result, due to Erdös, Pach, Pollack, and Tuza, is crucial.
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Lemma 1.5. [45] For a connected graph G ∈ G(n),

diam(G) ≤ 3n

δ(G) + 1
− 1.

Lemma 1.6. [100] Let G ∈ G(n) be a simple graph. If δ(G) ≥ n/2, then diam(G) ≤ 2.

In [44], Entringer, Jackson, and Snyder got the following result.

Lemma 1.7. [44] For a connected graph G ∈ G(n), W (G) ≤ n3−n
6

, with equality if and only if G ∼= Pn.

For a fixed positive integer n, define a function

f(x1, x2) =
2∑

i=1

(
xi(n− xi + 2)2

2
+

(n− xi + 2)3

2

)
.

Lemma 1.8. [100] Let G1 and G2 be two connected graphs with the same vertex set and E(G1) ∩
E(G2) = ∅. If ∆(G1) + ∆(G2) ≥ c for some positive real number c, then

W (G1) +W (G2) < 2n2 + f
( c
2
,
c

2

)
.

For two positive integers n, d with n > d, Tn,d denotes the graph obtained from identifying a leaf of
the star K1,d with that of Pn−d. It is trivial to see that ∆(Tn,d) = d if d ≥ 2, and the order of Tn,d is n,
and that if d = 2, Tn,d

∼= Pn. By an easy calculation, W (Tn,d) is equal to

(d− 1)(d− 2) +
(d− 1)(n− d+ 1)(n− d+ 2)

2
+

(n− d+ 1)3 − (n− d+ 1)

6
.

For convenience, set g(n, d) = W (Tn,d) in squeal. Observe that g(n, d) ≥ g(n, d + 1) whenever 2 ≤
d < n− 1.

Lemma 1.9. [100] For a connected graph G ∈ G(n) and ∆(G) ≥ d ≥ 2, W (G) ≤ g(n, d), with

equality if and only if G ∼= Tn,d.

Li, Wu, Yang, and An [100] obtained the Nordhaus–Gaddum-type results for Wiener index of graphs
when decomposing into three parts.

Theorem 1.4. [100] Let Kn be the complete graph of order n. Assume that (G1, G2, G3) is a 3-

decomposition of Kn such that Gi is connected for each i = 1, 2, 3. Then for any sufficiently large

n,

5

(
n

2

)
≤

3∑

i=1

W (Gi) ≤
n3 − n

3
+

(
n

2

)
+ 2(n− 1).

Proof. We only give the proof of the upper bound. Let us consider the following cases.
Case 1. δ(Gi) ≥ 18 and δ(Gj) ≥ 18 for some two distinct i, j ∈ {1, 2, 3}.
By Lemma 1.5, we have diam(Gi) ≤ 3n

δ(Gi)+1
≤ 3n

19
and diam(Gj) ≤ 3n

δ(Gj)+1
≤ 3n

19
, and hence

W (Gi) ≤ 1
2
n(n− 1)× 3n

19
, W (Gj) ≤ 1

2
n(n− 1)× 3n

19
. Hence, for any n ≥ ∆(G) + 1 ≥ 19, we have

3∑

i=1

W (Gi) < 2× 1

2
n(n− 1)× 3n

19
+

n3 − n

6
<

n3 − n

3
.
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Case 2. There is exactly one Gi with δ(Gi) ≥ 18.
Without loss of generality, we assume that max{δ(G1), δ(G2} ≤ 18 and δ(G3) ≥ 18. If δ(G3) ≥ n

2
,

then it follows from Lemma 1.6 that diam(G3) = 2. Then

3∑

i=1

W (Gi) = W (G1) +W (G2) + 2

(
n

2

)
− e(G3)

≤ W (G1) +W (G2) + 2

(
n

2

)
+ e(G1) + e(G2)

≤ W (Pn) +W (Pn) + 2

(
n

2

)
+ e(Pn) + e(Pn)

≤ n3 − n

3
+

(
n

2

)
+ 2(n− 1).

The above second inequality follows from the observation below and Lemma 1.7. If one of G1 and G2,
say G1, contains a cycle, then G1−e1 is connected (where e1 is an edge on the cycle) and W (G1−e1) >

W (G1), and thus
W (G1) + e(G1) ≤ W (G1 − e1) + e(G1 − e1).

If n
5
≤ δ(G3) <

n
2
, then it follows from Lemma 1.5 that diam(G3) ≤ 3n

n
5
+1
≤ 15. On the other hand,

∆(G1)+∆(G2) ≥ n− 1− δ(G3) >
n
2
− 1, and hence ∆(G1)+∆(G2) ≥ n−1

2
. By Lemma 1.8, we have

W (G1) +W (G2) < 2n2 + f

(
n− 1

4
,
n− 1

4

)

≤ 2n2 + 2×
(
1

2
· n
4
·
(
3n

4

)2

+
1

6
·
(
3n

4

)3

+ o(n3)

)
=

9

32
n3 + o(n3).

Hence, for large enough n,

3∑

i=1

W (Gi) ≤
9

32
n3 + o(n3) +

(
n

2

)
× 15 <

n3 − n

3
.

If 18 ≤ δ(G3) <
n
5
, then ∆(G1) + ∆(G2) ≥ n− bn

5
c − 1, and since f(2n

5
, 2n

5
) = (1

2
· 2n

5
(3n

5
)2 + 1

6
·

(3n
5
)3 + o(n3))× 2 = 27

125
n3, by Lemma 1.8, we have

W ((G1) +W ((G2) < 2n2 + f

(
2n

5
,
2n

5

)
=

27

125
n3 + o(n3).

Hence, for large enough n,

3∑

i=1

W (Gi) < 2n2 + f

(
2n

5
,
2n

5

)
+W (G3) ≤

27

125
n3 + o(n3) +

(
n

2

)
× 3n

19

≤ 27

125
n3 + o(n3) +

3

38
n3 <

n3 − n

3
.

Case 3. max{δ(G1), δ(G2), δ(G3)} ≤ 17.
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Without loss of generality, we suppose ∆(G1) ≥ ∆(G2) ≥ ∆(G3). Then

∆(G1) + ∆(G2) ≥ n− 1− δ(G3) ≥ n− 18,

∆(G2) + ∆(G3) ≥ n− 1− δ(G1) ≥ n− 18,

and ∆(G1) ≥ ∆(G2) ≥ n
2
− 9.

If ∆(G3) ≥ n
2
, then it follows from Lemma 1.9 that

W (Gi) ≤ W (Tn,∆(Gi)) = g(n,∆(Gi)) < n2 +
n
2
(n− n

2
+ 2)2

2
+

(n− n
2
+ 2)3

6

=
1

12
n3 + o(n3).

So, for large enough n,

3∑

i=1

W (Gi) ≤ 3W (Tn,∆(Gi)) ≤
1

4
n3 + o(n3) <

n3 − n

3
.

If n
5
≤ ∆(G3) <

n
2
, then it follows from Lemma 1.9 that

3∑

i=1

W (Gi) ≤
3∑

i=1

W (Tn,∆(Gi)) ≤ 2W (Tn,bn
2
−9c) +W (Tn,bn

5
c) < 0.318n3 + o(n3) <

n3 − n

3
.

Suppose ∆(G3) <
n
5
. Let v1 be a vertex of G1 with dG1(v1) = δ(G1). Then

n− 1 = dG1(v1) + dG2(v1) + dG3(v1) ≤ dG1(v1) + dG2(v1) + ∆(G3),

and thus

dG2(v1) ≥ n− 1−∆(G3)− dG1(v1) >
4n

5
− 18,

so ∆(G1) ≥ ∆(G2) ≥ dG2(v1) >
4n
5
− 18.

From Lemma 1.9, for large enough n, we have

3∑

i=1

W (Gi) ≤
3∑

i=1

W (Tn,∆(Gi)) ≤ 2W (Tn,b 4n
5
−18c) +W (Pn) <

13

375
n3 +

n3 − n

6
+ o(n3) <

n3 − n

3
.

The proof is now complete.

1.2 Hyper–Wiener index

The hyper-Wiener index WW is one of the distance-based graph invariants [126]

WW = WW (G) =
1

2
W (G) +

1

2
W2(G),

where W2(G) =
∑

{u,v}∈V (G) dG(u, v)
2.
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1.2.1 Norhaus–Gaddum type results

Zhang, Wu, and An [145] showed that

Theorem 1.5. [145] Let G ∈ G(n) be a connected graph. Then for any sufficiently large n, we have

4

(
n

2

)
≤ WW (G) +WW (G) ≤ 2

(
n+ 4

4

)
.

The lower and the upper bounds are sharp.

1.2.2 Generalized Norhaus–Gaddum type results

In [129], Su, Xiong, Sun, and Li presented the following result.

Theorem 1.6. [129] Let (G1, G2, G3) be a 3-decomposition of Kn such that each cell Gi is connected.

Then for any n ≥ 70, we have

7

(
n

2

)
≤ WW (G1) +WW (G2) +WW (G3) ≤ 2

(
n+ 2

4

)
+

(
n

2

)
+ 4(n− 1),

with right equality if and only G1 = G2 = Pn, and with left equality if and only diam(G1) =

diam(G2) = 2.

To complete the proof, we need the following auxiliary results.

Lemma 1.10. [129] Let (G1, G2, G3) be a 3-decomposition of Kn such that each cell Gi is connected.

Then there exists at most one cell Gi with δ(Gi) ≥ n
2
.

Lemma 1.11. [129] Let G be a connected non-complete graph and e be its non-cut-edge. Then

WW (G− e) + 2e(G− e) ≥ WW (G) + 2e(G).

Lemma 1.12. [68] Let T be a tree with order n. Then WW (Sn) ≤ WW (T ) ≤ WW (Pn).

Lemma 1.13. [109] Let G′ be a connected spanning subgraph of G. Then WW (G) ≤ WW (G′).

Let Gn,d denote the graph with order n and diameter d ≥ 2, and ei(G) the number of pairs of vertices
whose distance is i for 1 ≤ i ≤ d in G, thus e1(G) is the number of edges of G.

Lemma 1.14. [129] WW (Gn,d) ≥ WW (Gn,2) holds for d ≥ 2.

Lemma 1.15. [129] Let (G1, G2, G3) be a 3-decomposition of Kn such that each cell Gi is connected.

Then ∆(Gi) + ∆(Gj) ≥ n− 1− δ(Gk).

Lemma 1.16. [129] Let G1 and G2 be two connected edge-disjoint graphs with the same order n. If

∆(G1) + ∆(G2) ≥ c for some positive real number c, then WW (G1) +WW (G2) < 3n2 + 1
2
σ( c

2
, c
2
),

where σ(x1, x2) =
∑2

i=1[
xi(n−xi+2)2

2
+ (n−xi+2)3

6
+ xi(n−xi+2)3

3
+ (n−xi+2)4

12
].
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A splice
(
G1:G2

a1:a2

)
of two connected graphs G1 and G2 is a graph obtained by identifying the vertices

a1 ∈ V1 and a2 ∈ V2.
Let n and d be two integers with n > d, we denote Tn,d =

(
K1,d:Pn−d

b1:b2

)
the graph obtained from

identifying a leaf b1 of the star K1,d with a leaf b2 of the path Pn−d. It is trivial to see that the graph Tn,d

has maximum degree d and order n. In particular, Tn,d = Pn when d = 2.

Lemma 1.17. [129] Let G ∈ G(n) be a connected graph with ∆(G) ≥ d ≥ 2. Then WW (G) ≤
Φ(n, d), with equality if and only if G = Tn,d, where Φ(n, d) = 1

2
W (Tn,d)+

1
2
W2(Tn,d) for 2 ≤ d ≤ n−1.

We are now in a position to give the proof of Theorem 1.6.
Proof of Theorem 1.6: Let us firstly prove the upper bound. For sake of simplicity, let

P(n) = 2

(
n+ 2

4

)
+

(
n

2

)
+ 4(n− 1) =

n4 + 2n3 + 5n2 + 40n− 48

12
.

We distinguish the following three cases:
Case 1. There exist at least two cells of {G1, G2, G3}, say G1, G2. such that δ(Gi) ≥ 11 for

i ∈ {1, 2}.
By Lemma 1.5, diam(Gi) ≤ 3n

δ(Gi)+1
≤ n

4
, and then

WW (Gi) =
1

2
W (Gi) +

1

2
W2(Gi) ≤

1

2
·
(
n

2

)
· n
4
+

1

2
·
(
n

2

)
· n

2

16
=

1

64
n4 +

3

64
n3 − 1

16
n2.

Hence, for any n ≥ ∆(G) + 1 ≥ 12, we have

WW (G1) +WW (G2) +WW (G3) ≤
7

96
n4 +

17

96
n3 − 1

6
n2 − 1

12
n

<
n4 + 2n3 + 5n2 + 40n− 48

12
= P(n).

Case 2. There is exactly one cell of {G1, G2, G3}, say G3, such that δ(G3) ≥ 11.
We consider the following two subcases.
Subcase 2.1. δ(G3) ≥ n

2
.

By Lemmas 1.6 and 1.10, we have diam(G3) ≤ 2. Then it is obvious that

WW (G1) +WW (G2) + WW (G3) = WW (G1) +WW (G2) +
1

2
W (G3) +

1

2
W2(G3)

= WW (G1) +WW (G2) + 3

(
n

2

)
− 2e(G3)

= WW (G1) +WW (G2) +

(
n

2

)
+ 2e(G1) + 2e(G2).

Let Q(n,G1, G2) be the last expression in the above equation. Let Ti be a spanning tree of Gi. Then Ti

can be obtained from Gi by deleting t = m − n + 1 edges in order, say ei,1, ei,2, · · · , ei,t, of graph Gi

outside of Ti for i = 1, 2. By applying Lemma 1.11 to Gi, for 1 ≤ l ≤ t we have

WW (G1 − e1,l) + 2e(G1 − e1,l) ≥ WW (G1) + 2e(G1)
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and

WW (G2 − e2,l) + 2e(G2 − e2,l) ≥ WW (G2) + 2e(G2).

Thus by Lemmas 1.11 and 1.12, we have

Q(n | G1, G2) ≤ [WW (G1 − e11) + 2e(G1)] + [WW (G2 − e21) + 2e(G2)] +

(
n

2

)

≤ · · · · · ·

≤ [WW (T1) + 2(n− 1)] + [WW (T2) + 2(n− 1)] +

(
n

2

)

≤ [WW (Pn) + 2(n− 1)] + [WW (Pn) + 2(n− 1)] +

(
n

2

)

= 2WW (Pn) +

(
n

2

)
+ 4(n− 1) = P(n).

Subcase 2.2. 11 ≤ δ(G3) <
n
2
.

By Lemma 1.15, we have ∆(G1) + ∆(G2) ≥ n−1
2

, thus by Lemma 1.16,

WW (G1) +WW (G2) < 3n2 +
1

2
σ

(
n− 1

4
,
n− 1

4

)

= 3n2 +
1

6

(
3

2
n+

3

2

)(
3

4
n+

9

4

)2

+
1

12

(
7

4
n+

5

4

)(
3

4
n+

9

4

)3

=
1

12
· 189
256

n4 +
576

64
n3 +

2315

64
n2 +

1701

384
n+

7533

3072
.

On the other hand, WW (G3) =
1
64
n4 + o(n4), since diam(G3) ≤ 3n

δ(G3)+1
≤ n

4
. Hence, for n > 10,

we have

WW (G1) +WW (G2) + WW (G3)

<

(
1

12
· 189
256

+
1

64

)
n4 +

576

64
n3 +

2315

64
n2 +

1701

384
n+

7533

3072

=
1

12
· 237
256

n4 +
576

64
n3 +

2315

64
n2 +

1701

384
n+

7533

3072

<
n4 + 2n3 + 5n2 + 40n− 48

12
= P(n).

Case 3. δ(Gi) < 11 for i = 1, 2, 3.

Without loss of generality, suppose ∆(G1) ≥ ∆(G2) ≥ ∆(G3). By Lemma 1.15, ∆(G1) ≥ n
2
− 6.

We have the following possibilities.

Subcase 3.1. ∆(G3) ≥ n
2
− 6.



17

By Lemma 1.17, for n > 36 we have

WW (G1) +WW (G2) +WW (G3) ≤ WW (Tn,∆(G1)) +WW (Tn,∆(G2)) +WW (Tn,∆(G3))

= Φ(Tn,∆(G1)) + Φ(Tn,∆(G2)) + Φ(Tn,∆(G3))

≤ 3

(
5

384
n4 +

7

12
n3 +

69

8
n2 − 20

3
n− 1148

3

)

<
n4 + 2n3 + 5n2 + 40n− 48

12
= P(n),

since

WW (Gi) ≤ Φ(Tn,∆(Gi)) =
1

2
Φ1(Tn,∆(Gi)) +

1

2
Φ2(Tn,∆(Gi))

≤ 1

2

(
n2 +

(n
2
− 6)(n− n

2
+ 8)2

2
+

(n− n
2
+ 8)3

6

)

+
1

2

(
2n2 +

(n
2
− 6)(n− n

2
+ 8)3

3
+

(n− n
2
+ 8)4

12

)

=
5

384
n4 +

7

12
n3 +

69

8
n2 − 20

3
n− 1148

3
.

Subcase 3.2. ∆(G2) ≥ n
2
− 6 > ∆(G3) ≥ 10.

By Lemma 1.17, we have

WW (Tn,10) ≤
1

2
Φ1(n, 10) +

1

2
Φ2(n, 10)

=
1

2

(
9 · 8 + 9(n− 9)(n− 8)

2
+

(n− 9)3 − (n− 9)

6

)

+
1

2

(
2 · 9 · 8 + 9(n− 9)(n− 8)(2n− 17)

6
+

(n− 10)(n− 8)(n− 9)2

12

)

=
1

24
n4 − 4

3
n3 +

383

24
n2 − 1233

12
n+ 378.

Hence, for n > 36 we have

WW (G1) +WW (G2) +WW (G3)

≤ WW (Tn,∆(G1)) +WW (Tn,∆(G2)) +WW (Tn,∆(G3))

≤ 2WW (Tn,bn
2
−6c) +WW (Tn,10)

< 2

(
5

384
n4 +

7

12
n3 +

69

8
n2 − 20

3
n− 1148

3

)

+

(
1

24
n4 − 4

3
n3 +

383

24
n2 − 1233

12
n+ 378

)

=
1

12
· 13
16

n4 − 1

6
n3 +

797

24
n2 − 1393

12
n− 1162

3

<
n4 + 2n3 + 5n2 + 40n− 48

12
= P(n).
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Subcase 3.3. ∆(G2) ≥ n
2
− 6 ≥ 10 > ∆(G3).

By Lemma 1.17, for n ≥ 70 we have

WW (G1) +WW (G2) +WW (G3) ≤ WW (Tn,∆(G1)) +WW (Tn,∆(G2)) +WW (Pn)

≤ 2WW (Tn,bn
2
−6c) +WW (Pn)

= 2

(
5

384
n4 +

7

12
n3 +

69

8
n2 − 20

5
n− 1148

3

)

+

(
1

24
n4 +

1

12
n3 − 1

24
n2 − 1

12
n

)

=
1

12
· 13
16

n4 +
5

4
n3 +

413

24
n2 − 161

12
n

<
n4 + 2n3 + 5n2 + 40n− 48

12
= P(n).

Subcase 3.4. ∆(G1) ≥ n
2
− 6 > ∆(G2).

It is obvious that ∆(G2) + ∆(G3) < n− 12. By Lemma 1.15, we have ∆(G2) + ∆(G3) ≥ n− 1−
δ(G1) > n − 12. Thus ∆(G2) + ∆(G3) = n − 12, hence ∆(G1) ≥ n

2
− 6 > ∆(G2) ≥ n

2
− 6. By the

same arguments as Subcases 3.1 and 3.2, the proof can be obtained.

Finally, we consider the lower bound. By Lemma 1.14, we have

WW (G1) +WW (G2) +WW (G3) ≥ 9

(
n

2

)
− 2[e(G1) + e(G2) + e(G3)] = 7

(
n

2

)
.

This completes the proof of Theorem 1.6, as desired.

The key contribution of their paper is the following. They introduced the concept of k-decomposition
for a graph, and then presented the Nordhaus–Gaddum-type inequality of a 3-decomposition of Kn for
the hyper-Wiener index. However, exploring the corresponding Nordhaus–Gaddum-type inequality of a
k-decomposition is still an open problem for k ≥ 4. We leaved those questions for future research.

Conjecture 1.1. [129] Let (G1, G2, · · · , Gk) be a k-decomposition of Kn such that each cell Gi is

connected. Then for any sufficiently large n with respect to k, we have

(3k−2)

(
n

2

)
≤ WW (G1)+WW (G2)+ · · ·+WW (Gk) ≤ (k−1)

(
n+ 2

4

)
+

(
n

2

)
+2(k−1)(n−1).

The lower and upper bounds are sharp.

If Conjecture 1.1 holds, we can extend Theorem 1.5 for arbitrarily large k. The upper bound is
attained when G1 = G2 = · · · = Gk−1 = Pn, since if

(
n
2

)
− (k − 1)(n − 1) ≥ 1

2
nδ(Gk) ≥ n2

4
, i.e.,
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k ≤ n
4
, then by Lemma 1.6 we have diam(Gk) = 2 for any sufficiently large n. Hence

WW (G1) +WW (G2) + · · ·+WW (Gk)

= WW (G1) +WW (G2) + · · ·+WW (Gk−1) + 3

(
n

2

)
− 2e(Gk)

= [WW (G1) + 2e(G1)] + [WW (G2) + 2e(G2)] + · · ·+ [WW (Gk−1) + 2e(Gk−1)] +

(
n

2

)

= (k − 1)WW (Pn) + 2(k − 1)(n− 1) +

(
n

2

)
.

The lower bound is trivial and is attained by any k-decomposition (G1, G2, · · · , Gk) of Kn with
diam(Gi) = 2 for i = 1, 2, · · · , k, this is because WW (Gi) = 3

(
n
2

)
− 2e(Gi) and

∑k
i=1 e(Gi)

(
n
2

)
.

1.3 Wiener–type invariant

Let d(G, k) be the number of pairs of vertices of G that are at distance k, and λ be a real number. Then

Wλ(G) =
d∑

k=1

d(G, k)kλ,

where d = diam(G) denotes the diameter of the graph G is called the Wiener type invariant of G

associated to real number λ, see [61, 92] for details.
Hamzeh, Hossein-Zadeh, and Ashrafi [74] first derived a lower bound of Wλ(G) for an incomplete

connected graph.

Lemma 1.18. [74] Let G ∈ G(n) (n ≥ 3) be an incomplete connected graph. Then

Wλ(G) ≥ (1− 2λ)|E(G)|+ 2λ
(
n

2

)

with equality if and only if diam(G) = 2.

Next, they obtained the following Nordhaus–Gaddum-type result for Wiener-type invariant.

Theorem 1.7. [74] Let G ∈ G(n) (n ≥ 3) be a connected incomplete graph with a connected comple-

ment G. Then

Wλ(G) +Wλ(G) ≥
(
n

2

)
(1 + 2λ)

with equality if and only if diam(G) = diam(G) = 2.

Proof. From Lemma 1.18, we have

Wλ(G) +Wλ(G) ≥ (1− 2λ)|E(G)|+ 2λ
(
n

2

)
+ (1− 2λ)|E(G)|+ 2λ

(
n

2

)

= (1− 2λ)(|E(G)|+ |E(G)|) + 2λ+1

(
n

2

)

= (1− 2λ)

(
n

2

)
+ 2λ+1

(
n

2

)
=

(
n

2

)
(1 + 2λ),
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as desired.

Proposition 1.1. [74] Let G ∈ G(n) (n ≥ 5) be a connected graph such that diam(G) = diam(G) = 3.

Then

Wλ(G) +Wλ(G) <

(
n

2

)
(1 + 3λ).

Proof. Suppose tk = d(G, k) and tk = d(G, k). It is clear that t2+t3 = t1, t2+t3 = t1 and t1+t1 =
(
n
2

)
.

Then

Wλ(G) +Wλ(G) =
3∑

k=1

(tk + tk)k
λ = (t1 + t1) + 2λ(t2 + t2) + 3λ(t3 + t3)

<

(
n

2

)
+ 3λ(t2 + t2 + t3 + t3) =

(
n

2

)
(1 + 3λ),

proving the proposition.

1.4 Wiener polarity index

The Wiener polarity index Wp(G) is defined as

Wp(G) = |{(u, v) | dG(u, v) = 3, u, v ∈ V (G)}|,

which is the number of unordered pairs of vertices u, v of G such that dG(u, v) = 3. Inorganic com-
pounds, say paraffin, the Wp is the number of pairs of carbon atoms separated by three carbon-carbon
bonds. Wiener [137] used a linear formula of W and Wp to calculate the boiling points tB of the paraffins,
i.e.,

tB = aW + bWp + c,

where a, b, and c are constants for a given isomeric group.

1.4.1 Nordhaus–Gaddum–type inequalities in G(n)

Zhang and Hu [143] presented the Nordhaus–Gaddum–type inequality of a graph G and its complement
G in the case both diam(G) = 3 and diam(G) = 3.

The following two facts are useful which can be found in graph theory textbook.

Lemma 1.19. [11] Let G be a graph. If diam(G) > 3, then diam(G) < 3.

Note that Wp(G) = 0 for any G with diam(G) ≤ 2. By Lemma 1.19, we always have Wp(G) = 0

or Wp(G) = 0 when either diam(G) 6= 3 and diam(G) 6= 3. Therefore, the authors first considered the
case both diam(G) = 3 and diam(G) = 3.

Lemma 1.20. [143] If G be a graph with diam(G) = 3, then G contains a spanning double star whose

two centers are u and v, where u and v are two vertices of G such that dG(u, v) = 3.
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Proof. We consider two vertices u and v in G such that dG(u, v) = 3. Then, w 6∈ NG(v) ∩ NG(u) for
any vertex w ∈ V (G)\{u, v}, and hence w ∈ NG(v) ∪NG(u), as desired.

Before proceeding, they introduced two sets. Let

S = {v ∈ V (Sp) | ∃ u ∈ V (Sq), dG(u, v) = 3},

and
T = {u ∈ V (Sq) | ∃ v ∈ V (Sp), dG(v, u) = 3},

where G is a graph having a spanning double star Sp,q.

Lemma 1.21. [143] Let G be a graph with diam(G) = 3, diam(G) = 3, and u, v be two arbitrary

vertices of G. If dG(u, v) = 3, then neither u nor v is an end vertex of a diametrical path of G.

Proof. Since diam(G) = 3, it follows from Lemma 1.20 that G contains a double star Sp,q indeed.
Now we only need to demonstrate that dG(u, v) ≤ 2 for any vertex v ∈ S ∪ T and for any vertex
u ∈ V (G)\{v}. If dG(u, v) = 2, 3, then dG(v, u) = 1. If dG(v, u) = 1, then there exists a vertex u0 on
distance 3 from v, since v ∈ S ∪ T . By Lemma 1.20, we have uu0 ∈ E(G), and hence dG(u, v) ≤ 2.

For the sake of convenient, they gave two kinds of graphs.

• Denote by G∗ the graph of order n ≥ 5 obtained from a path P4 by joining n− 4 isolated vertices
to each internal vertex of the path P4 such that V (G∗)\V (P4) is a clique.

• Let S∗
p,q,be a graph containing a double-star Sp,q such that any two vertices both in V (Sp) or those

both in V (Sq) may be adjacent.

From the definition of the Wiener polarity index, one can easily obtain

Wp(G
∗) = 1, Wp(G

∗
) = 1;

and
Wp(S

∗
p,q) = (p− 1)(q − 1), Wp(S

∗
p,q) = 1.

Zhang and Hu gave the Nordhaus–Gaddum–type inequality for the Wiener polarity index for the
main case:

Theorem 1.8. [143] Let G ∈ G(n) (n ≥ 4) be a graph, and G be its complement. If diam(G) =

diam(G) = 3, then

2 ≤ Wp(G) +Wp(G) ≤
⌈n
2

⌉ ⌊n
2

⌋
− n+ 2. (9)

Moreover, the lower bound holds if and only if G ∼= P4 or G is isomorphic to some G∗ ; the upper bound

occurs if and only if G is isomorphic to some S∗
dn
2
e,bn

2
c or G is isomorphic to some S∗

dn
2
e,bn

2
c.

Proof. Let |S| = s, |T | = t. Without loss of generality, we assume that s ≥ t ≥ 1. Therefore,

Wp(G) ≤ st. (10)
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Note that equality in (10) holds if and only if dG(v, u) = 3 for any vertex v ∈ S and for any vertex
u ∈ T . Suppose v0 ∈ S, u0 ∈ T satisfying dG(v0, u0) = 3, by the proof of Lemma 1.20, we have
w ∈ NG(v0) ∩NG(u0) for any vertex w ∈ V (G) \ {v0, u0}. Let

N1 = {w ∈ V \ (S ∪ T ) |wv0 /∈ E(G), wu0 ∈ E(G)}, |N1| = n1,

and
N2 = {w ∈ V \ (S ∪ T ) |wv0 ∈ E(G), wu0 6∈ E(G)}, |N2| = n2.

Obviously, n1 ≥ 1, n2 ≥ 1 and n1+n2+ s+ t ≤ n. Without loss of generality, we assume that n1 ≥ n2.
By Lemma 1.21, we arrive at

Wp(G) ≤ n1n2, (11)

and the equality in (11) happens if and only if they are nonadjacent in G for any vertex in N1 and for
vertex in N2.

Firstly, we consider the lower bound. It is obvious since diam(G) = 3 and diam(G) = 3. By the
inequality (10) and (11), the lower bound is obtained if and only if Wp(G) = Wp(G) = 1, namely,
n1 = n2 = s = t = 1. For n = 4, note that P4 is the unique graph of order 4, whose complement also
has has diameter 3, and that P 4

∼= P4. Thus, Wp(P4) + Wp(P 4) = 2. Otherwise, n ≥ 5. Let P4 be a
path contained in graph G. Since n1 = n2 = s = t = 1, it follows that the remaining n− 4 vertices are
dajacent to each internal vertex of the path P4. Therefore, G is isomorphic to some G∗.

Conversely, one can easily see that the lower bound holds for the path P4 when n = 4 or for a graph
G∗. Then we prove the upper bound. Using the inequality (10) and (11), we conclude

Wp(G) +Wp(G) ≤ st+ n1n2 ≤ st+

⌈
n− s− t

2

⌉⌊
n− s− t

2

⌋

=

{
st+ n2

4
− n(s+t)

2
+ (s+t)2

4
if n− s− t is even;

st+ n2

4
− n(s+t)

2
+ (s+t)2

4
− 1

4
if n− s− t is odd.

Note that s and t are positive integers. Applying the average inequality, st ≤ (s+t)2

4
if s + t is even,

and st ≤ (s+t)2

4
− 1

4
if s+ t is odd. Therefore,

Wp(G) +Wp(G) ≤





n2

4
− n(s+t)

2
+ (s+t)2

2
+ 0 if n is even and s+ t is even;

n2

4
− n(s+t)

2
+ (s+t)2

2
− 1

2
if n is even and s+ t is odd;

n2

4
− n(s+t)

2
+ (s+t)2

2
− 1

4
if n is odd.

Let f(x) = n2

4
− nx

2
+ x2

2
for 2 ≤ x ≤ n − 2. It is easy to see that the maximum of f(x) is achieved at

x = 2 or x = n− 2. Simple calculation shows that f(x) ≤ f(2) = f(n− 2). So,

Wp(G) +Wp(G) ≤
{

n2

4
− n+ 2 if n is even;

n2

4
− n+ 7

4
if n is odd;

=
⌈n
2

⌉ ⌊n
2

⌋
− n+ 2.
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Now we consider the graphs which obtain the upper bound. If the upper bound holds, then all the
inequalities discussed above must be equalities. Hence (i) n1 = n2 = 1, s =

⌈
n−2
2

⌉
, and t =

⌊
n−2
2

⌋
or

(ii) s = t = 1, n1 =
⌈
n−2
2

⌉
and n2 =

⌊
n−2
2

⌋
. Meanwhile, it is dG(v, u) = 3 for any vertex v ∈ S and for

any vertex u ∈ T , and they are nonadjacent in G for any vertex in N1 and for any vertex in N2. Those
imply that G is isomorphic to some S∗

dn
2
e,bn

2
c, or G is isomorphic to some S∗

dn
2
e,bn

2
c.

Conversely, simple calculation shows that the upper bound holds in Theorem 1.8 if G is isomorphic
to some S∗

dn
2
e,bn

2
c or G is isomorphic to some S∗

dn
2
e,bn

2
c.

Remark 1.4. [143] The lower and upper bounds given in Theorem 1.8 are equal when n = 4.

Zhang and Hu [143] studied the Nordhaus–Gaddum-type inequality for any connected graph G with
a connected complement G.

Theorem 1.9. [143] Let G ∈ G(n) (n ≥ 4) be a connected graph, and G be its connected complement.

If d = 3 and d = 3, then

2 ≤ Wp(G) +Wp(G) ≤





⌈
n
2

⌉ ⌊
n
2

⌋
− n+ 2, if n ≤ 8

⌊
(n−3)2

3

⌋
, if n ≥ 9.

for any unicyclic graph of order n.

1.4.2 Nordhaus–Gaddum–type inequalities in G(n,m)

Let Hn−4 be any graph of order n−4. Denote by G∗∗ the graph of order n ≥ 5 obtained from a path P4 by
joining each vertex of Hn−4 to each internal vertex of the path P4 such that V (G∗∗)\V (P4) = V (Hn−4).

In [83], Hua and Das had the following remark.

Remark 1.5. [83] In Theorem 1.8, the lower bound occurs in (9) if and only if G ∼= P4 or G is

isomorphic to some G∗. But the extremal graphs in this characterization is not clear. It should be the

following:

The lower bound occurs in (9) if and only if G ∼= P4 or G ∼= G∗∗.

In general, the lower bound on Wp(G) +Wp(G) is the following [143]:

Wp(G) +Wp(G) ≥ 0

with equality if and only if both d = 2 and d = 2.

Hua and Das first gave a lower bound on Wp(G) +Wp(G):

Theorem 1.10. [83] Let G be a connected graph with a connected complement G. Then

Wp(G) +Wp(G) ≥ d+ d− 4, (12)

where d and d are the diameter of G and G, respectively. Moreover, the equality holds in (12) if and only

if G ∼= Pn or G ∼= G∗∗ or d = d = 2.
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Proof. Since both G and G are connected, we have d ≥ 2 and d ≥ 2. Let us consider a diametral path
Pd+1 : v1v2 . . . , vd+1 in G. Then one can easily see that Wp(G) ≥ Wp(Pd+1) = d − 2. Similarly, we
have Wp(G) ≥ d− 2. Therefore we get the required result in (12). The first part of the proof is done.

For d ≥ 4, Wp(G) = d− 2 if and only if G ∼= Pn. For d = 3, Wp(G) = d− 2 if and only if G ∼= P4

or G ∼= G∗∗. For d = 2, we have Wp(G) = d− 2. Hence the equality holds in (12) if and only if G ∼= Pn

or G ∼= G∗∗ or d = d = 2.

Remark 1.6. [83] In Theorem 1.10, the lower bound on Wp(G) +Wp(G) is given by means of d and d.

Since G and G are connected, we have d ≥ 2 and d ≥ 2. Hence we can conclude that our lower bound

in (12) is always better than the lower bound in Wp(G) +Wp(G) ≥ 0.

Liu and Liu [108] obtained an upper bound on Wp(G) in terms of the first Zagreb index (M1), the
second Zagreb index (M2) and the number of edges:

Lemma 1.22. [108]

Wp(G) ≤M2(G)−M1(G) +m, (13)

with equality holding if and only if G is either acyclic or if its girth is greater than 6.

Denote by K∗
2,n−2, a connected graph of order n, which is obtained from the complete bipartite graph

K2,n−2 by joining an edge between two vertices of degree n−2. Let Kin,n−1 denote a kite graph obtained
from the complete graph Kn−1 and an isolated vertex by adding one pendant edge. Still we do not have
any upper bound on Wp(G) +Wp(G) for any graph.

Next, Hua and Das gave an upper bound on Wp(G) +Wp(G):

Theorem 1.11. [83] Let G ∈ G(n,m) be a connected graph with a connected complement G.Then

Wp(G) +Wp(G) <
n(n− 1)(n− 2)2

2
+ 2m2 +

(
n− 3

2

)[
2(m−∆)2

n− 2
−∆(n−∆)

]

− m

2
(4n2 − 19n+ 17)− 2

[
∆2 +

(2m−∆)2

n− 1
+

2(n− 2)(∆2 − δ)2

(n− 1)2

]
,

where ∆1 ∆2 and δ are the maximum degree, the second maximum degree and the minimum degree in

G, respectively.

Proof. By (13), we have

Wp(G) +Wp(G) < M2(G) +M2(G)−M1(G) +M1(G) +m+m,

where m is the number of edges in G.

By Theorem 2.10 in [35], we have

M1(G) +M1(G) ≥ n(n− 1)2 − 4m(n− 1) + 2

[
∆2 +

(2m−∆)2

n− 1
+

2(n− 2)(∆2 − δ)2

(n− 1)2

]
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with equality if and only if G is a regular graph or G is isomorphic a graph of order n such that ∆2 =

dG(v2) = dG(v3) = . . . = dG(vn) = δ 6= ∆. By Theorem 3.4 in [35], we have

M2(G)+M2(G) ≤ n(n− 1)3

2
+2m2+

(
n− 3

2

)[
(n+ 1)m−∆(n−∆) +

2(m−∆)2

n− 2

]
−3m(n−1)2

with equality if and only if G ∼= K∗
2,n−2 or G ∼= Kn or Kin,n−1.

According to the fact 2m+2m = n(n−1), in conjunction with the above results, we get the required
result. This completes the proof.

1.5 Reverse Wiener index

Let G be a connected (molecular) graph with the vertex-set V (G) = {v1, v2, . . . , vn}. The distance

matrix D of G is an n × n matrix (dij) such that dij is just the distance (i.e., the number of edges of a
shortest path) between the vertices vi and vj in G.

The reverse distance matrix or the reverse Wiener matrix of the graph G is an n×n matrix (rij) such
that

rij =

{
d− dij if i 6= j,
0 otherwise,

where d is the diameter of G.

Parallel to the definition of the Wiener index W (G) =
∑

i<j dij using distance matrix, Balaban,
Mills, Ivanciuc, and Basak [9] defined the reverse Wiener index RW (G) of a connected graph G of
order n as

RW (G) =
∑

i<j

rij =
n(n− 1)diam(G)

2
−W (G).

Nordhaus–Gaddum inequalities for RW were proved by Cai and Zhou [13] in 2008.

Theorem 1.12. [13] Let G ∈ G(n) (n ≥ 6) be a graph with a connected G. Then

n(n− 1)

2
≤ RW (G) +RW (G) ≤ (n− 1)(n− 2)(2n+ 3)

6
,

with left equality if and only if G and G have diameter 2 and with right equality if and only if G = Pn

or Pn.

For simplicity, let m(G) and diam(G) be respectively the number of edges and the diameter of the
graph G.

Lemma 1.23. [13] Let G ∈ G(n) (n ≥ 6) be a graph. If diam(G) = diam(G) = 3, then

RW (G) +RW (G) <
(n− 1)(n− 2)(2n+ 3)

6
.



26

Proof. Since diam(G) = diam(G) = 3, it follows that W (G) +W (G) > m(G) + 2m(G) +m(G) +

2m(G) = 3
2
n(n− 1), and hence

RW (G) +RW (G) =
1

2
n(n− 1) · 6− [W (G) +W (G)]

< 3n(n− 1)− 3

2
n(n− 1)

<
(n− 1)(n− 2)(2n+ 3)

6
.

The last inequality holds because n ≥ 6.

Lemma 1.24. [13] Let G ∈ G(n) (n ≥ 2) be a connected graph. Then

0 ≤ RW (G) ≤ n(n− 1)(n− 2)

3

with left equality if and only if G = Kn, and with right equality if and only if G = Pn.

Lemma 1.25. [13] Let G ∈ G(n) (n ≥ 5) be a graph. If diam(G) = 2, then

RW (G) +RW (G) ≤ (n− 1)(n− 2)(2n+ 3)

6

with equality if and only if G ∼= Pn.

Proof. Let d = diam(G). By Lemma 1.24, RW (G) ≤ RW (Pn) with equality if and only if G = Pn.
Since n ≥ 5, we have diam(G) = diam(Pn) = 2, and so RW (G) = m(G) ≤ n(n−1)

2
− (n − 1) =

m(P n) = RW (P n) with equality if and only if G is a tree whose complement has diameter 2. Note that

RW (Pn) +RW (P n) =
n(n− 1)(n− 2)

3
+

n(n− 1)

2
− (n− 1)

=
(n− 1)(n− 2)(2n+ 3)

6
.

The result follows easily.

Remark 1.7. [13] (i) There is exactly one pair of connected graphs G and G with 4 vertices: P4 and

P 4 = P4. Obviously, diam(P4) = 3 and RW (P4) +RW (P 4) = 16.

(ii) There are exactly five pair of connected graphs G and G with 5 vertices, in which three pairs

satisfy diam(G) = diam(G) = 3, T and T , U1 and U1, U2 and U2 = U2, where T be the unique tree

with 5 vertices and diameter 3, U1 is the graph formed from T by adding an edge between its two pendent

vertices with a common and vertex, and U2 is formed from the path P5 by adding an edge between the

two neighbors of its center. The values of RW (G) + RW (G) for them are respectively 27, 27 and 28.

The two other pairs are P5 and P 5, C5 and C5. Note that RW (P5) +RW (P 5) = 26.

Lemma 1.26. [13] Let G ∈ G(n,m) (n ≥ 2) be a connected graph with diameter d. Then

(d− 1)m ≤ RW (G) ≤ n(n− 1)

2
(d− 2) +m

with either equality if and only if d ≤ 2.
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We are ready to give the proof of Theorem 1.5.
Proof of Theorem 1.12: By Lemma 1.26,

RW (G) +RW (G) ≥ m(G) +m(G) =
1

2
n(n− 1)

with equality if and only if G and G have equal diameter 2. If diam(G) = diam(G) = 3, then it follows
from Lemma 1.23 that RW (G) + RW (G) < (n−1)(n−2)(2n+3)

6
. If diam(G) = 2, then it follows from

Lemma 1.25 that RW (G) + RW (G) ≤ (n−1)(n−2)(2n+3)
6

with equality if and only if G = Pn. Similarly,
if diam(G) = 2, then RW (G) + RW (G) ≤ (n−1)(n−2)(2n+3)

6
with equality if and only if G = P n. Note

that if diam(G) ≥ 3 then diam(G) ≤ 3. The result follows.

1.6 Reciprocal reverse Wiener index

The reciprocal reverse Wiener matrix of a graph G is an n× n matrix (rrij) such that

rrij =
1

rij
=

{
1

d−dij
if i 6= j and dij < d,

0 otherwise.

Parallel to the definitions of the Wiener index W (G) =
∑

i<j dij using distance matrix and the
reverse Wiener index

RW (G) =
∑

i<j

rij =
1

2
n(n− 1)d−W (G)

using reverse Wiener matrix of the graph G, the reciprocal reverse Wiener index RRW (G) of the graph
G is defined as [88]

RRW (G) =
∑

i<j

rrij.

Zhou, Yang, and Trinajstić [164] got the following Nordhaus–Gaddum–type results for reciprocal
reverse Wiener index.

Theorem 1.13. [164] Let G ∈ G(n) (n ≥ 4) be a graph with a connected complement G. Then

(a) RRW (G) + RRW (G) ≤ 2n2−5n+1
2

with equality if and only if G is the graph formed from the

path on 5 vertices by adding an edge between the two neighbors of its center;

(b) If G and G have at most (n+1)(n−2)
3

edges, then RRW (G) +RRW (G) ≤ 3n2−3n−8
2

.

1.7 Reciprocal complementary Wiener index

The complementary distance matrix of a graph G is an n× n matrix (cij) such that

cij =

{
1 +D − dij if i 6= j,

0 otherwise,

where D is the diameter of the graph G. The reciprocal complementary distance matrix of a graph G is
an n× n matrix rcij such that

rcij =

{
1
cij

if i 6= j,

0 otherwise.
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The Hosoya definition of the Wiener number of G, denoted by W (G), is given by [80]

W (G) =
1

2

n∑

i=1

n∑

j=1

dij =
∑

i<j

dij.

The reciprocal complementary Wiener number of the graph G is similarly defined as [86]

RCW (G) =
1

2

n∑

i=1

n∑

j=1

rcij =
∑

i<j

rcij.

Zhou, Cai, and Trinajstić [155] obtained the following result for reciprocal complementary Wiener
number.

Theorem 1.14. [155] Let G ∈ G(n) (n ≥ 5) be a graph with a connected complement G. Then

RCW (G) +RCW (G) ≤ 3n(n− 1)

4

with equality if and only if both G and G have diameter 2, whilst

RCW (G) +RCW (G) ≥
{

5n(n−1)
12

+ 1 if 5 ≤ n ≤ 8,
n2+5n−6

4
if n ≥ 9,

with equality if and only if G = Pn or G = Pn for n ≥ 9, and both G and G have diameter three with

d(G, 3) = d(G, 3) = 1 for 5 ≤ n ≤ 8, where d(G, k) is the number of the unordered pairs of vertices of

G that are at distance k, k = 1, 2, . . . , diam(G).

Lemma 1.27. [155] Let G ∈ G(n) (n ≥ 2) be a connected graph. Then

RCW (G) ≤ n(n− 1)

2

with equality if and only if G = Kn.

Lemma 1.28. [155] Let G ∈ G(n,m) (n ≥ 3) be a noncomplete connected graph. Then

RCW (G) ≤ n(n− 1)

2
− m

2

with equality if and only if G has diameter 2.

There is only one connected graph P4 on 4 vertices with the connected complement P 4 = P4.
Obviously, RCW (P4) +RCW (P 4) = 6. For n ≥ 5, the diameter of P n is 2.

Lemma 1.29. [155] Let G ∈ G(n) (n ≥ 5) be a connected graph. If G has diameter 2, then

RCW (G) +RCW (G) ≥ n2 + 5n− 6

4

with equality if and only if G = Pn.
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Proof. By Lemma 1.27, RCW (G) ≥ n − 1 with equality if and only if G = Pn. Let m be the
number of edges in G. Then m ≤ n(n−1)

2
− (n − 1). By Lemma 1.28, RCW (G) = n(n−1)

2
− m

2
≥

n(n−1)
2
− 1

2
[n(n−1)

2
− (n − 1)] = n(n−1)

4
+ n−1

2
with equality if and only if the number of edges of G is

equal to n− 1. The result follows easily.

Lemma 1.30. [155] Let G ∈ G(n) be a graph. Suppose that both G and G have diameter 3. Then

RCW (G) +RCW (G) ≥ 5n(n− 1)

12
+ 1

with equality if and only if d(G, 3) = d(G, 3) = 1.

Proof. Let tk = d(G, k) and tk = d(G, k). Obviously, t2 + t3 = t1, t2 + t3 = t1 and t1 + t1 =
n(n−1)

2
.

Then

RCW (G) +RCW (G) =
3∑

k=1

tk + tk
4− k

=
t1 + t1

3
+

t2 + t3 + t2 + t3
2

+
t3 + t3

2

=
t1 + t1

3
+

t1 + t1
2

+
t3 + t3

2
=

5

6
(t1 + t1) +

t3 + t3
2

=
5n(n− 1)

12
+

t3 + t3
2
≥ 5n(n− 1)

12
+ 1

with equality if and only if t3 = t3 = 1.

It is easily seen that there are pairs of graphs on n vertices such that both of them have diameter three
and t3 = t3 = 1. For example, if n = 5, then there is exactly one pair G and G: the graph formed
from the path P5 by adding an edge between the two neighbors of its center and its complement which
is isomorphic to itself such that RCW (G) +RCW (G) = 28

3
= 5n(n−1)

12
+ 1.

Proof of Theorem 1.14: Let m and m be respectively the number of edges of G and G. Then m+m =
n(n−1)

2
. From Lemma 1.28,

RCW (G) +RCW (G) ≤ n(n− 1)

2
− m

2
+

n(n− 1)

2
− m

2
= n(n− 1)− m+m

2
=

3n(n− 1)

4

with equality if and only if both G and G have diameter 2.

On the other hand, note that either both G and G have diameter 3 or one of them has diameter 2,
and that 5n(n−1)

12
+ 1 > n2+5n−6

4
if and only if n ≥ 9. The second part of the proposition follows from

Lemmas 1.29 and 1.30.

1.8 Steiner Wiener index

The distance between two vertices u and v in a connected graph G also equals the minimum size of
a connected subgraph of G containing both u and v. This observation suggests a generalization of
distance. The Steiner distance of a graph, introduced by Chartrand, Oellermann, Tian and Zou [14] in
1989, is a natural generalization of the concept of classical graph distance. For a graph G(V,E) and a set
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S ⊆ V (G) of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree)
is a such subgraph T (V ′, E ′) of G that is a tree with S ⊆ V ′. Let G be a connected graph of order at
least 2 and let S be a nonempty set of vertices of G. Then the Steiner distance dG(S) among the vertices
of S (or simply the distance of S) is the minimum size among all connected subgraphs whose vertex sets
contain S. Note that if H is a connected subgraph of G such that S ⊆ V (H) and |E(H)| = dG(S), then
H is a tree. Observe that dG(S) = min{e(T ) |S ⊆ V (T )}, where T is subtree of G. Furthermore, if
S = {u, v}, then dG(S) coincides with the classical distance between u and v.

Observation 1.1. Let G be a graph of order n and k be an integer, 2 ≤ k ≤ n. If S ⊆ V (G) and

|S| = k, then k − 1 ≤ dG(S) ≤ n− 1.

The average Steiner distance µk(G) of a graph G, introduced by Dankelmann, Oellermann and Swart
in [20, 22], is defined as the average of the Steiner distances of all k-subsets of V (G), i.e.

µk(G) =

(
n

k

)−1 ∑

S⊆V (G),|S|=k

dG(S). (14)

Let n and k be two integers with 2 ≤ k ≤ n. The Steiner k-eccentricity ek(v) of a vertex v of G is
defined by ek(v) = max{d(S) |S ⊆ V (G), |S| = k, v ∈ S}. The Steiner k-radius of G is sradk(G) =

min{ek(v) | v ∈ V (G)}, whereas the Steiner k-diameter of G is sdiamk(G) = max{ek(v) | v ∈ V (G)}.
Note that for any vertex v of any connected graph G, e2(v) = e(v), and in addition and that srad2(G) =

rad(G) and sdiam2(G) = diam(G). For more details on Steiner distance we refer to [14, 20, 22, 111].
Mao [111] obtained the following results.

Lemma 1.31. [111] Let G be a connected graph with connected complement G. If sdiamk(G) ≥ 2k,

then sdiamk(G) ≤ k.

Lemma 1.32. [111] Let G ∈ G(n) be a connected graph. Then sdiam3(G) = 2 if and only if 0 ≤
∆(G) ≤ 1.

Lemma 1.33. [111] Let n, k be two integers with 2 ≤ k ≤ n, and let G be a connected graph of order

n. If sdiamk(G) = k − 1, then 0 ≤ ∆(G) ≤ k − 2.

Lemma 1.34. [111] Let G ∈ G(n) be a connected graph with connected complement G. Let k be an

integer such that 3 ≤ k ≤ n. Let x = 0 if n ≥ 2k − 2 and x = 1 if n < 2k − 2. Then

(i) 2k − 1− x ≤ sdiamk(G) + sdiamk(G) ≤ max{n+ k − 1, 4k − 2};
(ii) (k − 1)(k − x) ≤ sdiamk(G) · sdiamk(G) ≤ max{k(n− 1), (2k − 1)2}.

Lemma 1.35. [111] Let G ∈ G(n) be a graph. Then sdiamn−1(G) = n − 2 if and only if G is

2-connected.

The following corollary is immediate from the above lemmas.

Corollary 1.1. [113] Let G and G be connected graphs. If sdiam3(G) ≥ 6, then sdiam3(G) = 3.



31

Proof. From Lemma 1.31, we have sdiam3(G) ≤ 3. We claim that sdiam3(G) = 3. Assume, to the
contrary, that sdiam3(G) = 2. From Lemma 1.33, we have 0 ≤ ∆(G) ≤ 1. Furthermore, G is not
connected, which contradicts to the fact that sdiam3(G) ≥ 6.

Li, Mao, and Gutman [103] generalized the concept of Wiener index using Steiner distance, by
defining the Steiner k-Wiener index SWk(G) of the connected graph G as

SWk(G) =
∑

S⊆V (G)

|S|=k

d(S).

However, with regard to this definition, one should bear in mind (14), and the references [20, 22].

For k = 2, then the thus defined Steiner Wiener index coincides with the ordinary Wiener index.
It is usual to consider SWk for 2 ≤ k ≤ n − 1, but the above definition implies SW1(G) = 0 and
SWn(G) = n− 1. In this section, we assume that both G and G are connected.

An application in chemistry of the Steiner Wiener index is reported by Gutman, Furtula, and Li
in [70]. For more details on the Steiner Wiener index, we refer to [70, 103, 104, 112].

In [103], Li, Mao, and Gutman obtained the following results, which will be needed later.

Lemma 1.36. [103] Let T be a tree of order n, and let k be an integer such that 2 ≤ k ≤ n. Then
(
n− 1

k − 1

)
(n− 1) ≤ SWk(T ) ≤ (k − 1)

(
n+ 1

k + 1

)
.

Moreover, among all trees of order n, the star Sn minimizes the Steiner Wiener k-index whereas the path

Pn maximizes the Steiner Wiener k-index.

Lemma 1.37. [103] Let Pn be the path of order n (n ≥ 3), and let k be an integer such that 2 ≤ k ≤ n.

Then

SWk(Pn) = (k − 1)

(
n+ 1

k + 1

)
.

For general k, Mao, Wang, Gutman and Li [113] obtained the following result in next subsection.

Theorem 1.15. [113] Let G ∈ G(n) and let k be an integer such that 3 ≤ k ≤ n. Then:

(1)
(
n
k

)
(2k − 2) ≤ SWk(G) + SWk(G) ≤ max{n+ k − 1, 4k − 2}

(
n
k

)
;

(2) (k − 1)2
(
n
k

)2 ≤ SWk(G) · SWk(G) ≤ max{k(n− 1), (2k − 1)2}
(
n
k

)2.
Moreover, the lower bounds are sharp.

For k = n, the following result is immediate.

Observation 1.2. [113] Let G ∈ G(n) be a graph. Then

(1) SWn(G) + SWn(G) = 2n− 2 ;

(2) SWn(G) · SWn(G) = (n− 1)2 .

For k = n− 1, we will prove the following result in Subsection 1.8.1.
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Proposition 1.2. [113] Let G ∈ G(n) (n ≥ 5) be a graph.

(1) If G and G are both 2-connected, then SWn−1(G) + SWn−1(G) = 2n(n − 2) and SWn−1(G) ·
SWn−1(G) = n2 (n− 2)2.

(2) If κ(G) = 1 and G is 2-connected, then SWn−1(G)+SWn−1(G) = 2n(n−2)+p and SWn−1(G)·
SWn−1(G) = n(n− 2)(n2 − 2n+ p), where p is the number of cut vertices in G.

(3) If κ(G) = κ(G) = 1, ∆(G) ≤ n − 3, and G has a cut vertex v with pendent edge uv such

that G − u contains a spanning complete bipartite subgraph, and ∆(G) ≤ n − 3 and G has a cut

vertex q with pendent edge pq such that G − p contains a spanning complete bipartite subgraph, then

SWn−1(G) + SWn−1(G) = 2(n− 1)2 and SWn−1(G) · SWn−1(G) = (n− 1)4.

(4) If κ(G) = κ(G) = 1, ∆(G) = n− 2, ∆(G) ≤ n− 3 and G has a cut vertex v with pendent edge

uv such that G− u contains a spanning complete bipartite subgraph, then

SWn−1(G) + SWn−1(G) = 2(n− 1)2 or SWn−1(G) + SWn−1(G) = 2(n− 1)2 + 1

and

SWn−1(G) · SWn−1(G) = (n− 1)4 or SWn−1(G) · SWn−1(G) = (n− 1)2 (n2 − 2n+ 2) .

(5) If κ(G) = κ(G) = 1, ∆(G) = ∆(G) = n− 2, then

2(n− 1)2 ≤ SWn−1(G) + SWn−1(G) ≤ 2(n− 1)2 + 2

and

(n− 1)4 ≤ SWn−1(G) · SWn−1(G) ≤ (n2 − 2n+ 2)2 .

In Subsection 1.8.2, they focused our attention on the case k = 3. For k = 3 and n ≥ 10, from
Theorem 1.15, we have

4

(
n

3

)
≤ SW3(G) + SW3(G) ≤ (n+ 2)

(
n

3

)

and

4

(
n

3

)2

≤ SW3(G) · SW3(G) ≤ 3(n− 1)

(
n

3

)2

.

They improved these bounds and proved the following result.

Theorem 1.16. [113] Let G ∈ G(n) (n ≥ 4) be a graph. Then

(1)

5

(
n

3

)
≤ SW3(G) + SW3(G)

≤





7
(
n
3

)
− 3n+ 8 if n = 6, 7, and sdiam3(G) = 5

or n = 6, 7, and sdiam3(G) = 5

2
(
n+1
4

)
+ 2
(
n−3
3

)
+ 1

2
(7n2 − 35n+ 48) otherwise.
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(2)

6

(
n

3

)2

+ (n− 2)

(
n

3

)
− (n− 2)2

≤ SW3(G) · SW3(G)

≤





1
4

[
7
(
n
3

)
− 3n+ 8

]2
if n = 6, 7, and sdiam3(G) = 5
or n = 6, 7, and sdiam3(G) = 5

[(
n+1
4

)
+
(
n−3
3

)
+ 1

4
(7n2 − 35n+ 48)

]2
otherwise.

Moreover, the bounds are sharp.

1.8.1 Results pertaining to general k

The following lemmas and corollaries will be used later.

Lemma 1.38. [113] Let T be a tree of order n, and let k be an integer such that 3 ≤ k ≤ n. Then there

exist at least (n− k + 1) subsets of V (T ) for which the Steiner k-distance is equal to k − 1.

Proof. We verify this lemma by induction on n. If n = k, then there exists at least one subset of V (T )

such that the Steiner n-distance is n − 1 since T is a spanning tree. Suppose the assertion is true for n.
We then show that the assertion is true for n+1. In this case, T is a tree of order n+1. Choose a leaf of
this tree, say v. Then T − v is a tree of order n. By the induction hypothesis, T − v contains (n− k+1)

subsets of V (T ) whose Steiner k-distance is equal to k− 1. Choose k− 1 vertices in V (T )− v such that
the subgraph induced by these k − 1 vertices and v is a subtree of order k. Then the Steiner k-distance
of these k − 1 vertices and v is exactly k − 1. So there exist at least (n− k + 2) subsets of V (T ) whose
Steiner k-distance is k − 1.

The following result is immediate.

Corollary 1.2. [113] Let G ∈ G(n) be a connected graph, and let k be an integer such that 3 ≤ k ≤ n.

Then there exist at least (n− k + 1) subsets of V (G) whose Steiner k-distance is k − 1.

Similarly to the proof of Lemma 1.38, we can derive the following result.

Lemma 1.39. [113] Let T be a tree of order n, and let k be an integer such that 3 ≤ k ≤ n− 1. Then

there exist at least (n− k) subsets of V (T ) whose Steiner k-distance is k.

We are now prepared to prove Theorem 1.15.

Proof of Theorem 1.15: Proof of part (1):
For any S ⊆ V (G) and |S| = k, from the definition of Steiner diameter and Lemma 1.34, we have
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dG(S) + dG(S) ≤ max{n+ k − 1, 4k − 2}. Then

SWk(G) + SWk(G) =
∑

S⊆V (G)

dG(S) +
∑

S⊆V (G)

dG(S) =
∑

S⊆V (G)

[dG(S) + dG(S)]

≤ max{n+ k − 1, 4k − 2}
(
n

k

)
.

By the same reason, Lemma 1.34 implies SWk(G) + SWk(G) ≥
(
n
k

)
(2k − 2). If n ≥ 2k − 2, then

from Lemma 1.34 it follows that SWk(G) + SWk(G) ≥
(
n
k

)
(2k − 1).

Proof of part (2):
For any S ′ ⊆ V (G) , |S ′| = k and any S ′′ ⊆ V (G) , |S ′′| = k, from the definition of Steiner diameter
and Lemma 1.36, we have dG(S

′) · dG(S ′′) ≤ max{k(n− 1), (2k − 1)2}. Then

SWk(G) · SWk(G) =
∑

S′⊆V (G)

dG(S
′) ·
∑

S′′⊆V (G)

dG(S
′′) =

∑

S′⊆V (G), S′′⊆V (G)

dG(S
′) · dG(S ′′)

≤ max{k(n− 1), (2k − 1)2}
(
n

k

)2

.

For any S ′ ⊆ V (G) , |S ′| = k and any S ′′ ⊆ V (G) , |S ′′| = k, from the definition of Steiner diameter
and Lemma 1.35, we have dG(S

′) · dG(S ′′) ≥ (k − 1)2. Then

SWk(G) · SWk(G) =
∑

S′⊆V (G)

dG(S
′) ·
∑

S′′⊆V (G)

dG(S
′′)

=
∑

S′⊆V (G), S′′⊆V (G)

dG(S
′) · dG(S ′′) ≥ (k − 1)2

(
n

k

)2

as desired.

Akiyama and Harary [1] characterized the graphs for which both G and G are connected.

Lemma 1.40. [1] Let G ∈ G(n) be graph with maximal vertex degree ∆(G). Then κ(G) = κ(G) = 1

if and only if G satisfies the following conditions.

(i) κ(G) = 1 and ∆(G) = n− 2;

(ii) κ(G) = 1, ∆(G) ≤ n − 3, and G has a cut vertex v with pendent edge uv, such that G − u

contains a spanning complete bipartite subgraph.

We now in a position to give the proof of Proposition 1.2.

Proof of Proposition 1.2.
(1): From Lemma 1.35, if G and G are both connected, then dG(S) = n − 2 and dG(S) = n − 2 for
any S ⊆ V (G) and |S| = n − 1. Therefore, SWn−1(G) + SWn−1(G) = 2n(n − 2) and SWn−1(G) ·
SWn−1(G) = n2 (n− 2)2.
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(2): Since G is 2-connected, it follows that dG(S) = n − 2 for any S ⊆ V (G) and |S| = n − 1, and
hence SWn−1(G) = n(n − 2). Note that κ(G) = 1 and there are exactly p cut vertices in G. For any
S ⊆ V (G) and |S| = n− 1, if the unique vertex in V (G) \ S is a cut vertex, then dG(S) = n− 1. If the
unique vertex in V (G) \ S is not a cut vertex, then dG(S) = n − 2. Therefore, we have SWn−1(G) =

p(n− 1) + (n− p)(n− 2) = n(n− 2) + p, and hence SWn−1(G) + SWn−1(G) = 2n(n− 2) + p and
SWn−1(G) · SWn−1(G) = n(n− 2)(n2 − 2n+ p), where p is the number of cut vertices in G.

(3), (4), (5): We have κ(G) = κ(G) = 1. By condition (i) of Lemma 1.40, since ∆(G) = n − 2, there
is a vertex of degree n − 2, say x. Let the set of first neighbors of x be NG(x) = {y1, y2, . . . , yn−2}.
Let V (G) \ ({x} ∪ NG(x)) = {z}. Since zx /∈ E(G), there must exist a vertex in NG(x), say y1,
such that yy1 ∈ E(G), since G is connected. Since x, y1 may be the cut vertices in G, it follows that
there are one or two cut vertices in G. So SWn−1(G) = (n − 1) + (n − 1)(n − 2) = (n − 1)2 or
SWn−1(G) = n+ (n− 1)(n− 2) = (n− 1)2 + 1.

By condition (ii) of Lemma 1.40, since ∆(G) ≤ n − 3 and G has a cut vertex v with pendent edge
uv such that G − u contains a spanning complete bipartite subgraph, it follows that v is the unique cut
vertex. So SWn−1(G) = n+ (n− 1)(n− 2) = (n− 1)2 + 1. From this argument, (3), (4), (5) are true.

1.8.2 The case k = 3

We first need the following lemma.

Lemma 1.41. [113] Let G be a connected graph. If sdiam3(G) = 5, then sdiam3(G) ≤ 4.

Proof. For any S ⊆ V (G) and |S| = 3, we let S = {u1, u2, u3}. If dG(S) ≥ 3, then G[S] is connected,
and hence dG(S) = 2, as desired. So we now assume that dG(S) = 2. Clearly, G[S] is connected, and
hence G[S] ∼= K3 or G[S] ∼= P3. We only show the case that G[S] ∼= K3. The proof of G[S] ∼= P3 is
analogous and is omitted.

We thus prove that if G[S] ∼= K3, then dG(S) ≤ 4.

If there exists a vertex v ∈ V (G) − S such that |EG[v, S]| = 0, then G[S ∪ {v}] is connected. In
view of the arbitrariness of S, we have sdiam3(G[S]) ≤ 3, as desired. We now assume that

(a) |EG[x, S]| ≥ 1 for any vertex x ∈ V (G)− S.

For any S ′ = {v1, v2, v3} ⊆ V (G), if |S∩S ′| ≥ 1, then G[S∪S ′] is connected, and hence dG(S ′) ≤ 4.
From the arbitrariness of S ′, we have sdiam3(G) ≤ 4, a contradiction. We now assume |S ∩ S ′| = 0.
From (a), |EG[vi, S]| ≥ 1 for i = 1, 2, 3. If there exists a vertex ui ∈ S such that the subgraph
induced by the edges in EG[ui, S

′] is a star K1,3, then dG(S
′) ≤ 3. From the arbitrariness of S ′, we have

sdiam3(G) ≤ 3, a contradiction. If there exists two vertices ui, uj ∈ S such that the subgraph induced
by the edges in EG[{ui, uj}, S ′] equals P3 ∪K2, then dG(S

′) ≤ 4. In view of the arbitrariness of S ′, we
have sdiam3(G) ≤ 4, a contradiction. We now assume that

(b) The subgraph induced by the edges in EG[S, S
′] equal 3K2.
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If G[S ′] is connected, then dG(S
′) = 2. From the arbitrariness of S ′, we have sdiam3(G) = 2, a

contradiction. So we assume that there exists a 3-subset S ′ such that G[S ′] is not connected. We now
assume that

(c) G[S ′] ∼= K2 ∪K1 or G[S ′] ∼= 3K1.
From (b) and (c), the subgraph induced by the vertices of S∪S ′ is either the graph H1 obtained from

a triangle with vertex set {u1, u2, u3} by adding three pendent edges uivi, where 1 ≤ i ≤ 3, or the graph
H2 obtained from H1 by adding an edge v1v2.

For H1, the tree in G induced by the edges in {v2u1, v2u3, v1v2, v1u2} is an S-Steiner tree, and hence
dG(S) ≤ 4. For H2, the tree in G induced by the edges in {v3u1, v3u3, v1v3, v1u2} is an S-Steiner tree,
and hence dG(S) ≤ 4.

From the above argument, if G[S] ∼= K3 or G[S] ∼= P3, then dG(S) ≤ 4. From the arbitrariness of
S, we have sdiam3(G) ≤ 4, as desired.

Lemma 1.42. [113] Let G ∈ G(n) be a graph. Then

SW3(G) + SW3(G) ≥ 5

(
n

3

)
(15)

and

SW3(G) · SW3(G) ≥ 6

(
n

3

)2

+ (n− 2)

(
n

3

)
− (n− 2)2 . (16)

Moreover, the bounds are sharp.

Proof. (1) For any S ⊆ V (G) and |S| = 3, G[S] ∼= K3 or G[S] ∼= P3 or G[S] ∼= K2 ∪K1 or G[S] ∼=
3K1. If G[S] ∼= K3 or G[S] ∼= P3, then dG(S) = 2. If G[S] ∼= K2∪K1 or G[S] ∼= 3K1, then dG(S) ≥ 3.
Let S1, S2, . . . , S(n

3

) be all the 3-subsets of V (G). Without loss of generality, let S1, S2, . . . , Sx be all the
3-subsets of V (G) such that G[Si] ∼= K3 or G[Si] ∼= P3, where 1 ≤ i ≤ x. Therefore, dG(Si) = 2 and
dG(Si) ≥ 3 for each i (1 ≤ i ≤ x). Furthermore, for any Sj (x + 1 ≤ j ≤

(
n
3

)
), G[Sj] ∼= K2 ∪K1 or

G[Sj] ∼= 3K1. Then dG(Sj) ≥ 3 and dG(Sj) = 2 for each j (x+ 1 ≤ j ≤
(
n
3

)
). So

SW3(G) ≥ 2x+ 3

[(
n

3

)
− x

]
= 3

(
n

3

)
− x

and
SW3(G) ≥ 3x+ 2

[(
n

3

)
− x

]
= 2

(
n

3

)
+ x

implying inequality (15).
By Corollary 1.2, there exist at least (n− 2) subsets of V (G) whose Steiner 3-distances are equal to

2. The same is true for G. Therefore, n− 2 ≤ x ≤
(
n
3

)
− n+ 2, and hence

SW3(G) · SW3(G) ≥
[
3

(
n

3

)
− x

] [
2

(
n

3

)
+ x

]

= 6

(
n

3

)2

+

(
n

3

)
x− x2 ≥ 6

(
n

3

)2

+ (n− 2)

(
n

3

)
− (n− 2)2
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i.e., inequality (16) holds.

The sharpness of the above bounds is illustrated by the following example.

Example 1.1. [113] Let G ∼= P4. Then G ∼= P4. By Lemma 1.37, SW3(G) = SW3(G) = 10, and
hence SW3(G)+SW3(G) = 20 = 5

(
n
3

)
and SW3(G) ·SW3(G) = 100 = 6

(
n
3

)2
+(n−2)

(
n
3

)
− (n−2)2,

which confirms that the lower and upper bounds are sharp.

Let S∗ be a tree obtained from a star of order n− 2 and a path of length 2 by identifying the center of
the star and a vertex of degree one in the path. Then S∗ is a graph obtained from a clique of order n− 1

by deleting an edge uv and then adding an pendent edge at v.

Observation 1.3. [113]
(1) SW3(S

∗) = 9
(
n−3
2

)
+ 3
(
n−3
3

)
+ 8n− 22;

(2) SW3(S∗) = 7
(
n−3
2

)
+ 2
(
n−3
3

)
+ 7n− 18 .

Proof. From the structure of S∗ and S∗, we conclude

SW3(S
∗) = 4

(
n− 3

2

)
+ 2

[(
n− 3

2

)
+ (n− 3) + 1

]
+ 3

[(
n− 3

2

)
+

(
n− 3

3

)
+ 2(n− 3)

]

= 9

(
n− 3

2

)
+ 3

(
n− 3

3

)
+ 8n− 22

and

SW3(S∗) = 2

[
2

(
n− 3

2

)
+ 2(n− 3) +

(
n− 3

3

)]
+ 3

[(
n− 3

2

)
+ (n− 2)

]

= 7

(
n− 3

2

)
+ 2

(
n− 3

3

)
+ 7n− 18 .

In order to show the sharpness of the above bounds, we consider the following example.

Example 1.2. [113] Let S∗ be the same tree as before. From Observation 1.3, we have

SW3(S
∗) + SW3(S∗) = 16

(
n− 3

2

)
+ 5

(
n− 3

3

)
+ 15n− 40

and

SW3(S
∗) · SW3(S∗) = 63

(
n− 3

2

)2

+ 6

(
n− 3

3

)2

+ 39

(
n− 3

2

)(
n− 3

3

)

+(119n− 316)

(
n− 3

2

)
+ (37n− 98)

(
n− 3

3

)

+(8n− 22)(7n− 18) .
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The following lemmas are preparations for deducing an upper bound on SW3(G) + SW3(G).

Lemma 1.43. [113] Let G ∈ G(n) be a connected graph, and let T be a spanning tree of G. If

sdiam3(G) = 3, then

SW3(G) + SW3(G) ≤ SW3(T ) + SW3(T ) .

Proof. Note that G is a spanning subgraph of T . It suffices to prove that

SW3(G)− SW3(T ) ≤ SW3(T )− SW3(G) .

Since sdiam3(G) = 3, it follows that dG(S) = 2 or dG(S) = 3 for any S ⊆ V (G) and |S| = 3.
Since G is a spanning subgraph of T and sdiam3(G) = 3, it follows that sdiam3(T ) ≤ 3, and hence
dT (S) = 2 or dT (S) = 3 for any S ⊆ V (T ) and |S| = 3. Then 0 ≤ dG(S) − dT (S) ≤ 1. We claim
that dG(S) − dT (S) ≤ dT (S) − dG(S) for S ⊆ V (T ) and |S| = 3. Because G is a spanning subgraph
of T , dG(S) ≥ dT (S) for any S ⊆ V (T ) and |S| = 3. Similarly, since T is a spanning subgraph of
G, dT (S) ≥ dG(S) for any S ⊆ V (T ) and |S| = 3. If dG(S) − dT (S) = 0, then dG(S) − dT (S) =

0 ≤ dT (S) − dG(S), as desired. If dG(S) − dT (S) = 1, then dG(S) = 3 and dT (S) = 2, and hence
dG(S) = 2 and dT (S) ≥ 3. Therefore, dT (S) − dG(S) ≥ 1 = dG(S) − dT (S), as desired. The result
follows from the arbitrariness of S and the definition of Steiner Wiener index.

Lemma 1.44. [113] Let T be a tree of order n, different from the star Sn. Let S∗ be the tree same as in

Observation 1.3. If sdiam3(G) = 3, then

SW3(T ) + SW3(T ) ≤ SW3(Pn) + SW3(S∗) .

Proof. Note first that the complements of all trees, except of the star, are connected. Therefore, SW3(T )

in Lemma 1.44 is always well defined.

By Lemma 1.36, SW3(T ) ≤ SW3(Pn). It suffices to prove SW3(T ) ≤ SW3(S∗). Since
sdiam3(G) ≤ 3, it follows that sdiam3(T ) ≤ 3. For any S ⊆ V (T ) and |S| = 3, if T [S] is not
connected, then dT (S) = 2. If T [S] is connected, then dT (S) ≥ 3. So if we want to obtain the maximum
value of SW3(T ) for a tree T , then we need to find as many as possible 3-subsets of V (T ) whose induced
subgraphs in T are disconnected. Since the complement of Sn is not connected, it follows that S∗ is our
desired tree. So SW3(T ) ≤ SW3(S∗), and hence SW3(T ) + SW3(T ) ≤ SW3(Pn) + SW3(S∗).

We are now in the position to complete the proof of Theorem 1.16. This will be achieved by com-
bining Lemmas 1.42 and 1.45.

Let G ∈ G(n). If n = 6, 7 and sdiam3(G) = 5, then the validity of Theorem 1.16 can be verified by
direct checking.

Lemma 1.45. [113] Let G ∈ G(n) be a connected graph. Let n ≥ 8, or n ≤ 5, or n = 6, 7 and

sdiam3(G) 6= 5, or n = 6, 7 and sdiam3(G) 6= 5. Then the upper bounds in parts (1) and (2) of

Theorem 1.16 are obeyed. Moreover, these bounds are sharp.
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Proof. We need to separately examine three cases.

Case 1. sdiam3(G) ≥ 6 or sdiam3(G) ≥ 6.

Without loss of generality, let sdiam3(G) ≥ 6. From Corollary 1.1 it is known that sdiam3(G) = 3,
and hence SW3(G) + SW3(G) ≤ SW3(Pn) + SW3(S∗). By Lemma 1.37, SW3(Pn) = 2

(
n+1
4

)
. Note

that S∗ is a graph obtained from a clique of order n − 1 by deleting an edge uv and then adding a
pendent edge at v. Then SW3(S∗) = 7

(
n−3
2

)
+ 2
(
n−3
3

)
+ 7n − 18, and hence SW3(G) + SW3(G) ≤

2
(
n+1
4

)
+ 7
(
n−3
2

)
+ 2
(
n−3
3

)
+ 7n− 18 = 2

(
n+1
4

)
+ 2
(
n−3
3

)
+ 1

2
(7n2 − 35n+ 48).

Case 2. sdiam3(G) = 5 or sdiam3(G) = 5.

In view of Lemma 1.41, we can assume that sdiam3(G) = 5 and sdiam3(G) ≤ 4. Let S1, S2, . . . ,

S(n
3

) be all the 3-subsets of V (G). Without loss of generality, assume that S1, S2, . . . , Sx are the 3-subsets
of V (G) for which G[Si] ∼= K3 or G[Si] ∼= P3, where 1 ≤ i ≤ x.

For each i (1 ≤ i ≤ x), dG(Si) = 2. For any Sj (x + 1 ≤ j ≤
(
n
3

)
), G[Sj] ∼= K2 ∪ K1 or

G[Sj] ∼= 3K1. Since G is connected, it follows that there exists a spanning tree, say T . By Lemmas
1.38 and 1.39, there exist at least (n− 3) subsets of V (T ) whose Steiner 3-distance is 3, and there exist
at least (n − 2) subsets of V (T ) whose Steiner 3-distance is 2. Therefore, there exist at least (2n − 5)

subsets of V (G) whose Steiner 3-distance is at most 3. Without loss of generality, let dG(Sj) = 3 for
Sj (x + 1 ≤ j ≤ 2n − 5). Then dG(Sj) ≤ 5 and dG(Sj) = 2 for each j (2n − 4 ≤ j ≤

(
n
3

)
).

For each i (1 ≤ i ≤ x), dG(Si) = 2. By Lemma 3.9, there exist at least (n − 3) subsets of V (G)

whose Steiner 3-distance is 3. Then there exist at most x − (n − 3) subsets of V (G) whose Steiner
3-distance is 4. If x ≤ 2n− 5, then SW3(G) ≤ 2x+ 3(2n− 5− x) + 5

[(
n
3

)
− 2n+ 5

]
and SW3(G) ≤

3(n−3)+4(x−n+3)+2
[(

n
3

)
− x
]
, and hence SW3(G)+SW3(G) ≤ 7

(
n
3

)
+x−5n+13 ≤ 7

(
n
3

)
−3n+8.

If x ≥ 2n−5. Then SW3(G) ≤ 2x+5
[(

n
3

)
− x
]

and SW3(G) ≤ 3(n−3)+4(x−n+3)+2
[(

n
3

)
− x
]
,

and hence SW3(G) + SW3(G) ≤ 7
(
n
3

)
− x− n+ 3 ≤ 7

(
n
3

)
− 3n+ 8.

Case 3. sdiam3(G) ≤ 4 and sdiam3(G) ≤ 4.

Let S1, S2, . . . , S(n
3

) be the 3-subsets of V (G). Without loss of generality, let S1, S2, . . . , Sx be the
3-subsets of V (G) for which G[Si] ∼= K3 or G[Si] ∼= P3, where 1 ≤ i ≤ x. For each i (1 ≤ i ≤ x),
dG(Si) = 2. For any Sj (x + 1 ≤ j ≤

(
n
3

)
), G[Sj] ∼= K2 ∪ K1 or G[Sj] ∼= 3K1. Since G is

connected, there exists a spanning tree, say T . By Lemmas 1.38 and 1.39, there exist at least (n − 3)

subsets of V (T ) whose Steiner 3-distance is equal to 3, and there exist at least (n− 2) subsets of V (T )

whose Steiner 3-distance is 2. Therefore, there exist at least (2n − 5) subsets of V (G) whose Steiner
3-distance is at most 3. Without loss of generality, let dG(Sj) = 3 for Sj (x + 1 ≤ j ≤ 2n − 5). Then
dG(Sj) ≤ 4 and dG(Sj) = 2 for each j (2n − 4 ≤ j ≤

(
n
3

)
). For each i (1 ≤ i ≤ x), dG(Si) = 2.

By Lemma 1.39, there exist at least (n − 3) subsets of V (G) whose Steiner 3-distance in G is 3. Then
there exist at most x− (n− 3) subsets of V (G) whose Steiner 3-distance in G is 4. If x ≤ 2n− 5, then
SW3(G) ≤ 2x+3(2n−5−x)+4

[(
n
3

)
− 2n+ 5

]
and SW3(G) ≤ 3(n−3)+4(x−n+3)+2

[(
n
3

)
− x
]
.

Thus

SW3(G) + SW3(G) ≤ 6

(
n

3

)
+ x− 3n+ 8 ≤ 6

(
n

3

)
− n+ 3 .

If x ≥ 2n−5, then SW3(G) ≤ 2x+4
[(

n
3

)
− x
]

and SW3(G) ≤ 3(n−3)+4(x−n+3)+2
[(

n
3

)
− x
]
.
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Thus
SW3(G) + SW3(G) ≤ 6

(
n

3

)
− n+ 3 .

For n ≥ 4, one can check that 2
(
n+1
4

)
+2
(
n−3
3

)
+ 1

2
(7n2−35n+48) ≥ 6

(
n
3

)
−n+3 and 7

(
n
3

)
−3n+8 ≥

6
(
n
3

)
− n+ 3. So we only need to consider the upper bounds in Cases 1 and 2.

From the above argument, we conclude the following:
(1) For n ≥ 8,

2

(
n+ 1

4

)
+ 2

(
n− 3

3

)
+

7n2 − 35n+ 48

2
≥ 7

(
n

3

)
− 3n+ 8

and
SW3(G) + SW3(G) ≤ 2

(
n+ 1

4

)
+ 2

(
n− 3

3

)
+

7n2 − 35n+ 48

2
.

(2) For n ≤ 5, the upper bound in Case 2 does not exist. Then

SW3(G) + SW3(G) ≤ 2

(
n+ 1

4

)
+ 2

(
n− 3

3

)
+

7n2 − 35n+ 48

2
.

(3) If n = 6, 7, sdiam3(G) 6= 5, and sdiam3(G) 6= 5, then

SW3(G) + SW3(G) ≤ 2

(
n+ 1

4

)
+ 2

(
n− 3

3

)
+

7n2 − 35n+ 48

2
.

(4) If n = 6, 7 and sdiam3(G) = 5, or n = 6, 7 and sdiam3(G) = 5, then

SW3(G) + SW3(G) ≤ 7

(
n

3

)
− 3n+ 8 .

This completes the proof.
In order to demonstrate the sharpness of the above bounds, we point out the following example.

Example 1.3. [113] Let G ∼= P4. Then G ∼= P4. By Lemma 1.37, SW3(G) = SW3(G) = 10, and hence
SW3(G) + SW3(G) = 20 = 2

(
n+1
4

)
+ 2
(
n−3
3

)
+ 1

2
(7n2 − 35n + 48) and SWk(G) · SWk(G) = 100 =[(

n+1
4

)
+
(
n−3
3

)
+ 1

4
(7n2 − 35n+ 48)

]2
, which implies that the upper and lower bounds are sharp.

1.9 Harary index

The Harary index of a molecular graph has been introduced in 1993 in this Journal independently by
Plavšić, Nikolić, Trinajstić, Mihalić [123] and by Ivanciuc, T. S. Balaban, A. T. Balaban [87] for charac-
terization of G. The Harary index H(G) of a graph G is defined by

H(G) =
∑

u,v∈V (G)

1

dG(u, v)
.

In [154], Zhou, Cai, and Trinajstić obtained the Nordhaus–Gaddum problem for the Harary index.
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Theorem 1.17. [154] Let G ∈ G(n) (n ≥ 5) be a connected graph. Then

1 +
(n− 1)2

2
+ n

n−1∑

k=2

1

k
≤ H(G) +H(G) ≤ 3n(n− 1)

4
. (17)

with left (right, respectively) equality in (17) if and only if G = Pn or G = P̄n (both G and G have

diameter 2, respectively).

Later, Das, Zhou, and Trinajstić [37] obtained the following bounds for Harary index.

Lemma 1.46. [37] Let G ∈ G(n,m) (n ≥ 2) be a connected graph with diameter d. Then

H(Pd+1) +
n(n− 1) + 2(m− d)(d− 1)

2d
− d+ 1

2
≤ H(G) ≤ H(Pd+1) +

n(n− 1) + 2m

4
− d(d+ 3)

4
,

with left (right, respectively) equality holds if and only if G is a graph of diameter at most 2 or G is a

path Pn (G is a graph of diameter at most 2 or G is a path Pn or G is isomorphic to G∗, respectively).

Denote by G∗ = (V,E), a graph of diameter d (3 ≤ d ≤ 4 and |V (G∗)| ≥ d+2) such that any vertex
vi, vi ∈ V (G∗) \ V (Pd+1), δ(i, j |G∗) = 1 or δ(i, j |G∗) = 2 for any vertex vj ∈ V (G∗), j 6= i, where
Pd+1 is a path of d+ 1 vertices in G∗. The two graphs depicted in Table 1.3 are of G∗ type graph. Then
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Table 1.3 Graphs are of G∗ type graph.

Lemma 1.47. [37] Let Pn be a path of n vertices. Then

H(Pn) ≤
(n− 1)(n+ 2)

4
.

Moreover, equality holds if and only if either n = 2 or n = 3.

By the above bounds, they gave a lower bound for H(G) +H(G).

Theorem 1.18. [37] Let G ∈ G(n) (n ≥ 2) be a connected graph. Then

H(G) +H(G) ≥ H(Pk+1) +
n(n− 1)

2

(
1 +

1

k

)
− 3k +

7

2
, (18)

where k = max{d, d̄}, d and d̄ are diameter of G and G, respectively. Moreover, the equality holds in

(18) if and only if both G and G have diameter 2.
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Proof. For a connected graph G with n ≥ 2 vertices, m edges, and diameter d, from Lemma 1.46, we
have

H(G) ≥ H(Pd+1) +m+
m

d
− 3

2
d+

1

2
,

where m is the number of edges in G. Using above result, we get

H(G) +H(G) ≥ H(Pd+1) +H(Pd+1) +m+m+
m

d
+

m

d
− 3

2
(d+ d) + 1 (19)

≥ H(Pd+1) +H(Pd+1) + (m+m)

(
1 +

1

k

)
− 3k + 1

as k = max{d, d} (20)

≥ H(Pd+1) +
n(n− 1)

2
(1 +

1

k
)− 3k +

7

2

as k = max{d, d} and d, d ≥ 2. (21)

Now suppose that (18) holds. Then all inequalities in the above argument must be equalities. Then
from (19), we get G is a graph of diameter 2 or G is a path Pn, and G is graph of diameter 2 or G is a
path Pn. From (19), we get k = d = d. Also from (20), we get either d = 2 or d = 2. Hence both G and
G have diameter 2.

Conversely, one can easily check that (18) holds for both G and G of diameter 2.

Remark 1.8. [37] For graph A1 in Table 1.2, the lower bound (18) for H(G) + H(G) is 31.5 better

then 29.15, the lower bound given in (17). But for graph G2, the lower bound (17) is 21.2 better then our

lower bound 16.67, given in (18). So the lower bounds are given in (17) and (18), are not comparable.

u
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u u
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@��
@@ u u u u uu

D1 D2

Table 1.4 Graphs for Remark 1.2.

They also gave a lower bound for H(G)+H(G) in terms of the number of vertices n and the diameter
d in G.

Theorem 1.19. [37] Let G ∈ G(n) (n ≥ 2) be a connected graph. Then

H(G) +H(G) ≤ H(Pd+1) +
3n(n− 1)

4
− d(d+ 3)

4
. (22)

Moreover, the equality holds in (22) if and only if both G and G have diameter 2 or G is a path Pn.

Proof. Since G and G are connected, it follows that d ≥ 2 and d ≥ 2. By Lemma 1.46, we get

H(G) +H(G) ≤ H(Pd+1) +
n(n− 1) + 2m

4
− d(d+ 3)

4

+H(Pd+1) +
n(n− 1) + 2m

4
− d(d+ 3)

4
, (23)
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where m is the number of edges in G and d is the diameter in G.

Using Lemma 1.47 in above result, we get

H(G) +H(G) ≤ H(Pd+1) +
3n(n− 1)

4
− d(d+ 3)

4
as 2m = n(n− 1)− 2m. (24)

Now suppose that equality holds in (22). Then the (23) and (24) hold. From (23), we have G is a
graph of diameter at most 2 or G is a path Pn and G is a graph of diameter at most 2 or G is a path Pn.
From (24), we must have

H(Pd+1) =
d(d+ 3)

4

By Lemma 1.47, d = 2 as d 6= 1. Hence both G and G have diameter 2 or G is a path Pn.

Conversely, one can see easily that (22) holds for both G and G have diameter 2 or G = Pn.

Remark 1.9. [37] By Lemma 1.46, one can easily that (22) is always better then the upper bound given

in (17).

Remark 1.10. [37] The lower and upper bounds given by (17) and (22), respectively, are equal when

both G and G have diameter 2.

For a triangle- and quadrangle-free graph, they proved the following.

Theorem 1.20. [37] Let G ∈ G(n,m) (n ≥ 2) be a triangle- and quadrangle-free graph. Then

H(G) +H(G) ≤ 1

6
M1(G) +

7n(n− 1)

12
+

n(n− 1)2

12
− m(n− 1)

3
. (25)

Moreover, the equality holds in (25) if and only if both G and G have diameter at most 3.

1.10 Szeged index

Let G = (V,E) be a connected graph on n vertices. Let uv be an edge of G. Define two vertex sets in G

as

Nu(uv) = {w ∈ V : dG(u,w) < dG(v, w)}
Nv(uv) = {w ∈ V : dG(v, w) < dG(u,w)}

Denote by nu(uv) and nv(uv) the cardinalities of Nu(uv) and Nv(uv), respectively. In 1994, Gutman
[61] introduced the Szeged index Sz(G) of a connected graph G as

Sz(G) =
∑

uv∈E(G)

nu(uv)nv(uv).

Gutman proposed the Szeged index as an extension of the Wiener index (the sum of all distances) of
trees to the connected graphs containing cycles. Indeed, in the class of trees, the Szeged index and the
Wiener index are equal.
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Das and Gutman [27] first observed:

2Sz(Pn) = 2(2 + 4 + 6 + 6 + · · ·+ 6︸ ︷︷ ︸
n−4

) + 2(4 + 6 + 9 + 9 + · · ·+ 9︸ ︷︷ ︸
n−5

)

+2(2 + 4 + 6 + 9 + 9 + · · ·+ 9︸ ︷︷ ︸
n−6

) + (n− 6)(4 + 4 + 6 + 6 + 9 + 9 + · · ·+ 9︸ ︷︷ ︸
n−7

)

= 2(6n− 18) + 2(9n− 35) + 2(9n− 42) + (9n− 43)(n− 6),

that is,
Sz(Pn) =

1

2
(9n2 − 49n+ 68).

Next, they derived the following lower bound of Sz(G) for a connected graph G.

Lemma 1.48. [27] Let G be a connected graph with m edges and diameter d. Then

Sz(G) ≥ m+
1

6
d(d2 + 3d− 4) (26)

with equality holding if and only if G ∼= Kn or G ∼= Pn.

Nordhaus–Gaddum inequalities for Szeged index were obtained by Das and Gutman [27].

Theorem 1.21. [27] Let G ∈ G(n) (n ≥ 2) be a connected graph on diameter d, and with a connected

complement G. Then

Sz(G) + Sz(G) ≥ n(n− 1)

2
+

1

6
(d3 + 27d2 − 94d+ 84) (27)

with equality holding if and only if G ∼= Pn.

Proof. Since G has diameter d, it follows that P d+1 is a subgraph of G. Thus

Sz(G) ≥ Sz(P d+1) +
∑

e∈E(G)\E(P d+1)

n1(e |G)n2(e |G) (28)

≥ 1

2
(9d2 − 31d+ 28) +m− 1

2
d(d− 1) (29)

=
1

2
(9d2 − 31d+ 28) +

n(n− 1)

2
−m− 1

2
d(d− 1). (30)

From (26) and (30), we get

Sz(G) + Sz(G) ≥ n(n− 1)

2
+

1

2
(9d2 − 31d+ 28)− 1

2
d(d− 1) +

1

6
d(d2 + 3d− 4) (31)

and inequality (27) follows.
Suppose now that equality holds in (27). Then equality holds in (28), (29) and (31). Using the same

technique as in Lemma 1.48, we conclude that G ∼= Pn. Conversely, one can easily check that (27) holds
for G ∼= Pn.

It was first observed by Goodman [57] that t(G) + t(G) is determined by the degree sequence:
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Lemma 1.49. [57] Let t(G) and t(G) be, respectively, the number of triangles in G and G. Then

t(G) + t(G) =
1

2

n∑

i=1

d2i − (n− 1)m+
1

6
n(n− 1)(n− 2). (32)

Lemma 1.50. [57] Let G ∈ G(n,m) (n > 2) be a connected graph with t(G) triangles. Then

Sz(G) ≤ 1

4
n2m− 3t(G). (33)

Moreover, if equality holds in (33), then G is bipartite, n is even and the minimum vertex degree is

greater than or equal to 2.

A structure descriptor introduced long time ago [133] is the so-called first Zagreb index (M1) equal
to the sum of squares of the degrees of all vertices.

Theorem 1.22. [27] Let G ∈ G(n,m) (n > 2) be a connected graph with t(G) triangles, and with a

connected complement G. Then

Sz(G) + Sz(G) ≤ 1

8
n(n− 1)(n2 − 4n+ 8)− 3

2
M1 + 3(n− 1)m. (34)

Proof. We start by inequality (33). Let m be the number of edges of G. Then

Sz(G) + Sz(G) ≤ 1

4
n2(m+m)− 3

(
t(G) + t(G)

)
. (35)

Since m+m = 1
2
n(n− 1), inequality (34) is obtained by combining (33) with (35).

1.11 Vertex PI index

In view of the considerable success of the Szeged index in chemical graph theory, an additive version of
it has been put forward, called the vertex PI index:

PI(G) =
∑

uv∈E(G)

[nu(uv) + nv(uv)] =
∑

e∈E(G)

[n1(e|G) + n2(e|G)].

Das and Gutman [29] first gave a lower bound of PI(G) for a connected graph G.

Lemma 1.51. [29] Let G ∈ G(n,m) be a connected graph on diameter d. Then

PI(G) ≥ 2m+ d2 − d. (36)

Moreover, the lower bound is reached if and only if G ∼= Kn or G ∼= Pn; the upper bound is reached if

and only if G is a bipartite graph or G ∼= K3.

Next, they observed that for n ≥ 5,

2PI(P n) = 2(3 + 4 + 5 + 5 + · · ·+ 5︸ ︷︷ ︸
n−4

+ 2(4 + 5 + 6 + 6 + · · ·+ 6︸ ︷︷ ︸
n−5

)

+ 2(3 + 4 + 5 + 6 + 6 + · · ·+ 6︸ ︷︷ ︸
n−6

) + (n− 6)(4 + 4 + 5 + 5 + 6 + 6 + · · ·+ 6)︸ ︷︷ ︸
n−7

= 2(5n− 13) + 2(6n− 21) + 2(6n− 24) + (6n− 24)(n− 6),
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that is,

PI(P n) = (n− 2)(3n− 7).

By the above lemma, they proved the Nordhaus–Gaddum inequality for vertex PI index.

Theorem 1.23. [29] Let G ∈ G(n) be a connected graph on diameter d, and with a connected comple-

ment G. Then

PI(G) + PI(G) ≥ n(n− 1) + (d− 1)(3d− 4) (37)

with equality holding if and only if G ∼= Pn.

Proof. Since G has diameter d, it follows that P d+1 is a subgraph of G, and hence

PI(G) ≥ PI(P d+1) +
∑

e∈E(G)\E(P d+1)

[n1(e |G) + n2(e |G)] (38)

≥ (d− 1)(3d− 4) + 2

[
m− 1

2
d(d− 1)

]
(39)

= 2(d− 1)(d− 2) + n(n− 1)− 2m . (40)

From (36) and (40) we get

PI(G) + PI(G) ≥ 2(d− 1)(d− 2) + n(n− 1) + d2 − d (41)

and inequality (37) follows.

Suppose now that equality holds in (37). Then equality holds in (38), (39), and (41). Using the same
way of reasoning as in the proof of Lemma 1.51, we conclude that G ∼= Pn.

Conversely, one can easily check that (37) holds for G ∼= Pn.

Lemma 1.52. [29] Let G ∈ G(n,m) be a connected graph, possessing t(G) triangles. Then

PI(G) ≤ nm− 3t(G).

Moreover, the upper bound is reached if and only if G is a bipartite graph or G ∼= K3.

Das and Gutman [26] also obtained an upper bound for PI(G) + PI(G):

Theorem 1.24. [29] Let G ∈ G(n,m) (n > 2) be a connected graph on diameter d, t(G) triangles, and

with a connected complement G. Then

PI(G) + PI(G) ≤ (n− 1)(3m+ n)− 3

2
M1(G). (42)

Moreover, the equality holds in (42) if and only if G ∼= P4.
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Proof. Let m be the number of edges of G. By (36), we get

PI(G) + PI(G) ≤ n(m+m)− 3[t(G) + t(G)] (43)

=
1

2
n2(n− 1)− 3

2

n∑

i=1

deg(vi)
2 + 3(n− 1)m− 1

2
n(n− 1)(n− 2). (44)

Since m+m = n(n−1)
2

, inequality (42) is obtained from (44).
Suppose now that equality holds in (42). Then equality holds in (43). From (36) we conclude that

both G and G are bipartite graphs. So we may assume that V (G) = A ∪ B and A ∩ B = ∅. Since G is
also bipartite, we must have |A| ≤ 2 and |B| ≤ 2. Furthermore, since G and G both are connected, it
must be G ∼= P4.

Conversely, one can easily check that (42) holds for G ∼= P4.

1.12 Co–PI index

Hassani, Khormali, and Iranmanesh [75] introduced a new topological index similar to the vertex version
of PI index. This index is called the Co-PI index of G and defined as:

Co− PIv(G) =
∑

e=uv∈E(G)

|nu(e)− nv(e)|. (45)

Here the summation goes over all edges of G. Fath-Tabar, Došlić, and Ashrafi proposed the Szeged
matrix and Laplacian Szeged matrix in [49]. Then Su, Xiong, and Xu [131] introduced the Co-PI matrix
of a graph. The adjacent matrix (aij)n×n of G is the integer matrix with rows and columns indexed
by its vertices, such that the ij-th entry is equal to the number of edges connecting i and j. Let the
weight of the edge e = uv be a non-negative integer |nu(e) − nv(e)|, we can define a weight function:
w : E → R+ ∪ {0} on E, which is said to be the Co-PI weighting of G. The adjacency matrix of G
weighted by the Co-PI weighting is said to be its Co-PI matrix and denoted by MCPI = (cij)n×n. That
is,

cij =

{
|nvi(e)− nvj(e)| if e = vivj
0 otherwise.

Its eigenvalues are said to be the Co-PI eigenvalues of G and denoted by λ∗
i (G) for k = 1, 2, . . . , |V |.

Easy verification shows that the Co-PI index of G can be expressed as one half of the sum of all entries
of MCPI , i.e.,

Co− PIv(G) =
1

2

n∑

i=1

MCPIi(G),

where MCPIi is the sum of i-th row of the matrix MCPI .
Kaya and Maden [90] presented Nordhaus–Gaddum type equalities for the largest Co-PI eigenvalue

of G. Let G be a connected graph on n ≥ 3 vertices and m edges. Furthermore, assume that G ∈ H

has a connected complement G with m edges. As one can easily prove, the following equality:

2(m+m) = n(n− 1).

The following lemma is due to Su, Xiong, and Xu [131].
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Lemma 1.53. [131] Let G ∈ G(n,m) (n ≥ 3) be connected graph. Then

2m ≤ λ∗2
1 (G) + λ∗2

2 (G) + · · ·+ λ∗2
n (G) ≤ 2m(n− 2)2.

Note that trace(MCPI) = 0 and denote by N = N(G) the trace of M2
CPI . Therefore, for i =

1, 2, . . . , n, the eigenvalues λ∗
i (G) of MCPI satisfy the relations

n∑

i=1

λ∗
i (G) = 0

and
n∑

i=1

λ∗2
i (G) = N(G).

Let H be the class of connected graphs whose Co-PI matrices have exactly one positive eigenvalue.
In the following, we give upper and lower bounds for λ∗

1(G) of graphs in the class H in terms of the
number of vertices and N(G).

Lemma 1.54. [131] Let G ∈H with n ≥ 2 vertices. Then

λ∗
1(G) ≤

√
n− 1

n
N(G).

Lemma 1.55. [131] Let G ∈H with n ≥ 2 vertices. Then

λ∗
1(G) ≥

√
N(G)

2
.

By Lemmas 1.53, 1.54 and 1.55, Kaya and Maden [90] derived the following Nordhaus–Gaddum-
type results.

Theorem 1.25. [131] Let G ∈H with n ≥ 3 vertices, and let G be connected. Then

λ∗
1(G) + λ∗

1(G) ≤
√

n− 1

n

[√
2m(n− 2)2 +

√
(n(n− 1)− 2m)(n− 2)2

]
.

Theorem 1.26. [131] Let G ∈H with n ≥ 3 vertices, and let G be connected. Then

λ∗
1(G) + λ∗

1(G) ≥ √m+

√
(n(n− 1)− 2m)

2
.

1.13 Second geometric–arithmetic index

The first geometric-arithmetic index GA1 will be introduced in the next chapter. The second geometric-

arithmetic index, introduced by [50], is based on the notion of distance. Using the same notation as in
the definition of the Szeged index, the formula of GA2 is

GA2(G) =
∑

uv∈E(G)

2
√
nu(uv)nv(uv)

nu(uv) + nv(uv)
.

Das, Gutman, and Furtula [32] derived a lower bound of GA2(G) for a graph G.



49

Lemma 1.56. [32] Let G ∈ G(n,m) be a connected graph with p pendent vertices. Then

GA2(G) ≥ 2m
√
n− 2

n− 1
− 2p

(√
n− 2

n− 1
−
√
n− 1

n

)
. (46)

Equality holds in (46) if and only if G ∼= K1,n−1 or G ∼= K3.

Nordhaus–Gaddum type inequalities for the second geometric-arithmetic index were proved by Das,
Gutman, and Furtula [32] in 2010.

Theorem 1.27. [32] Let G ∈ G(n) be a connected graph with a connected complement G. Then

GA2(G) +GA2(G) ≥ 2
√
n− 2

n− 1

(
n

2

)
− 2(p+ p̄)

(√
n− 2

n− 1
−
√
n− 1

n

)
, (47)

where p and p̄ are the number of pendent vertices in G and G, respectively.

Proof. We have m+m =
(
n
2

)
where m is the number of edges in G, Using (46), we get

GA2(G) +GA2(G) ≥ 2
√
n− 2

n− 1
(m+m)− 2(p+ p)

(√
n− 2

n− 1
−
√
n− 1

n

)

=
2
√
n− 2

n− 1

(
n

2

)
− 2(p+ p)

(√
n− 2

n− 1
−
√
n− 1

n

)

Inequality (47) follows now from Lemma 1.56.

Let G1 be the class of graphs H1 = (V1, E1) such that H1 is connected graph with ni = nj for each
edge ij ∈ E(H1). For example, K1,n−1, Kn ∈ G1. Denote by C∗

n, a unicyclic graph of order n and cycle
length k, such that each vertex in the cycle is adjacent to one pendent vertex, n = 2k. Let G2 be the
class of graphs H2 = (V2, E2), such that H2 is connected graph with ni = nj for each non-pendent edge
ij ∈ E(H2). For example, C∗

n ∈ G2.

Lemma 1.57. [32] Let G ∈ G(n,m) (n > 2) be a connected graph with p pendent vertices. Then

GA2(G) ≤ 2p
√
n− 1

n
+m− p. (48)

Equality in (48) holds if and only if G ∼= K1,n−1 or G ∈ G1 or G ∈ G2.

By the above lemma, they derived the following Nordhaus–Gaddum type result for GA2(G).

Theorem 1.28. [32] Let G ∈ G(n) be a connected graph with a connected complement G. Then

GA2(G) +GA2(G) ≤
(
n

2

)
− (p+ p̄)

(
1− 2

√
n− 1

n

)
, (49)

where p and p̄ are the number of pendent vertices in G and G, respectively.
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Proof. By (48), we get

GA2(G) +GA2(G) ≤ 2
√
n− 1

n
(p+ p) + (m+m)− (p+ p)

=

(
n

2

)
− (p+ p)

(
1− 2

√
n− 1

n

)
,

since m+m =
(
n
2

)
.

The following corollary is immediate.

Corollary 1.3. [32] Let G ∈ G(n) be a connected graph with a connected complement G. Then

GA2(G) +GA2(G) ≤
(
n

2

)
.

1.14 Third geometric–arithmetic index

A further molecular structure descriptor, belonging to the class of GA-indices, is the so-called third
geometric-arithmetic index; see [157].

Let ij ∈ E(G) be an edge of the graph G, connecting the vertices i and j. Let x ∈ V (G) be any vertex
of G. The distance between x and ij is denoted by d(x, ij |G) and is defined as min{dG(x, i), dG(x, j)}.
For ij ∈ E(G), let

mi = |{f ∈ E(G) : d(i, f |G) < d(j, f |G)}| .

It is immediate to see that in all cases mi ≥ 0 and mi +mj ≤ m− 1.
It should be noted that mi is not a quantity that is in a unique manner associated with the vertex i of

the graph G, but that it depends on the edge ij. Yet, this restriction is not relevant for the definition of
GA3. Then the third geometric-arithmetic index is defined as

GA3 = GA3(G) =
∑

ij∈E(G)

√
mimj

1
2
[mi +mj]

.

By S(2r, s) (r ≥ 1, s ≥ 1), we denote the starlike tree with diameter less than or equal to 4, which
has a vertex v1 of degree r + s and which has the property that

S(2r, s) \ {v1} = P2 ∪ P2 ∪ . . . ∪ P2︸ ︷︷ ︸
r

∪P1 ∪ P1 ∪ . . . ∪ P1︸ ︷︷ ︸
s

For additional details on S(2r, s), see [32].
In 2010, Das, Gutman and Furtula [31] obtained a lower bound of GA3(G) for a connected graph G.

Lemma 1.58. [31] Let G ∈ G(n,m) (n > 2) be a connected graph with p pendent vertices. Then

GA3(G) ≥ 2(m− p)
√
m− 2

m− 1
. (50)

Equality in (50) holds if and only if G ∼= K1,n−1 or G ∼= K3 or G ∼= S(2r, s), n = 2r + s+ 1.
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The following theorem is an immediate consequence of inequality (50).

Theorem 1.29. [31] Let G ∈ G(n) be a connected graph with a connected complement G. Then

GA3(G) +GA3(G) ≥ 2(m− p)
√
m− 2

m− 1
+

2(m− p)
√
m− 2

m− 1
,

where p, p and m,m are the number of pendent vertices and edges in G and G, respectively.

Let H1 be the class of graphs H1 = (V1, E1), such that H1 is connected graph with mi = mj for
each edge ij ∈ E(H1). For example, Kn, Cn ∈ H1. Denote by C∗

n, an unicyclic graph of order n and
cycle length k, such that each vertex in the cycle is adjacent to one pendent vertex, n = 2k. Let H2 be
the class of graphs H2 = (V2, E2), such that H2 is connected graph with mi = mj for each non-pendent
edge ij ∈ E(H2). For example, C∗

n ∈H2.
Das, Gutman and Furtula [31] stated an upper bound on GA3(G).

Lemma 1.59. [31] Let G ∈ G(n,m) (n > 2) be a connected graph with p pendent vertices. Then

GA3(G) ≤ m− p. (51)

Equality in (51) holds if and only if G ∼= K1,n−1 or G ∈H1 or G ∈H2.

By the above lemma, they proved the following Nordhaus–Gaddum-type inequality for GA3(G).

Theorem 1.30. [31] Let G ∈ G(n) be a connected graph with a connected complement G. Then

GA3(G) +GA3(G) ≤
(
n

2

)
− p− p̄. (52)

Proof. By (51),
GA3(G) +GA3(G) ≤ (m+m)− (p+ p)

One arrives at (52) by noting that m+m =
(
n
2

)
.

Directly from Theorem 1.30 follows:

Corollary 1.4. [31] Let G ∈ G(n) be a connected graph with a connected complement G. Then

GA3(G) +GA3(G) ≤
(
n

2

)
.

1.15 Eccentric distance sum

Let DG(v) be the sum of distances of all vertices in G from v, that is, DG(v) =
∑

u∈V (G) dG(v, u). The
eccentric distance sum (EDS) is defined as [60]

ξd(G) =
∑

v∈V (G)

eccG(v)DG(v).

Hua, Zhang, and Xu [84] gave the Nordhaus–Gaddum type results for EDS of connected graphs in
2012. Suppose that G is a connected triangle-free graph on n vertices such that G is connected. Then
we clearly have n ≥ 4. If n = 4, then G must be the path P4, and thus, ξd(G) + ξd(G) = 52 by an
elementary calculation. So they assumed that n ≥ 5 in their following theorem.
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Theorem 1.31. [84] Let G ∈ G(n) (n ≥ 5) be a connected triangle-free graph. If G is connected, then

ξd(G) + ξd(G) ≥ 6n(n− 1),

with equality if and only if G ∼= C5 or G ∼= C5.

Proof. It is obvious that degG(v) ≤ n − 2 for any v ∈ V (G), for otherwise, G is disconnected, a
contradiction. So, eccG(v) ≥ 2. Similarly, we have eccG(v) ≥ 2 for any v ∈ V (G), since G = G is
connected. Thus

ξd(G) + ξd(G) ≥ 2


 ∑

v∈V (G)

DG(v) +
∑

v∈V (G)

DG(v)




= 2


 ∑

v∈V (G)

degG(v) +
∑

v∈V (G)

∑

u∈V (G)\NG[v]

dG(u, v)




+2


 ∑

v∈V (G)

degG(v) +
∑

v∈V (G)

∑

u′∈V (G)\NG[v]

dG(u
′, v)




≥ 2n(n− 1) + 2


 ∑

v∈V (G)

∑

u∈V (G)\NG[v]

2 +
∑

v∈V (G)

∑

u′∈V (G)\NG[v]

2




= 2n(n− 1) + 4
∑

v∈V (G)

(n− degG(v)− 1) + 4
∑

v∈V (G)

(n− degG(v)− 1)

= 10n(n− 1)− 4
∑

u∈V (G)

(degG(v) + degG(v)) = 6n(n− 1).

Assume that ξd(G)+ ξd(G) = 6n(n− 1). Since both G and G are connected, we have degG(v) ≤ n− 2

and degG(v) ≤ n − 2 for any vertex v in G. So V (G) \ NG[v] 6= ∅ and (G) \ NG[v] 6= ∅ for any v.
Therefore, for each v ∈ V (G), u ∈ V (G) \ NG[v], u′ ∈ V (G) \ NG[v], there exists eccG(v) = 2 and
dG(u, v) = 2, together with eccG(v) = 2 and dG(u

′, v) = 2.

Suppose that there exists a vertex, say w, in G such that degG(w) = 1 and let u be its unique
neighbor. Note that eccG(u) = 2. Then there exists a vertex, say x, such that dG(u, x) = 2. But then
eccG(w) ≥ dG(w, x) = 3, a contradiction.

Hence δ(G) ≥ 2. If ∆(G) = 2, then G is just a cycle Cn Since eccG(v) = 2 for any v in G, we thus
have n = 5, that is, G ∼= C5. Assume now that ∆(G) ≥ 3. Let v be a vertex in G with degG(v) = ∆

and let NG(v) = {v1, v2, · · · , v∆}. Since G is a triangle-free, it follows that G[v1, v2, · · · , v∆] is a null
graph. Thus, for any vertex u in V (G) \NG[v], we have uvi ∈ E(G) (i = 1, · · · ,∆), since eccG(x) = 2

for any x in G. Let A = NG(v) = {v1, v2, · · · , v∆} and B = V (G) \A. If there exist two vertices, say x

and y, in B \ {v} such that xy ∈ E(G), then G contains triangle vixyvi (i = 1, · · · ,∆), a contradiction.
Thus, G is the complete bipartite graph K∆,n−∆ with two partite sets being A and B respectively. But
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then, G = K∆,n−∆ is disconnected, a contradiction to our assumption. The discussion above shows that
ξd(G) + ξd(G) = 6n(n− 1) only if G ∼= C5.

Conversely, we have ξd(C5) + ξd(C5) = 120 = 6n(n− 1). This completes the proof.

Hua, Zhang, and Xu [84] also obtained an upper bound of ξd(G) for a connected graph G.

Lemma 1.60. [84] Let G ∈ G(n) (n ≥ 2) be a connected graph with degree sequence (d1, d2, . . . , dn).

Then

ξd(G) ≤ (n− 1)
n∑

i=1

(n− di)
2,

with equality if and only if d1 = d2 = · · · = dn = n− 1, that is, G ∼= Kn.

By Lemma 1.60, they proved the following Nordhaus–Gaddum inequality.

Theorem 1.32. [84] Let G ∈ G(n) (n ≥ 2) be a connected graph with degree sequence (d1, d2, · · · , dn).
If G is connected, then

ξd(G) + ξd(G) < n(n− 1)(n2 + 1) + 2(n− 1)
n∑

i=1

[d2i − (n− 1)di].

Proof. By Lemma 1.60, we have

ξd(G) ≤ (n− 1)
n∑

i=1

(n− di)
2 (53)

and

ξd(G) ≤ (n− 1)
n∑

i=1

[(n− (n− 1− di)]
2 = (n− 1)

n∑

i=1

(1 + di)
2.

So,

ξd(G) + ξd(G) ≤ (n− 1)
n∑

i=1

[(n− di)
2 + (1 + di)

2].

= n(n− 1)(n2 + 1) + 2(n− 1)
n∑

i=1

[d2i − (n− 1)di].

Since G is a connected, it follows that G cannot be isomorphic to Kn, and thus the equality in the
inequality (53) cannot be attained by Lemma 1.60. It follows the present theorem as desired.

2. Degree–based parameters

The concept of degree in graph theory is closely related (but not identical) to the concept of valence in
chemistry; see [63]. The degree of a vertex of a molecular graph is the number of first neighbors of this
vertex. A large number of molecular-graph-based structure descriptors (topological indices) have been
conceived, depending on vertex degrees. In [63], Gutman first presented the most familiar distance-based
structure descriptors, and then report results on their comparison.

The following Table 2.1 shows the authors contributing the Nordhaus–Gaddum problem for degree-
based parameters.
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Degree-based Parameters Authors Contributing N -G Problem

Randić index Zhang and Wu [144]

Zagreb index Zhang and Wu [144]

Su, Xiong, and Xu [130]

Zagreb co-index Su, Xiong, and Xu [130]

Hua, Ashrafi, Zhang [82]

Multiplicative Zagreb coindices Xu, Das, and Tang [140]

Aton-bond connectivity index Das, Gutman, and Furtula [30]

Augmented Zagreb index Ali, Raza, and Bhatti [2]

Sum-connectivity index Zhou and Trinajstić [158]

Zhou and Trinajstić [159]

General sum-connectivity co-Index Su and Xu [132]

Geometric-arithmetic index Das [23]

Edge version of geometric-arithmetic index Mahmiani, Khormali, and Iranmanesh [110]

Harmonic index Zhong and Xu [146]

Table 2.1. Degree–based parameters

2.1 Randić index

The Randić index R(G), proposed by Randić [125] in 1975, is defined as the sum of the weights
1√

degG(u)degG(v)
over all edges uv of G, that is,

R(G) =
∑

uv∈E(G)

1√
degG(u)degG(v)

,

where degG(u) denotes the degree of a vertex u of G. The Randić index is one of the most success-
ful vertex-degree-based molecular descriptors (topological indices) in structure property and structure-
activity relationship studies [91, 124]. Mathematical properties of this descriptor have also been studied
extensively, as summarized in [65, 99]. Fixing α ∈ R− {0}, the general Randić index is defined as

Rα(G) =
∑

uv∈E(G)

Rα(uv) =
∑

uv∈E(G)

(degG(u)degG(v))
α.

Hence, R− 1
2
(G) is the ordinary Randić index of G.

Zhang and Wu [144] obtained the following Nordhaus–Gaddum-type results for the general Randić
index.

Theorem 2.1. [144] Let G ∈ G(n) be a graph.

(1) If α > 0, then
(
n

2

)(
n− 1

2

)2α

≤ Rα(G) +Rα(G) ≤
(
n

2

)
(n− 1)2α.
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(2) If α < 0, then

(
n

2

)
(n− 1)2α ≤ Rα(G) +Rα(G) ≤

(
n

2

)(
n− 1

2

)2α

.

Zhang and Wu got the following lemma.

Lemma 2.1. [144] Define f(x) = xx(a−x)a−x for x ∈ (0, a) and f(0) = f(a) = aa. Then f(x) ≥ (a
2
)a

for x ∈ [0, a].

Proof. By the definition of f(x), both f ′(x) and f ′′(x) are continuous on [0, a], and it is easy to check
that a

2
is the unique zero of f ′(x), and f ′′(a

2
) > 0. This means that f(x) ≥ f(a

2
) for any x ∈ [0, a].

We now in a position to give the proof of Theorem 2.1.

Proof of Theorem 2.1: For a graph G = (V,E) of order n, let e(G) = |E(G)| and N =
(
n
2

)
. We first

consider the upper bound. Since α > 0, it follows that

Rα(G) +Rα(G) =
∑

uv∈E(G)

(dG(u)dG(v))
α +

∑

uv∈E(G)

(dG(u)dG(v))
α

≤ e(G)[(n− 1)(n− 1)]α + e(G)[(n− 1)(n− 1)]α

=

(
n

2

)
(n− 1)2α.

Now we aim to the lower bound.

Rα(G) +Rα(G) =
∑

uvεE(G)

(dG(u)dG(v))
α +

∑

uvεE(G)

(dG(u)dG(v))
α

≥ N N

√ ∏

uv∈E(G)

(dG(u)dG(v))α
∏

uv∈E(G)

(dG(u)dG(v))
α

= N N

√ ∏

uεE(G)

(dG(u))dG(u)α
∏

vεE(G)

(dG(v))
dG(v)α

= N


 ∏

uεE(G)

(dG(u))
dG(u)(n− 1− dG(u))

n−1−dG(u)




α
N

≥ N


 ∏

uεE(G)

(
n− 1

2

)n−1



α
N

=

(
n

2

)[(
n− 1

2

)n(n−1)
] 2α

n(n−1)

=

(
n

2

)(
n− 1

2

)2α

.

Similarly, we get the bounds for α < 0.
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The bounds are best possible. The complete graph Kn is the unique graph G whose Rα(G)+Rα(G)

attains the upper bound in (1) of Theorem 2.1. For any n = 4k + 1, k ≥ 1, there exists a graph Gn with
Gn and Gn are 2k-regular. Then Gn is a graph G whose Rα(G) + Rα(G) attains the lower bound in (1)

of Theorem 2.1. For α < 0, Kn and Gn are, in turn, the graphs whose Rα(G) + Rα(G) attain the lower
and upper bound respectively in (2) of Theorem 2.1.

2.2 Zagreb index

The first Zagreb index M1(G) and the second Zagreb index M2(G), defined in [10], are

M1(G) =
∑

u∈V (G)

(degG(u))
2 and M2(G) =

∑

uv∈E(G)

degG(u)degG(v),

respectively. Note that the second Zagreb index M2(G) is just the general Randić index R1(G). Li and
Zhao [105] introduced the first general Zagreb index as

Mα(G) =
∑

u∈V (G)

(degG(u))
α

where α ∈ R and α 6= 0.

2.2.1 Nordhaus–Gaddum type results

Zhang and Wu [144] got the Nordhaus-Goddum-type inequality for the first general Zagreb index for
α ∈ R, α 6= 0 and α 6= 1.

Theorem 2.2. [144] Let G ∈ G(n) be a graph.

(i) If α > 1, then

2n

(
n− 1

2

)α

≤Mα(G) +Mα(G) ≤ n(n− 1)α.

(ii) If 0 < α < 1, then

n(n− 1)α ≤Mα(G) +Mα(G) ≤ 2n

(
n− 1

2

)α

.

(iii) If α < 0, then

2n

(
n− 1

2

)α

≤Mα(G) +Mα(G) ≤ n[1 + (n− 2)α].

2.2.2 Generalized Nordhaus–Gaddum type results

Recall that if a real valued function G(x) defined on an interval has a second derivative G′′(x), then a
necessary and sufficient condition for it to be convex (concave, resp.) on that interval is that G′′(x) ≥
0 (G′′(x) ≤ 0, resp.).

The fundamental discrete Jensen’s inequalities show the following lemma.
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Lemma 2.2. [73] Let C be a convex subset of a real vector space X, let xi ∈ C and σi ≥ 0 (i =

1, 2, . . . , n) with
∑n

i=1 σi = 1. Then

(1) Φ(
∑k

i=1 σixi) ≤
∑k

i=1 σiΦ(xi) if Φ(x) : C→ R is a convex function

(2) Φ(
∑k

i=1 σixi) ≥
∑k

i=1 σiΦ(xi) if Φ(x) : C→ R is a concave function.

Lemma 2.3. [130] Let G be a graph with two non-adjacent vertices u, v ∈ V (G). Then Mα(G+uv) >

Mα(G) for α ∈ (0, 1) ∪ (1,+∞) and Mα(G+ uv) < Mα(G) for α ∈ (−∞, 0).

Let k be an positive integer not less than 2; we define two classes: Pn
k = {Dk | Dk = (G1, G1 · · · ,

Gk) is a k-decomposition of Kn such that each cell Gi is connected and δ(Gi) ≥ 2}, and Qn
k =

{Dk | Dk = (G1, G1 · · · , Gk) is a k-decomposition of Kn such that each cell Gi is connected and
δ(Gi) ≥ 1}.

Su, Xiong, and Xu [130] obtained the following Nordhaus–Gaddum-type results.

Theorem 2.3. [130] Let k ≥ 2 and t be integers, Dk = (G1, G1 · · · , Gk) be a k-decomposition of Kn.

Then

(1) n(n− 1)αk1−α ≤Mα(G1) +Mα(G2) + · · ·+Mα(Gk) ≤ n(n− 1)α, if α > 1,

(2) n(n− 1)α ≤Mα(G1) +Mα(G2) + · · ·+Mα(Gk) ≤ n(n− 1)αk1−α, if 0 < α < 1,

(3) n(n− 1)αk1−α ≤Mα(G1) +Mα(G2) + · · ·+Mα(Gk) ≤ nk, if α < 0 and Dk ∈ Qn
k ,

(4) n(n− 1)αk1−α ≤Mα(G1) +Mα(G2) + · · ·+Mα(Gk) ≤ n[t+ t(n− 2)α], if α < 0,

k = 2t and Dk ∈ Pn
k ,

(5) n(n− 1)αk1−α ≤Mα(G1) +Mα(G2) + · · ·+Mα(Gk)

≤ n[t+ (t+ 1)(n− 2)α], if α < 0, k = 2t+ 1 and Dk ∈ Pn
k ,

Proof. From the definition of the general Zagreb index, we have

Mα(G1) +Mα(G2) + · · ·+Mα(Gk)

=
∑

u∈V (G1)

[degG1(u)]
α +

∑

u∈V (G2)

[degG2(u)]
α · · ·+

∑

u∈V (Gk)

[degGk
(u)]α

=
∑

u∈V (G)

[[degG1(u)]
α + [degG2(u)]

α + · · ·+ [degGk
(u)]α] .

Let ρ(x) = xα for x ≥ 0 and α ∈ R \ {0, 1}. Easy verification shows that ρ(x) is a convex function
if α ∈ (−∞, 0) ∪ (1,+∞) and is a concave one otherwise. We distinguish the following three separate
cases.

Case 1. α > 1.
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Noticing ρ(x) is a convex function in the case of α > 1, and then we have by Lemma 2.2

[degG1(u)]
α + [degG2(u)]

α + · · ·+ [degGk
(u)]α

≥ k

[
degG1(u) + degG2(u) + · · ·+ degGk

(u)

k

]α
=

(n− 1)α

kα−1
,

which implies that

Mα(G1) +Mα(G2) + · · ·+Mα(Gk) ≥
n(n− 1)α

kα−1
.

On the other hand, degG1(u) + degG2(u) + · · ·+ degGk
(u) = n− 1 and

∑k
i=1[degGi

(u)]α

[degG1(u) + degG2(u) + · · ·+ degGk
(u)]α

=
k∑

i=1

[
degGi

(u)

degG1(u) + degG2(u) + · · ·+ degGk
(u)

]α

≤
k∑

i=1

[
degGi

(u)

degG1(u) + degG2(u) + · · ·+ degGk
(u)

]1

=
n− 1

n− 1
= 1

Then, we have

[degG1(u)]
α + [degG2(u)]

α + · · ·+ [degGk
(u)]α ≤ [degG1(u) + degG2(u) + · · ·+ degGk

(u)]α.

This gives us the proof of (1)

Mα(G1) +Mα(G2) + · · ·+Mα(Gk) ≤
∑

u∈V (G)

[degG1(u) + degG2(u) + · · ·+ degGk
(u)]α

= n(n− 1)α.

Case 2. 0 < α < 1.
By analogous reasoning as used in Case 1 we can prove (2), and we omit the proof here, respectively.
Case 3. α < 0.
For sake of simplicity, let x1 = degG1(u), x2 = degG2(u), · · · , xk = degGk

(u). Easy verification
shows that each cell Gi must be connected when α < 0, otherwise there would produce a contradiction
to the definition of Mα. Without loss of generality we assume x1 ≥ x2 ≥ · · ·xk ≥ 1.

Subcase 3.1. Dk ∈ Qn
k .

Let Φ1(x1, x2 · · · , xk) = xα
1 + xα

2 + · · ·+ xα
k . If x1 ≥ x2 ≥ · · ·xk−l ≥ 2 > xk−l+1 = · · · = xk = 1,

then

Φ1(x1, x2 · · · , xk) = xα
1 + xα

2 + · · ·+ xα
k−l + xα

k−l+1 + xα
k−l+2 + · · ·+ xα

k

= xα
1 + xα

2 + · · ·+ xα
k−l + 1α + 1α + · · ·+ 1α︸ ︷︷ ︸

t times

(since ρ(x) = xα is decreasing for α < 0)

< 1α + 1α + · · ·+ 1α︸ ︷︷ ︸
k−l times

+1α + 1α + · · ·+ 1α︸ ︷︷ ︸
l times

= k,
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this implies that Mα(G1) +Mα(G2) + · · ·+Mα(Gk) < kn.
If x1 = x2 = · · · = xk, then Φ1(x1, x2 · · · , xk) = xα

1 + xα
2 + · · · + xα

k = k. Easy verification
shows that there exists a k-decomposition (n

2
K2,

n
2
K2, · · · , n2 K2) of Kn which attains the maximum

Mα-value kn when n is even. This completes the upper bound of (3). Note that ρ(x) is a convex function
when α < 0, then by Lemma 2.2 we obtain the lower bound of (3).

Subcase 3.2. Dk ∈ Pn
k .

Let Φ2(x1, x2 · · · , xk) = Φ1(x1 + 1, · · · , xi + 1, xi+1 − 1, · · · , x2i+1 − 1, x2i+2, · · · , xk).
We first need to prove the following claim.
Claim 1. Φ1(x1, x2 · · · , xk) < Φ2(x1, x2 · · · , xk).

Proof of Claim 1. By using Lagrange’s mean-value theorem and Lemma 2.3, we conclude that

Φ2(x1, x2 · · · , xk)− Φ1(x1, x2 · · · , xk)

=
[
(x1 + 1)α + · · ·+ (xi + 1)α + (xi+1 − 1)α + · · ·+ (x2i − 1)α + xα

2i+1 + xα
2i+2 + · · ·+ xk

α)
]

−[xα
1 + xα

2 + · · ·+ xα
i + xα

i+1 + xα
i+2 + · · ·+ xα

2i + xα
2i+1 + xα

2i+2 + xα
2i+3 + · · ·+ xα

k ]

= [(x1 + 1)α − xα
1 ] + · · ·+ [(xi + 1)α − xα

i ] + [(xi+1 − 1)α − xα
i+1] + · · ·+ [(x2i − 1)α − xα

2i]

= αξα−1
1 + αξα−1

2 + · · ·+ αξα−1
i − αηα−1

1 − αηα−1
2 − · · · − αηα−1

i

= α[(ξα−1
1 − ηα−1

1 ) + (ξα−1
2 − ηα−1

2 ) + · · ·+ (ξα−1
i − ηα−1

i )]

= α(α− 1)[ζα−2
1 (ξ1 − η1) + ζα−2

2 (ξ2 − η2) + · · ·+ ζα−2
i (ξi − ηi)],

where ξ1 ∈ (x1, x1 + 1), ξ2 ∈ (x2, x2 + 1), · · · , ξi ∈ (xi, xi + 1); η1 ∈ (xi+1 − 1, xi+1), η2 ∈ (xi+2 −
1, xi+2), · · · , ηi ∈ (x2i − 1, x2i); ζ1 ∈ (ξ1, η1), ζ2 ∈ (ξ2, η2), · · · , ζi ∈ (ξi, ηi). In view of the facts that
x1 ≥ x2 ≥ · · · ≥ xk, xl < ξl < xl+1 and x2l−1 < ηl < x2l, we obtain ξl−ηl > xl−x2l ≥ xl−xl = 0,
this implies Φ1(x1, x2 · · · , xk) < Φ2(x1, x2 · · · , xk) for α < 0.

From Claim 1 we know that the Mα-value of a graph will increase when replacing the degree conse-
quence (x1, x2, · · · , xk) by (x1 + 1, · · · , xi + 1, xi+1 + 1, · · · , x2i+1 − 1, x2i+2, · · · , xk).

To obtain the proof of (4) and (5), it is sufficient to consider the following two claims. Note that the
equality x1 + x2 + · · ·+ xk = n− 1 always holds.

Claim 2. Φ1(x1, x2 · · · , xk) ≤ t(n− 2)α + t, if k = 2t.
Proof of Clam 2. Actually, from Claim 1 we obtain that

Φ1(x1, x2 · · · , x2t)

= xα
1 + xα

2 + · · ·+ xα
t + xα

t+1 + xα
t+2 + · · ·+ xα

2t

≤ (x1 + 1)α + (x2 + 1)α + · · ·+ (xt + 1)α + (xt+1 − 1)α + (xt+1 − 1)α + · · ·+ (x2t − 1)α

≤ (x1 + 2)α + (x2 + 2)α + · · ·+ (xt + 2)α + (xt+1 − 2)α + (xt+1 − 2)α + · · ·+ (x2t − 2)α

· · ·

≤ (n− 2)α + (n− 2)α + · · ·+ (n− 2)α︸ ︷︷ ︸
t times

+1α + 1α + · · ·+ 1α︸ ︷︷ ︸
t times

= t(n− 2)α + t.
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This completes the proof of Claim 2.
Now we use Claim 2 to prove (4). By taking the sum over all vertices of G for two sides of Claim 2,

we obtain the upper bound of (4). Note that ρ(x) is a convex function when α < 0, then by Lemma 2.2
we obtain the lower bound of (4).

Claim 3. Φ1(x1, x2 · · · , xk) ≤ t(n− 2)α + t, if k = 2t+ 1.
Proof of Claim 3. By the same reasoning, one can obtain

Φ1(x1, x2 · · · , x2t+1) = xα
1 + xα

2 + · · ·+ xα
t + xα

t+1 + xα
t+2 + · · ·+ xα

2t + xα
2t+1

≤ (x1 + 1)α + (x2 + 1)α + · · ·+ (xt + 1)α + (xt+1 − 1)α + (xt+2 − 1)α

+ · · ·+ (x2t − 1)α + xα
2t+1

≤ (x1 + 2)α + (x2 + 2)α + · · ·+ (xt + 2)α + (xt+1 − 2)α + (xt+2 − 2)α

+ · · ·+ (x2t − 2)α + xα
2t+1

· · ·

≤ (n− 2)α + (n− 2)α + · · ·+ (n− 2)α︸ ︷︷ ︸
t times

+1α + 1α + · · ·+ 1α︸ ︷︷ ︸
t times

+xα
2t+1

= t(n− 2)α + t · 1α + (n− 2)α

= (t+ 1)(n− 2)α + t.

This completes the proof of Claim 3.

Taking the sum over all vertices of G for two sides of Claim 2, we obtain the upper bound of (5).
The lower bound of (5) can be verified by Lemma 2.2 since ρ(x) is a convex function when α < 0.

Note that the bounds are best possible. The upper bound of (1) and the lower bound of (2) are the
same and are attained uniquely if one of the cells Gi is the complete graph Kn and the others are empty
graphs with order n. On the other hand, the lower bound of (1), (3), (4) and (5) and the upper bound of
(2) are the same and are attained on the n−1

k
-regular graphs, since for any n = βk+1, β ≥ 1, there exists

a graph Gi and all the k − 1 graphs G1, G2, · · · , Gi−1, Gi+1, · · · , Gk are n−1
k

-regular and with n orders.
The upper bound of (4) attained on the graph Hn is obtained from Kn ba deleting a perfect matching, so
this occurs only if n is even.

The following consequence is obvious, just taking k = 2 in the following.

Remark 2.1. [130] Just taking k = 2 in the above theorem, we can easily derive the results in Theorem

2.3.

2.3 Zagreb co–indices

The first and second Zagreb co-indices are a pair of recently introduced graph invariants [40], which
were originally defined as follows:

M1(G) =
∑

uv/∈V (G)

[degG(u) + degG(v)] and M2(G) =
∑

uv/∈E(G)

[degG(u)degG(v)].
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2.3.1 Nordhaus–Gaddum–type results in G(n)

The following relation between Zagreb index and Zagreb co-index is due to Ashrafi, Došlić, and Hamzeh
[8].

Lemma 2.4. [8] Let G be a graph with order n and size m. Then

M1(G) = 2m(n− 1)−M1(G), M2(G) = M2(G)− (n− 1)M1(G) +m(n− 1)2.

Su, Xiong and Xu [130] obtained the following Nordhaus–Gaddum-type results for Zagreb co-index.

Theorem 2.4. [130] Let G ∈ G(n) be a graph. Then

0 ≤M1(G) +M1(G) ≤ 2−1n(n− 1)2.

The lower bound attains on Kn, and the upper bound attains on the n−1
2

-regular graphs.

Proof. By applying Lemma 2.4 to the complement graph G, one obtains M1(G) = 2m(n−1)−M1(G).
Now plugging in the expression for M1(G), we have M1(G)+M1(G) = n(n−1)2− [M1(G)+M1(G)].
From Theorem 2.2, we have 2−1n(n − 1)2 ≤ M1(G) + M1(G) ≤ n(n − 1)2. The theorem follows
immediately.

Note that the bounds are best possible. By direct calculation, M1(Kn) + M1(Kn) = 0, the lower
bound attains on Kn. The upper bound attains on the n−1

2
-regular graphs, so n = 4β+1 for some integer

β.

Theorem 2.5. [130] Let G be a graph with order n. Then

0 ≤M2(G) +M2(G) ≤ 2−1n(n− 1)3.

The lower bound attains on Kn, and the upper bound attains on the 2k-regular graphs.

Proof. By applying Lemma 2.4 to the complement graph G, one obtains M2(G) = M2(G) − (n −
1)M1(G)+m(n− 1)2, thus M2(G)+M2(G) = [M2(G)+M2(G)]+ 2−1n(n− 1)3− (n− 1)[M1(G)+

M1(G)]. From Theorems 2.1 and 2.2, we have 2−1n(n − 1)2 ≤ M1(G) + M1(G) ≤ n(n − 1)2 and
2−3n(n− 1)3 ≤M2(G) +M2(G) ≤ 2−1n(n− 1)3. Easy verification completes the proof.

Note that the bounds are best possible. By direct calculation, M2(Kn) + M2(Kn) = 0, the lower
bound attains on Kn. The upper bound attains on the 2k-regular graphs.

2.3.2 Nordhaus–Gaddum–type results in G(n,m)

The following results for the first Zagreb index will be used later.

Lemma 2.5. [101] Let G ∈ G(n,m) (n ≥ 2) be a graph. Then

M1(G) ≤ m

(
2m

n− 1
+ n− 2

)

with equality if and only if the G ∼= Sn or Kn.
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Lemma 2.6. [149] Let G ∈ G(n,m) (n ≥ 2) be a graph. If G is Kr+1-free, 2 ≤ r ≤ n− 1, then

M1(G) ≤ 2r − 2

r
mn

with equality if and only if a bipartite graph for r = 2, and regular complete r-partite graph for r ≥ 3.

Let Wn be the graph obtained from the star Sn by adding bn−1
2
c independent edges. Let even(n) = 1

if n is even, and 0 otherwise.

Lemma 2.7. [153] Let G ∈ G(n,m) (n ≥ 2) be a connected quadrangle-free graph. Then

M1(G) ≤ n(n− 1) + 2m− 2 even(n)

with equality if and only if G ∼= Wn.

Lemma 2.8. [153] Let G ∈ G(n) (n ≥ 2) be a connected triangle- and a quadrangle-free graph. Then

M1(G) ≤ n(n− 1)

with equality if and only if G ∼= Sn or a Moore graph of diameter 2.

Hua, Ashrafi, Zhang [82] obtained the following Nordhaus–Gaddum-type bounds for the first Zagreb
co-index.

Theorem 2.6. [82] (i) If G ∈ G(n,m) (n ≥ 2) is a graph, then

M1(G) +M1(G) ≥ 2mn− 4m2

n− 1

with equality if and only if the G ∼= Sn or Kn.

(ii) If G is a connected Kr+1-free graph 2 ≤ r ≤ n− 1, then

M1(G) +M1(G) ≥ 4m
(n
r
− 1
)

with equality if and only if G is a bipartite graph for r = 2, and regular complete r-partite graph for

r ≥ 3.

(iii) If G is a connected quadrangle-free graph, then

M1(G) +M1(G) ≥ 4mn− 2n2 + 2n− 8m+ 4 even(n)

with equality if and only if G ∼= Wn.

(iv) If G is a connected triangle- and a quadrangle-free graph, then

M1(G) +M1(G) ≥ 2(n− 1)(2m− n)

with equality if and only if G ∼= Sn or a Moore graph of diameter 2.

Proof. It follows from [8] that for any simple graph G, M1(G) = M1(G). Hence, M1(G) +M1(G) =

2M1(G). From [8], we also have M1(G) = 2m(n − 1) −M1(G) for any simple graph of order n and
size m. So,

M1(G) +M1(G) = 4m(n− 1)− 2M1(G).

By Lemmas 2.5, 2.6, 2.7, and 2.8, we have actually completed the proof.
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2.4 Multiplicative Zagreb coindices

Narumi and Katayama [116] considered the product of vertex degrees

NK(G) =
∏

v∈V (G)

degG(v)

but this structure descriptor attracted only a limited attention. However, following a suggestion by Tode-
schini and Consonni, the multiplicative versions of the Zagreb indices entered the scene. Then

∏
1(G) =∏

v∈V (G) degG(v)
2,
∏

2(G) =
∏

uv∈E(G) degG(u)degG(v), and
∏∗

1(G) =
∏

uv∈E(G)[degG(u) + degG(v)]

are referred to as the “first multiplicative Zagreb index”, the “second multiplicative Zagreb index”, and
the “modified first multiplicative Zagreb index”. Evidently, the Narumi-Katayama index and the first
multiplicative Zagreb index are simply related as

∏
1(G) = NK(G).

As the multiplicative versions of Zagreb coindices, the (first and second) multiplicative Zagreb

coindices are defined as
∏

1
(G) =

∏

uv/∈E(G)

[degG(u) + dG(v)],
∏

2
(G) =

∏

uv/∈E(G)

degG(u)degG(v).

The following Table 2.2 shows the relations among Zagreb indices, Zagreb co-indices, multiplicative
Zagreb indices, and multiplicative Zagreb co-indices.

Definitions
First Zagreb index M1(G) =

∑
v∈V (G) degG(v)

2

First multiplicative Zagreb index
∏

1(G) =
∏

v∈V (G) degG(v)
2

First Zagreb co-index M1(G) =
∑

uv/∈V (G)[degG(u) + degG(v)]

First multiplicative Zagreb co-index
∏

1(G) =
∏

uv/∈E(G)[degG(u) + dG(v)]

Second Zagreb index M2(G) =
∑

uv∈E(G) degG(u)degG(v)

Second multiplicative Zagreb index
∏

2(G) =
∏

uv∈E(G) degG(u)degG(v)

Second Zagreb co-index M2(G) =
∑

uv/∈E(G) degG(u)degG(v)

Second multiplicative Zagreb co-index
∏

2(G) =
∏

uv/∈E(G) degG(u)degG(v)

Table 2.2. Zagreb indices, Zagreb co-indices, multiplicative Zagreb indices, and multiplicative Zagreb co-indices.

Xu, Das, and Tang [140] got the following result.

Lemma 2.9. [140] For a connected graph G, we have
∏

2
(G) =

∏

u∈V (G)

dG(v)
n−1−dG(v).

Xu, Das, and Tang [140] obtained the following Nordhaus–Gaddum-type results.

Theorem 2.7. [140] For a connected graph G ∈ G(n,m), we have:

(1) 0 ≤ ∏
1(G)

∏
1(G) ≤ M1(G)

(
n
2

)

mm[
(n
2

)
−m]

(
n
2

)
−m

with the left equality if and only if G has at least two

vertices of degree n− 1, and the right equality if and only if G is 2m
n

-regular.

(2) 0 ≤∏2(G)
∏

2(G) ≤ (n−1
2
)(n−1)n with the left equality if and only if G has at least one vertex of

degree n− 1, and the right equality if and only if G is a regular self-complementary graph.
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Proof. Let G be a connected graph with vertex set {v1, v2, · · · , vn} such that dG(vi) = di.
(1) For the definition of the first multiplicative Zagreb coindex (

∏
1), considering Lemma 2.4, we

have
∏

1
(G)
∏

1
(G) =

∏

vivj 6∈E(G)

(di + dj) ·
∏

vivj∈E(G)

(n− 1− di + n− 1− dj)

≤
(∑

vivj 6∈E(G)(di + dj)(
n
2

)
−m

)(n
2

)
−m

·
(∑

vivj∈E(G)[2n− 2− (di + dj)]

m

)m

=

[
M1(G)(
n
2

)
−m

](n
2

)
−m

·
[
2(n− 1)m−M1(G)

m

]m

=
M1(G)

(n
2

)

mm[
(
n
2

)
−m]

(n
2

)
−m

with equality holding if and only if d1 = d2 = · · · = dn, i.e., G is 2m
n

-regular, finishing the right part of
(1).

For the left part, we can easily obtain
∏

1(G)
∏

1(G) ≥ 0 with equality holding if and only if G has
at least two vertices of degree n− 1. Thus the proof of (1) is complete.

(2) By Lemma 2.9, we have

∏
2
(G)
∏

2
(G) =

n∏

i=1

dn−1−di
i (n− 1− di)

di ≤
(∑n

i=1 d
n−1−di
i (n− 1− di)

di

n

)n

≤
[∑n

i=1(
2(n−1−di)di

n−1
)n−1

n

]n
≤




∑n
i=1

(
(n−1)2

2

n−1

)n−1

n




n

=

[
n(n−1

2
)n−1

n

]n
=

(
n− 1

2

)(n−1)n

with three equalities holding if and only if d1 = d2 = · · · = dn and di = n− 1− di for i = 1, 2, · · · , n,
which implies that G is a regular self-complementary graph. Thus the proof of the right part is over.

For the left part, clearly, we have
∏

2
(G)
∏

2
(G) =

n∏

i=1

dn−1−di
i (n− 1− di)

di ≥ 0.

The above equality holds if and only if there is at least one vertex vi of degree di = n−1. This completes
the proof of this theorem.

If one adds one more condition that G, i.e., the complement of G, is also connected, it seems to
be a bit difficult to find the corresponding extremal graph. So Xu, Das, and Tang [140] proposed the
following problem.

Problem 2.1. [140] Which graph makes
∏

1(G)
∏

1(G) achieve its minimal value for i = 1, 2 among all

connected graphs of order n with their complements being also connected?
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2.5 Atom–bond connectivity index

The atom-bond connectivity (ABC) index, introduced by Estrada, Torres, Rodrı́guez, and Gutman [46],
is defined as

ABC(G) =
∑

uv∈E(G)

√
degG(u) + degG(v)− 2

degG(u)degG(v)
.

Das [24] proved that

Lemma 2.10. [24] Let G be a simple connected graph with m edges and maximal vertex degree ∆.

Then

ABC(G) ≥ 27/4m
√
∆− 1

∆3/4(
√
∆+

√
2)

(54)

where equality is attained if and only if G ∼= Pn.

Later, Das, Gutman, and Furtula [30] reported the results for the ABC index.

Theorem 2.8. [30] Let G ∈ G(n) be a connected graph with connected complement G. Then

ABC(G) + ABC(G) ≥ 23/4n(n− 1)
√
k − 1

k3/4(
√
k +
√
2)

, (55)

where k = max{∆, n − δ − 1}, and where ∆ and δ are the maximal and minimal vertex degrees of G.

Moreover, equality in (55) holds if and only if G ∼= P4.

Proof. We start by equality in (54). Let m and ∆ be the number of edges and maximal vertex degree in
G. Then

ABC(G) + ABC(G) ≥ 2
7
4m
√
∆− 1

∆
3
4 (
√
∆+

√
2)

+
2

7
4m
√
∆− 1

∆
3
4 (
√
∆+

√
2)

=
2

3
42m
√
∆− 1

∆
3
4 (
√
∆+

√
2)

+
2

3
4 (n(n− 1)− 2m)

√
n− δ − 2

(n− δ − 1)
3
4 (
√
n− δ − 1 +

√
2)
. (56)

Consider the function

f =

√
x− 1

x
3
4 (
√
x+
√
2)

for which one can easily show that it monotonically decreases in the interval [2,∞). Thus
√
∆− 1

∆
3
4 (
√
∆+

√
2)
≥

√
k − 1

k
3
4 (
√
k +
√
2)
≤

√
n− δ − 2

(n− δ − 1)
3
4 (
√
n− δ − 1 +

√
2)
, (57)

since k ≥ ∆ and k ≥ n− δ − 1. Since 2m = n(n− 1)− 2m, combing the above results with (56), we
arrive at (55).

It remains to examine the equality case. It is easy to check that equality in (55) holds if G ∼= P4.
Suppose now that the equality in (55). Then all inequalities in (57) must be equalities, and we get
k = ∆ = n − 1 − δ. Equality in (56) implies G ∼= Pn and G ∼= Pn. Hence G ∼= P4. By this proof of
Theorem 2.8 has been completed.

Das [23] proved that
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Lemma 2.11. [23] For a connected graph G with m edges and maximum degree ∆,

ABC(G) ≤ p

√
1− 1

∆
+

m− p

δ1

√
2(δ1 − 1), (58)

where p and δ1 are the number of pendent vertices and minimal non-pendent vertex degrees in G.

By this upper bound, they derived the following result.

Theorem 2.9. [30] Let G ∈ G(n) be a connected graph with connected complement G. Then

ABC(G) + ABC(G) ≤ (p+ p̄)

√
n− 3

n− 2

(
1−

√
2

n− 2

)
+

(
n

2

)√
2

k
− 2

k2
, (59)

where p, p̄ and δ1, δ̄1 are the number of pendent vertices and minimal non-pendent vertex degrees in G

and G, respectively, and k = min{δ1, δ̄1}. Equality holds in (59) if and only if G ∼= P4 or G is an

r-regular graph of order 2r + 1.

Proof. We have ∆ ≤ n− 2, as G and G are connected, and hence

1− 1

∆
≤ n− 3

n− 2
and

2

δ1
− 2

δ21
≥ 2(n− 3)

(n− 2)2
.

Bearing in mind (58), we get

ABC(G) ≤ p

√
n− 3

n− 2
− p

√
2(n− 3)

(n− 2)2
+m

√
2

δ1
− 2

δ21

= p

√
n− 3

n− 2

(
1−

√
2

n− 2

)
+m

√
2

δ1
− 2

δ21
. (60)

from which there holds

ABC(G) + ABC(G) ≤ (p+ p)

√
n− 3

n− 2

(
1−

√
2

n− 2

)
+m

√
2

δ1
− 2

δ21
+m

√
2

δ1
− 2

δ
2

1

(61)

≤ (p+ p)

√
n− 3

n− 2

(
1−

√
2

n− 2

)
+ (m+m)

√
2

k
− 2

k2
. (62)

as k ≤ δ1, δ1. Since m+m =
(
n
2

)
, from (62), we get the required result (59).

We now examine the equality case. Suppose that equality holds in (59). Then all inequalities in the
above argument must be equalities. From equality in (60) we get ∆ = δ1 = n−2, p 6= 0, that is, G ∼= P4

or G is isomorphic to a regular graph. Equality in (61) implies that (i) G ∼= P4 or G is isomorphic to
a regular graph and (ii) G ∼= P4 or G is isomorphic to a regular graph. From equality in (62), we get
δ1 = δ1.

Using the above results, and recalling that P 4
∼= P4 we conclude that G ∼= P4 or G is isomorphic to

an r-regular graph with n = 2r + 1.
Conversely, one can easily see that equality in (59) holds for the path P4 and for an r-regular graph

of order 2r + 1.
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2.6 Augmented Zagreb index

Inspired by the work done on the ABC index, Furtula, Graovac, and Vukičević [54] proposed the follow-
ing modified version of the ABC index and named it as augmented Zagreb index (AZI):

AZI(G) =
∑

uv∈E(G)

(
degG(u)degG(v)

degG(u) + degG(v)− 2

)3

.

To proceed, we need some lemmas.

Lemma 2.12. [85] Let G be a connected graph with m ≥ 2 edges and maximum degree ∆. Then

AZI(G) ≤ m∆6

8(∆− 1)3
(63)

with equality holding if and only if G is a path or a ∆-regular graph.

A graph G is said to be (r1, r2)-regular (or simply biregular) if ∆ 6= δ and degG(u) = r1 or r2, for
every vertex u of G. Let Φ1 denote the collection of those connected graphs whose pendent edges are
incident with the maximum degree vertices and all other edges have at least one end-vertex of degree 2.
Let Φ2 be the collection of connected graphs having no pendent vertices but all the edges have at least
one end-vertex of degree 2.

Lemma 2.13. [136] Let G be a connected graph of order n ≥ 3 with m edges, p pendent vertices,

maximum degree ∆ and minimum non-pendent vertex degree δ1. Then

AZI(G) ≥ p

(
∆

∆− 1

)3

+ (m− p)

(
δ21

2δ1 − 2

)3

(64)

with equality if and only if G is isomorphic to a (1,∆)-biregular graph or G is isomorphic to a regular

graph or G ∈ Φ1 or G ∈ Φ2.

Ali, Raza, and Bhatti [2] obtained the following Nordhaus–Gaddum-type results.

Theorem 2.10. [2] Let G ∈ G(n) (n ≥ 3) be a connected graph such that its complement G is

connected. Let ∆, δ1, p and ∆, δ1, p denote the maximum degree, minimum non-pendent vertex degree,

the number of pendent vertices in G and G respectively. If α = min{δ1, δ1} and β = max{∆,∆}, then

(p+ p)

(
n− 2

n− 3

)3
(
1−

(
n− 2

2

)3
)

+

(
n

2

)(
α2

2α− 2

)3

≤ AZI(G) + AZI
(
G
)

≤
(
n

2

)(
β2

2β − 2

)3

(65)

with equalities if and only if G ∼= P4 or G is isomorphic to r-regular graph with 2r + 1 vertices.
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Proof. Suppose that m and m are the number of edges in G and G respectively. Firstly, we will prove
the lower bound. Since both G and G are connected, it follows that δ1 ≤ ∆ ≤ n− 2. Note that both the
functions f(x) = − x2

2x−2
and g(x) = x

x−1
are decreasing in the interval [2,∞). Then

− δ21
2δ1 − 2

≥ − (n− 2)2

2(n− 3)
and

∆

∆− 1
≥ n− 2

n− 3
.

Hence from (64), we have

AZI(G) ≥ p

(
n− 2

n− 3

)3

+m

(
δ21

2δ1 − 2

)3

− p

(
(n− 2)2

2(n− 3)

)3

= m

(
δ21

2δ1 − 2

)3

+ p

(
n− 2

n− 3

)3
(
1−

(
n− 2

2

)3
)
, (66)

this implies

AZI(G) + AZI
(
G
)
≥ m

(
δ21

2δ1 − 2

)3

+m

(
δ1

2

2δ1 − 2

)3

+ (p+ p)

(
n− 2

n− 3

)3
(
1−

(
n− 2

2

)3
)
. (67)

Since the function −f is increasing in the interval [2,∞) and δ1, δ1 ≥ α ≥ 2, from (67) it follows that

AZI(G) + AZI
(
G
)
≥ m

(
α2

2α− 2

)3

+m

(
α2

2α− 2

)3

+ (p+ p)

(
n− 2

n− 3

)3
(
1−

(
n− 2

2

)3
)
. (68)

After using the fact m+m =
(
n
2

)
in (68), one obtains the desired lower bound.

Now, we prove the upper bound. From (63), it follows that

AZI(G) + AZI
(
G
)
≤ m∆6

8(∆− 1)3
+

m∆
6

8(∆− 1)3
(69)

Since the function h(x) = x6

8(x−1)3
is increasing in the interval [2,∞) and ∆,∆ ≥ 2, from (69) we have

AZI(G) + AZI
(
G
)
≤ mβ6

8(β − 1)3
+

mβ6

8(β − 1)3
=

(
n

2

)(
β2

2β − 2

)3

. (70)

Now, let us discuss the equality cases. If G ∼= P4 then G ∼= P4 and if G is isomorphic to r-regular
graph with 2r+1 vertices then G is also isomorphic to r-regular graph. Hence in either case, both lower
and upper bounds are attained. Conversely, first let us suppose that left equality in (65) hold. Then all
the Inequalities (66), (67), (68) must be equalities.

a). Equality in (68) implies that δ1 = δ1.
b). Equality in (67) implies
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• G is isomorphic to regular graph or G ∼= P4, and

• G is isomorphic to regular graph or G ∼= P4.

c). Equality in (66) implies that either δ1 = ∆ = n − 2 and p 6= 0, or G is isomorphic to a regular
graph.

Using the fact P4
∼= P 4 and combining all the results derived in a), b), c), we obtain the desired

conclusion. Finally, suppose that right equality in (65) holds, then both the Inequalities (69) and (70)
must be equalities. Equality in (70) implies that ∆ = ∆ = β. Equality in (69) implies that
• G ∼= P4 or G is isomorphic to regular graph and
• G ∼= P4 or G is isomorphic to regular graph.
Therefore, either G ∼= P4 or G is isomorphic to r-regular graph with 2r + 1 vertices.

2.7 Sum–connectivity index

Zhou and Trinajstić [158] proposed a new invariant to measure the molecular connectivity in chemistry.
It is the sum-connectivity index SC(G) of a graph G defined by

SC(G) =
∑

uv∈E(G)

1√
degG(u) + degG(v)

.

The first Nordhaus–Gaddum inequality for sum-connectivity index appeared in the same paper [158].

Theorem 2.11. [158] If G ∈ G(n) is a graph, then

SC(G) + SC(G) ≥ n
√
n− 1

2
√
2

with equality if and only if G or G is the complete graph Kn.

In the next year, the same authors, in another paper [159], extended the sum-connectivity index
SC(G) to the general sum-connectivity index SCα(G), which is defined as

SCα(G) =
∑

uv∈E(G)

(degG(u) + degG(v))
α,

where α is a real number.

Lemma 2.14. [159] Let G ∈ G(n) (n ≥ 2) be a graph. If 0 < α < 1, then

SCα(G) ≥M1(G)α

with equality if and only if G = K2 ∪Kn−2 or G = Kn, and if α < 0, then

SCα(G) ≤ 2−1+αn(n− 1)

with equality if and only if G = K2.
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Zhou and Trinajstić [159] proved the following Nordhaus–Gaddum-type results for general sum-
connectivity index.

Theorem 2.12. [159] Let G ∈ G(n) (n ≥ 2) be a graph.

(1) If α > 0, then

SCα(G) + SCα(G) ≤ 2α−1n(n− 1)α+1

with equality if and only if G or G is the complete graph Kn,

SCα(G) + SCα(G) ≥ 2−1n(n− 1)α+1

for α ≥ 1; with equality if and only if G is a regular graph of degree n−1
2

, and

SCα(G) + SCα(G) > 2−αnα(n− 1)2α

for 0 < α < 1.

(2) If α < 0, then

2α−1n(n− 1)α+1 ≤ SCα(G) + SCα(G) < 2αn(n− 1)

with left equality if and only if G or G is the complete graph Kn.

Proof. Let m and m be respectively the number of edges of G and G. Then m+m = n(n−1)
2

. If α > 0,
then

SCα(G) + SCα(G) =
∑

uv∈E(G)

[degG(u) + degG(v)]
α +

∑

uv∈E(G)

[degG(u) + degG(v)]
α

≤ m(2n− 2)α +m(2n− 2)α

= (m+m)(2n− 2)α

= 2−1+αn(n− 1)1+α

with equality if and only if either degG(u) = degG(v) = n− 1 for every edge uv ∈ E(G) or E(G) = ∅,
i.e., G = Kn or G = Kn. Similarly, if α < 0, then SCα(G) + SCα(G) ≥ 2−1+αn(n − 1)1+α with
equality if and only if G = Kn or G = Kn.

It is easily seen that:

SC1(G) + SC1(G) =
∑

u∈V (G)

[degG(u)
2 + degG(u)

2]

≥
∑

u∈V (G)

[degG(u) + degG(u)]
2

2
=

n(n− 1)2

2
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with equality if and only if degG(u) = degG(u) for all u ∈ V (G), i.e., G is a regular graph of degree
n−1
2

. If α > 1, then xα is strictly convex and thus:

SCα(G) + SCα(G)

≥ (m+m)

[∑
uv∈E(G)(degG(u) + degG(v)) +

∑
uv∈E(G)(degG(u) + degG(v))

m+m

]α

= (m+m)1−α[SC1(G) + SC1(G)]α

≥ (m+m)1−α

[
n(n− 1)2

2

]α

= 2−1n(n− 1)1+α

with equality if and only if G is a regular graph of degree n−1
2

. If 0 < α < 1, then

SCα(G) + SCα(G) ≥


 ∑

uv∈E(G)

(degG(u) + degG(v)) +
∑

uv∈E(G)

(degG(u) + degG(v))




α

= [SC1(G) + SC1(G)]α

≥
[
n(n− 1)2

2

]α

≥ 2−αnα(n− 1)2α

and thus SCα(G) + SCα(G) > 2−αnα(n− 1)2α. This is because a graph G with |E(G) ∪ E(G)| ≤ 1 is
not possible to be a regular graph of degree n−1

2
for n ≥ 2.

If α < 0, then it follows from Lemma 2.14 that

SCα(G) + SCα(G) < 2−1+αn(n− 1) + 2−1+αn(n− 1) = 2αn(n− 1).

The proof is now completed.

2.8 General sum–connectivity co–index

The first Zagreb index can be viewed as the contribution of pairs of adjacent vertices to additively
weighted versions of Wiener numbers and polynomials; see [94]. Curiously enough, it turns out that
analogous contribution of non-adjacent pairs of vertices must be taken into account when calculating
the weighted Wiener polynomials of certain composite graphs [40]. Such quantity is said to be the first
Zagreb co-index since the sums involved run over the edges of graph G. The first Zagreb co-index of a
graph G is more formally defined as

M1(G) =
∑

uv/∈E(G)

[degG(u) + degG(v)]
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Zhou and his co-workers [159] proposed a graph invariant, called the general sum-connectivity index

SCα(G) =
∑

uv∈E(G)

[degG(u) + degG(v)]
α.

Su and Xu [132] focused their attention to contributions from the pairs of non-adjacent vertices of
graph G and introduced a new invariant, the general sum-connectivity co-index, which is defined as:

SCα(G) =
∑

uv/∈E(G)

[degG(u) + degG(v)]
α.

In [132], Su and Xu obtained the following.

Lemma 2.15. [132] Let G ∈ G(n) be a simple graph. Then

0 ≤M1(G) +M1(G) ≤ 2−1n(n− 1)2.

The lower bound attains on G = Kn, and the upper bound attains uniquely on n−1
2

-regular graphs.

Lemma 2.16. [132] Let G ∈ G(n) (n ≥ 2) be a simple graph. Each of the following holds:

(1) If 0 < α < 1, then SCα(G) ≥ M1(G)α. The lower bound attains either on G = K2 ∪Kn−2 or

G = Kn.

(2) If α < 0, then SCα(G) ≤ 2α−1n(n− 2). The upper bound attains uniquely on n
2
K2.

Theorem 2.13. [132] Let G be a simple graph with order n. The following hold:

(1) If α > 1, then

0 ≤ SCα(G) + SCα(G) ≤ 21−αn(n− 1)1+α.

The lower bound attains either on G = Kn or G = Kn, and the upper bound attains uniquely on
n−1
2

-regular graphs.

(2) If α < 0, then

0 ≤ SCα(G) + SCα(G) ≤ 2αn(n− 2).

The lower bound attains uniquely on n
2
K2, and the upper bound attains either on G = Kn or G = Kn.

Proof. (1) If α > 1, then Φ(x) = xα is a strictly convex function. From Lemma 2.15, we have

SCα(G) + SCα(G)

=
∑

uv/∈E(G)

[degG(u) + degG(v)]
α +

∑

uv/∈E(G)

[degG(u) + degG(v)]
α

≥ (m+m)

[∑
uv/∈E(G)[degG(u) + degG(v)] +

∑
uv/∈E(G)[degG(u) + degG(v)]

m+m

]α

= (m+m)1−α[M1(G) +M1(G)]α ≥ 0
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with equality if and only if either degG(u) + degG(v) = n − 1 for each edge uv or there is no edge in
graph G. This implies that G = Kn or G = Kn. On the other hand,

SCα(G) + SCα(G) =
∑

uv/∈E(G)

[degG(u) + degG(v)]
α +

∑

uv/∈E(G)

[degG(u) + degG(v)]
α

≤ m

[
n− 1

2
+

n− 1

2

]α
+m

[
n− 1

2
+

n− 1

2

]α

= (m+m)(n− 1)α

= 2−1n(n− 1)α+1.

Note that the upper bound is best possible. In fact, for any n = 4k + 1, k ≥ 1, there exists a graph Gn

with Gn and Gn are n−1
2

-regular. Then Gn is a graph whose SCα(G) + SCα(G) attains the upper bound.
(2) If α < 0, then it follows from Lemma 2.16 that

SCα(G) + SCα(G) ≤ 2α−1n(n− 2) + 2α−1n(n− 2) = 2αn(n− 2).

The upper bound attains uniquely on n
2
K2. By analogous arguments as (1), we obtain that SCα(G) +

SCα(G) ≥ 0 for α < 0, and the lower bound attains uniquely on G = Kn or G = Kn. This completes
the proof.

2.9 Geometric–arithmetic index

In [134], Vukičević and Furtula defined a new topological index “geometric-arithmetic index” of a graph
G, denoted by GA(G) and is defined by

GA(G) =
∑

uv∈E(G)

2
√
degG(u)degG(v)

degG(u) + degG(v)

Let G = (V (G), E(G)). If V (G) is the disjoint union of two nonempty sets V1(G) and V2(G) such
that every vertex in V1(G) has degree r and every vertex in V2(G) has degree s, then G is a (r, s)-

semiregular graph. When r = s, G is called a regular graph.

Das [23] first got the following upper bound of GA(G) for a connected graph G.

Lemma 2.17. [23] Let G be a simple connected graph of m edges with maximum vertex degree ∆ and

minimum vertex degree δ. Then

GA(G) ≥ 2m
√
∆δ

∆+ δ
, (71)

with equality holding in (71) if and only if G is isomorphic to a regular graph or G is isomorphic to a

bipartite semiregular graph.

By the above lower bound, Das next derived the following Nordhaus–Gaddum-type result for the
geometric-arithmetic index in 2010.
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Theorem 2.14. [23] Let G ∈ G(n), and G,G are both connected. Then

GA(G) +GA(G) ≥ 2k

k2 + 1

(
n

2

)
, (72)

where k = max
{√

∆
δ
,
√

n−1−δ
n−1−∆

}
; ∆, δ are the maximum vertex degree and minimum vertex degree in

G, respectively. Moreover, the equality holds in (72) if and only if G is isomorphic to a regular graph.

Proof. We have m =
(
n
2

)
−m, ∆ = n− 1− δ and δ = n− 1−∆, where m, ∆ and δ are the number

of edges, maximum vertex degree and minimum vertex degree in G, respectively. Using (71), we get

GA(G) +GA(G) ≥ 2m
√
∆δ

∆+ δ
+

(n(n− 1)− 2m)
√
(n− 1− δ)(n− 1−∆)

2(n− 1)−∆− δ
. (73)

Since

k ≥
√

∆

δ
≥ 1 and 1−

√
δ

k
√
∆
≥ 0,

we have (
k −

√
∆

δ

)(
1−

√
δ

k
√
∆

)
≥ 0

i.e. √
∆δ

∆+ δ
≥ k

k2 + 1
. (74)

Again, since k ≥
√
(n− 1− δ)/(n− 1−∆), it follows that

√
(n− 1− δ)(n− 1−∆)

2(n− 1)−∆− δ
≥ k

k2 + 1
. (75)

Using (74) and (75) in (73), we get the required result (72).

By Lemma 2.17, the equality holds in (73) if and only if G is a regular graph, as G and G are
connected. Moreover, all inequalities in the above argument must be equalities for regular graph. Thus
the equality holds in (72) if and only if G is isomorphic to a regular graph.

Das [23] also got the following lower bound of GA(G) for a connected graph G.

Lemma 2.18. [23] Let G be a simple connected graph of m edges with minimum nonpendent vertex

degree δ1. Then

GA(G) ≤ 2p
√
δ1

δ1 + 1
+m− p (76)

where p is the number of pendent vertices in G. Moreover, the equality holds in (76) if and only if G is

isomorphic to a regular graph or G is isomorphic to a (δ1, 1)-semiregular graph.

By the above upper bound, Das [23] derived the following result.
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Theorem 2.15. [23] Let G ∈ G(n) be a connected graph with a connected G. Then

GA(G) +GA(G) ≤
(
n

2

)
− p

(
√
δ1 − 1)2

δ1 + 1
− p̄

(
√
δ̄1 − 1)2

δ̄1 + 1
, (77)

where p, p̄ and δ1, δ̄1 are the number of pendent vertices and minimum non-pendent vertex degrees in

G and G, respectively. Moreover, the equality holds in (77) if and only if G is isomorphic to a regular

graph.

Proof. By (76), we get

GA(G) +GA(G) ≤ m− p+
2p
√
δ1

δ1 + 1
+m− p+

2p
√

δ1

δ1 + 1
.

Since m +m =
(
n
2

)
, we get the required result (77). By Lemma 2.18, the equality holds in (77) if and

only if G is isomorphic to a regular graph.
The following corollary is immediate from Theorem 2.14.

Corollary 2.1. [23] Let G be a connected graph on n vertices with a connected G. Then

GA(G) +GA(G) ≤
(
n

2

)
(78)

with equality holding in (78) if and only if G is isomorphic to a regular graph.

In [134], the following lower and upper bounds for GA(G) was established:

Lemma 2.19. [134] Let G ∈ G(n) be a connected graph. Then

2(n− 1)3/2

n
≤ GA(G) ≤

(
n

2

)
. (79)

Lower bound is achieved if and only if G ∼= K1,n−1 and upper bound is achieved if and only if G ∼= Kn.

Remark 2.2. [23] The upper bound of GA(G) in (79) is
(
n
2

)
, but this is our upper bound for GA(G) +

GA(G).

Remark 2.3. [23] The lower and upper bounds given by (72) and (77), respectively, are equal when G

is a regular graph.

2.10 Edge version of geometric–arithmetic index

Mahmiani, Khormali, and Iranmanesh [110] introduced the edge version of geometric-arithmetic index
based on the end-vertex degrees of edges in a line graph of G as follows

EGA(G) =
∑

ef∈E(L(G))

2
√
degG(e)degG(f)

degG(e) + degG(f)
,

where degG(e) denotes the degree of the edge e in G.
For the edge version of geometric-arithmetic index, they first obtained the following upper and lower

bounds.
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Lemma 2.20. [110] Let G ∈ G(n,m) be a connected graph. Therefore, we have

EGA(G) ≤
∑

u∈V (G)

degG(u)
2 − 2m.

Lemma 2.21. [110] Let G ∈ G(n,m) be a simple graph. Then

n− 4 +
4
√
2

3
≤ EGA(G) ≤ n(n− 1)2

2
.

By the above two lemmas, they derived the following Nordhaus–Gaddum-type results.

Theorem 2.16. [110] Let G ∈ G(n). Then

3(n2 − n− 4) + 8
√
2

6
≤ EGA(G) + EGA(G) ≤ (n− 2)(n− 1)n(n+ 1)

8
.

Proof. From Lemma 2.21, we have EGA(G) ≥ m−2+ 4
√
2

3
. Therefore, by replacing

(
n
2

)
instead of m in

last equation, the lower bound is concluded. From Lemma 2.20, we have EGA(G) ≤ |E(L(G))| ≤
(
m
2

)
.

Then by replacing
(
n
2

)
instead of m in last equation, the upper bound is concluded.

2.11 Harmonic index

The harmonic index HA(G) is a vertex-degree-based topological index. This index first appeared in [47],
and was defined as

HA(G) =
∑

uv∈E(G)

2

degG(u) + degG(v)
.

Zhong and Xu [146] gave the following upper and lower bounds of HA(G) in terms of Randić index.

Lemma 2.22. [146] Let G ∈ G(n) be a graph. Then

2
√
n− 1

n
R(G) ≤ HA(G) ≤ R(G).

The lower bound is attained if and only if G ∼= Sn, and the upper bound is attained if and only if all

connected components of G are regular.

By the above lemma, Zhong and Xu [146] derived the following Nordhaus–Gaddum-type result for
harmonic index.

Theorem 2.17. [146] Let G ∈ G(n) be a graph. Then

n

2
≤ HA(G) +HA(G) ≤ n. (80)

The lower bound is attained if and only if G ∼= Kn or G ∼= Kn, and the upper bound is attained if and

only if G is a k-regular graph with 1 ≤ k ≤ n− 2.
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Proof. Let m and m be the number of edges order n with connected in G and G. respectively. Then

HA(G) +HA(G)

=
∑

uv∈E(G)

2

degG(v) + degG(u)
+

∑

uv∈E(G)

2

(n− 1− degG(v)) + (n− 1− degG(u))

≥
∑

uv∈E(G)

2

2n− 2
+

∑

uv∈E(G)

2

2n− 2
=

2

2n− 2
(m+m) =

2

2n− 2
· n(n− 1)

2
=

n

2

with equality if and only if either degG(u) = degG(v) = n− 1 for every edge uv of G or E(G) = ∅, i.e.,
G ∼= Kn or G ∼= Kn. So the lower bound of (80) holds.

We now prove the upper bound of (80). By Lemma 2.22, we have

HA(G) +HA(G) ≤ R(G) +R(G) ≤ n

2
+

n

2
= n

with equalities if and only if both G and G contain no isolated vertices (i.e., 1 ≤ δ(G) ≤ ∆(G) ≤ n−2)
and all connected components of G and G are regular. We claim that G must be a regular graph. For
otherwise, there exist two vertices u, v in G such that degG(u) 6= degG(v). Then u and v are contained
in two different connected components of G, and hence uv ∈ E(G). But this forces u and v lie in the
same component of G, a contradiction. So Theorem 2.17 holds.

3. Eigenvalue–based parameters

In this section, we consider eigenvalue-based parameters, which are defined using eigenvalues of one or
more of the matrices associated to a graph. We first introduce four basic matrices and their eigenvalues.

Eigenvalues of the adjacent matrix: Let G = (V,E) be a graph on n vertices. The adjacency

matrix A = (ai,j) is defined by ai,j = 1 if vertices vi and vj of the graph G are adjacent and 0

otherwise. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the adjacency matrix of G.

Eigenvalues of the Laplacian matrix: The Laplacian matrix of a graph is defined by L = Diag−
A where Diag is the diagonal matrix with degrees of the vertices on the main diagonal. We denote
its eigenvalues by µ1 ≥ µ2 ≥ . . . ≥ µn = 0.

Eigenvalues of the signless Laplacian matrix: The signless Laplacian matrix is defined by Q =

Diag + A. Denote by q1 ≥ q2 ≥ . . . ≥ qn its eigenvalues.

Eigenvalues of the distance matrix: Let G be a simple connected graph with vertex set V =

{v1, v2, . . . , vn}. The distance di,j between vi and vj of G is the length of the shortest path between
those two vertices. The distance matrix D is the n× n matrix (Dij) such that Dij = di,j . Since D

is a symmetric matrix, its eigenvalues are real. Denote by p1 ≥ p2 ≥ . . . ≥ pn its eigenvalues.

The following Table 3.1 shows the authors contributing the Nordhaus–Gaddum problem for eigenva-
lue-based parameters.
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Eigenvalue Parameters Authors Contributing N -G Problem

Spectral radius Nosal [122]

Amin and Hakimi [3]

Nikiforov [118]

Li [102]

Shi [128]

Hong and Shu [77]

Nikiforov [120]

Energy Zhou and Gutman [156]

Das and Gutman [28]

Laplacian spectral radius Shi [128]

Liu, Lu, and Tian [107]

Laplacian energy Zhou and Gutman [156]

Zhou [147]

Laplacian-energy-like invariant Gutman, Zhou, and Furtula [72]

Laplacian Estrada Index Chen and Hou [16]

Laplacian Estrada-like invariant Güngoör [59]

Kirchhoff index Zhou and Trinajstić [162]

Yang, Zhang, and Klein [142]

Das, Yang and Xu [36]

Signless Laplacian spectral radius Gutman, Kiani, Mirzakhah, and Zhou [67]

Incidence energy Gutman, Kiani, Mirzakhah, and Zhou [67]

Distance spectral radius Zhou and Trianjstić [161]

Reciprocal distance spectral radius Zhou and Trinajstić [160]

Zhou, Cai, and Trianjstić [154]

Das [25]

Table 3.1. Eigenvalue–based parameters

3.1 Eigenvalues of the adjacent matrix

The determinant of a square matrix A is denoted by |A| or by detA. The characteristic polynomial
|λI − A| of the adjacency matrix A of G is called the characteristic polynomial of G and denoted by
PG(λ). The eigenvalues of A (i.e. the zeros of |λI − A|) and the spectrum of A (which consists of the
eigenvalues) are also called the eigenvalues and the spectrum of G, respectively. If λ1, λ2, . . . , λn are the
eigenvalues of G, then the whole spectrum is denoted by Sp(G) = {λ1, λ2, · · · , λn}. In this section, we
let λ1 ≥ λ2 ≥ . . . ≥ λn. Then λ1(G) is called the spectral radius of G.
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Let G be a simple graph on n vertices. The eigenvalues of G are the eigenvalues of its adja-
cency matrix A(G); see [19]. These eigenvalues, arranged in a non-increasing order, will be denoted
as λ1(G), λ2(G), . . . , λn(G). Then the energy of the graph G is defined as

E(G) =
n∑

i=1

|λi(G)|.

3.1.1 Spectral radius

Nosal [122] showed that for every graph G of order n,

n− 1 ≤ λ1(G) + λ1(G) ≤
√
2(n− 1). (81)

Amin and Hakimi [3] obtained the following result for spectral radius.

Theorem 3.1. [3] Let G ∈ G(n) be a simple graph. Then

n− 1 ≤ λ1(G) + λ1(G) ≤ 1 +
√
3

2
(n− 1).

The lower bound is attained if and only if the graph is regular.

The lower bound has been improved in 2007 by Nikiforov [118].

Theorem 3.2. [118] Let G ∈ G(n) be a graph. Then

λ1(G) + λ1(G) ≥ (n− 1) +
√
2
s2(G)

n3
,

where s(G) =
∑

u∈V (G) |degG(u)− 2m
n
|.

Before giving the proof of Theorem 3.2, they first stated a more general problem.

Problem 1. [118] For every 1 ≤ k ≤ n find

fk(n) = max
|V (G)|=n

|λk(G)|+
∣∣λk(G)

∣∣ .

It is difficult to determine fk(n) precisely for every n and k, so at this stage it seems more practical
to estimate it asymptotically. In [118], they showed that

4

3
n− 2 ≤ f1(n) < (

√
2− c)n

for some c > 10−7 independent of n.

We recall two auxiliary results whose proofs can be found in [119]. Given a graph G = G(n,m),
recall that

s(G) =
∑

u∈V (G)

∣∣∣∣degG(u)−
2m

n

∣∣∣∣ .



80

Proposition 3.1. [118] For every graph G = G(n,m),

s2(G)

2n2
√
2m
≤ λ1(G)− 2m

n
≤
√
s(G), (82)

and

λn(G) + λn(G) ≤ −1− s2(G)

2n3
. (83)

Decreasing the constant
√
2 in (81) happened to be a surprisingly challenging task for the author.

The little progress that has been made is given in the following theorem.

Theorem 3.3. [118] There exists c ≥ 10−7 such that

λ1(G) + λ1(G) ≤ (
√
2− c)n.

for every graph G of order n.

Proof. Assume the opposite, let ε = 10−7 and let there exist a graph G of order n such that

λ1(G) + λ1(G) > (
√
2− ε)n.

Writing A(G) for the adjacency matrix of G, we have

n∑

i=1

λ2
i (G) = tr(A2(G)) = 2e(G),

implying that

λ2
1(G) + λ2

n(G) + λ2
1(G) + λ2

n(G) ≤ 2e(G) + 2e(G) < n2.

From

λ2
1(G) + λ2

1(G) ≥ 1

2
(λ1(G) + λ1(G))2 >

(
1− ε√

2

)2

n2 > (1−
√
2ε)n2

we find that

|λn(G)|+
∣∣λn(G)

∣∣ ≤
√

2(λ2
n(G) + λ2

n(G)) <

√
2
√
2εn, (84)

and so, λn(G) + λn(G) > −23/4ε1/2n. Hence, by (83), we have s2(G) ≤ 27/4ε1/2n4. On the other hand,
by (82) and in view of s(G) = s(G), we see that

λ1(G) + λ1(G) ≤ n− 1 + 2
√
s(G) < n+ 2

√
s(G) ≤ n+ 223/16ε1/8n,

and, by (84), it follows that

(
√
2− ε)n < n+ 223/16ε1/8n.

Dividing by n, we obtain (
√
2− 1) < ε+ 223/16ε1/8, a contradiction for ε = 10−7.

It is certain that the upper bound given by Theorem 3.3 is far from the best one. We shall give below
a lower bound on f1(n) which seems to be tight.
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Given 1 ≤ r < n, let G be a the join of Kr and Kn−r. Then G satisfies (see, e.g. [78])

λ1(G) + λ1(G) =
r − 1

2
+

√
nr − 3r2 + 2r − 1

4
+ n− r − 1

= n− r + 3

2
+

√
nr − 3r2 + 2r − 1

4
.

The right-hand side of this equality is increasing in r for 0 ≤ r ≤ (n− 1)/3 and we find that

f1(n) >
4n

3
− 2.

This give some evidence for the following conjecture.

Conjecture 3.1. [118]

f1(n) =
4n

3
+O(1).

We conclude this section with an improvement of the lower bound in (81). Using the first of (82)
obtain

λ1(G) + λ1(G) ≥ n− 1 +
s2(G)

2n2


 1√

2e(G)
+

1√
2e(G)




≥ n− 1 +
√
2
s2(G)

n3
.

The currently best upper bound was given by Csikvári [18] in 2009. The following conjecture has
been formulated after some experiments with AutoGraphiX, a computer conjecture making system.

Conjecture 3.2. [6] For any graph G ∈ G(n),

λ1(G) + λ1(G) ≤ 4

3
n− 5

3
−





f1(n) if n mod (3) = 1,
0 if n mod (3) = 2,
f2(n) if n mod (3) = 0,

where f1(n) =
3n−2−

√
9n2−12n+12
6

and f2(n) =
3n−1−

√
9n2−6n+9
6

.

This bound is sharp and attained if and only if G or G is a complete split graph with independent set
on bn

3
c vertices (or dn

3
e if n mod (3) = 2).

Upper bounds on the sum λ1(G) + λ1(G) using the order and the minimum and maximum degrees
of G were proved first by Li [102] in 1996 and then by Shi [128] in 2007.

Theorem 3.4. [102] Let G ∈ G(n) be a graph with minimum and maximum degrees δ and ∆, respec-

tively. Then

λ1(G) + λ1(G) ≤
√
2n(n− 1)− 4δ(n− 1−∆) + 1− 1.
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Lemma 3.1. [128] Let G ∈ G(n,m) be a graph with no isolated vertex. Let ∆ = ∆(G) and δ = δ(G).

Then

(2m−∆n+∆δ +∆− δ)1/2 ≤ λ1(G) ≤ (2m− δn+∆δ −∆+ δ)1/2.

Moreover, if G is connected then the first equality holds if and only if G is regular and the second holds

if and only if G is a regular graph or a star.

Shi [128] gave some sharp upper bounds on the spectral radius of the Nordhaus–Gaddum type for a
connected graph G and its connected complement G.

Theorem 3.5. [128] Let G ∈ G(n) be a graph with minimum and maximum degrees δ and ∆, respec-

tively, such that 0 < δ(G) ≤ ∆(G) < n− 1. Then

λ1(G) + λ1(G) ≤
√
2[(n− 1)2 − 2δn+ 2∆δ −∆+ 3δ].

Moreover, if both G and G are connected, then the equality holds if and only if G is n−1
2

-regular.

Proof. Let f(m,∆, δ) = (2m− δn+∆δ−∆+ δ)1/2. Note that ∆(G) = n− 1− δ, δ(G) = n− 1−∆

and m(G) =
(
n
2

)
−m. Lemma 3.1 gives that

λ1(G) ≤ f(m,∆, δ) and λ1(G) ≤ f

((
n

2

)
−m,n− 1− δ, n− 1−∆

)
.

Now let g(m) = f(m,∆, δ) = f
((

n
2

)
−m,n− 1− δ, n− 1−∆

)
. Then

λ1(G) + λ1(G) ≤ g(m)

Since
dg

dm
= 1/f(m,∆, δ)− 1/f

((
n

2

)
−m,n− 1− δ, n− 1−∆

)
,

it is easy to check that dg
dm
≥ 0 if and only if f(m,∆, δ) ≤ f

((
n
2

)
−m,n− 1− δ, n− 1−∆

)
i.e.

m ≤ [(n− 1)2 +∆+ δ]/4. Thus

λ1(G) + λ1(G) ≤ g([(n− 1)2 +∆+ δ]/4)

= 2f([(n− 1)2 +∆+ δ]/4,∆, δ)

=
√

2[(n− 1)2 − 2δn+ 2∆δ −∆+ 3δ].

If the sum of spectral radii attains the upper bound, then the spectral radii of G and G both attain their
upper bounds and m = [(n − 1)2 + ∆ + δ]/4. Now if both G and G are connected, then Lemma 3.1
implies that ∆ = δ. Thus

2δn = (n− 1)2 + 2δ

This implies that δ = (n−1)/2 and hence G is (n−1)/2-regular. Conversely, if G is a (n−1)/2-regular,
then λ1(G) + λ1(G) = n− 1.



83

Lemma 3.2. [128] Let G ∈ G(n,m) be a graph. Let ∆ = ∆(G) and δ = δ(G). If ∆ < 2n−1− [(2n−
1)2 − 8m− 1]1/2, then

λ1(G) ≤ 1

2

(
∆− 1−

√
(∆ + 1)2 + 4(2m−∆n)

)
(85)

or

1

2

(
∆− 1 +

√
(∆ + 1)2 + 4(2m−∆n)

)
≤ λ1(G) ≤ 1

2

(
δ − 1 +

√
(δ + 1)2 + 4(2m− δn)

)
. (86)

Moreover, if G is connected, then the upper bound in (85) is strict, the first equality in (86) holds if and

only if G is regular, and the second in (86) holds if and only if G is either a regular graph or a bidegreed

graph with all vertices of degree δ or n− 1.

By the above upper bound, Shi [128] derived the following Nordhaus–Gaddum-type result.

Theorem 3.6. [128] Let G ∈ G(n) be a graph. Then

λ1(G) + λ1(G) ≤
{
n−∆+ δ − 3 +

√
2[(n−∆)2 + 4n(∆− δ) + (δ + 1)2]

}
/2.

Moreover, if both G and G are connected, then the equality holds if and only if G is (n− 1)/2-regular.

Proof. Let f(m,∆, δ) = [(δ + 1)2 + 4(2m− δn)]1/2. Note that ∆(G) = n− 1− δ, δ(G) = n− 1−∆

and m(G) =
(
n
2

)
−m. Lemma 3.2 gives that

λ1(G) ≤ [δ − 1 + f(m,∆, δ)]/2

and
λ1(G) ≤

[
n−∆− 2 + f

((
n

2

)
−m,n− 1− δ, n− 1−∆

)]
/2.

Now let g(m) = f(m,∆, δ) + f
((

n
2

)
−m,n− 1− δ, n− 1−∆

)
. Then

λ1(G) + λ1(G) ≤ [n−∆+ δ − 3 + g(m)]/2

Since
dg

dm
= 4/f(m,∆, δ)− 4/f

((
n

2

)
−m,n− 1− δ, n− 1−∆

)
,

it is easy to check that dg
dm
≥ 0 if and only if f(m,∆, δ) ≤ f

((
n
2

)
−m,n− 1− δ, n− 1−∆

)
i.e.

m ≤ [(n−∆)2 + 4n(∆ + δ)− (δ + 1)2]/16. Thus

λ1(G) + λ1(G) ≤ {n−∆+ δ − 3 + g([(n−∆)2 + 4n(∆ + δ)− (δ + 1)2]/16)}/2

= {n−∆+ δ − 3 + 2f([(n−∆)2 + 4n(∆ + δ)− (δ + 1)2]/16,∆, δ)}/2

= {n−∆+ δ − 3 +
√
2[(n−∆)2 + 4n(∆− δ) + (δ + 1)2]}/2.

If the sum of spectral radii attains the upper bound, then the spectral radii of G and G both attain their
upper bounds and m = [(n − ∆)2 + 4n(∆ + δ) − (δ + 1)2]/16. Now if both G and G are connected,
then Lemma 3.2 implies that ∆ = δ. Thus

8δn = (n− δ)2 + 8δn− (δ + 1)2.
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This implies that δ = (n− 1)/2 and hence G is (n− 1)/2-regular. Conversely, if G is (n− 1)/2-regular,
then λ1(G) + λ1(G) = n− 1.

Remark 3.1. [128] It is easy to see that our upper bounds are incomparable to the bounds of Nosal

and Li. However, if ∆ = o(n) or δ = n − o(n), then Theorem 3.6 implies that λ1(G) + λ1(G
c) =

O((
√
2 + 1)n/2) which is better than the bounds O(

√
2n) of Nosal and Li and of Theorem 3.5.

The following inequality, which is of Nordhaus–Gaddum type, was proved by Hong and Shu [77] in
2000.

Theorem 3.7. [77] Let G ∈ G(n) be a graph. Then

λ1(G) + λ1(G) ≤
√(

2− 1

χ(G)
− 1

χ(G)

)
n(n− 1),

where χ denotes the chromatic number. Equality holds if and only if G or G is a complete graph Kn.

A complete k-partite graph is a graph whose vertex set can be partitioned into k non-empty subsets
V1, V2, . . . , Vk in such a way that any vertex in Vi is adjacent to every vertex in Vj , j 6= i, and no two
vertices of Vi are adjacent (1 ≤ i ≤ n). If the vertex number of Vi is ni, the graph is denote by
K(n1, n2, . . . , nk). If ni = t for all i, the graph K(t, t, . . . , t) is called an equi-complete k-partite graph.

Lemma 3.3. [43, 76] Let G be a simple graph with m edges and chromatic number k. Then

λ1(G) ≤
√

2(k − 1)m

k

with equality if and only if G is an equi-complete k-partite graph or an empty graph.

Proof of Theorem 3.7: From Lemma 3.3, we have

λ1(G) ≤
√

2(k − 1)m

k
=

√
2m

(
1− 1

k

)

and

λ1(G) ≤

√
2(k − 1)m

k
=

√
2m

(
1− 1

k

)
,

where m is the edge number of the complement G. So 2m = n(n − 1) − 2m. Let us suppose that
s = 1− 1/k, s = 1− 1/k and

f(m) = λ1(G) + λ1(G) =
√
2ms+

√
(n(n− 1)− 2m)s.

It is easy to show that

f(m) ≤ f

(
s

2(s+ s)
n(n− 1)

)
=
√
(s+ s)n(n− 1).
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Therefore, we have

λ1(G) + λ1(G) ≤
√(

2− 1

k
− 1

k

)
n(n− 1).

Equality holds if and only if each of G and G are empty graph or equi-complete k-partite graph. More-
over, m = s/(2(s + s))n(n − 1). Thus, G must be a complete graph or an empty graph. The proof is
completed.

A similar inequality was given in 2002 by Nikiforov [120] using the clique number ω instead of the
chromatic number χ.

Theorem 3.8. [120] Let G ∈ G(n) be a graph. Then

λ1(G) + λ1(G) ≤
√(

2− 1

ω(G)
− 1

ω(G)

)
n(n− 1),

where ω denotes the clique number.

3.1.2 Energy

Zhou and Gutman [156] obtained the first Nordhaus–Gaddum-type result for graph energy.

Theorem 3.9. [156] Let G ∈ G(n) be a graph. Then

E(G) + E(G) ≥ 2(n− 1) (87)

with equality if and only if G is the complete graph Kn or its complement, the empty graph (the n-vertex

graph without edges).

Proof. We first observe that E(G) ≥ 2λ1 with equality if and only if G has at most one positive
eigenvalue, i.e., if G is the empty graph or a complete multipartite graph [19]. Therefore,

E(G) + E(G) ≥ 2(λ1 + λ1) ≥ 2(n− 1).

If equality holds in (87), then both G and G are empty or complete multipartite graphs, and so G must
be the complete graph or the empty graph. Conversely, knowing the spectrum of Kn and Kn, see [19], it
is easily shown that (87) is an equality if G ∼= Kn or G ∼= Kn.

In [98] it was shown that for an (n,m)-graph G,

E(G) ≤ λ1 +
√

(n− 1)(2m− λ2
1). (88)

From this upper bound it could be deduced that [96]

E(G) ≤ n

2
(
√
n+ 1)

which immediately implies
E(G) + E(G) ≤ n(

√
n+ 1).

In what follows Zhou and Gutman [156] improved the latter upper bound.
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Theorem 3.10. [156] Let G ∈ G(n) be a graph. Then

E(G) + E(G) <
√
2n+ (n− 1)

√
n− 1. (89)

Proof. Let m and m denote, respectively, the number of edges of G and G. By (88) and (81), we have

E(G) + E(G) ≤ λ1 + λ1 +
√
(n− 1)(2m− λ2

1) +

√
(n− 1)

(
2m− λ1

2
)

≤ λ1 + λ1 +

√
2(n− 1)

[
2m+ 2m− (λ2

1 + λ1
2
)
]

≤ λ1 + λ1 +

√
2(n− 1)

[
n(n− 1)− 1

2
(λ1 + λ1)2

]

<
√
2n+

√
2(n− 1)

[
n(n− 1)− 1

2
(n− 1)2

]

=
√
2n+ (n− 1)

√
n− 1.

This completes the proof.

Remark 3.2. [156] Let G ∈ G(n) be a regular graph of degree r. Then (88) becomes E(G) ≤
r +

√
(n− 1)r(n− r) and we have

E(G) + E(G) ≤ n− 1 +
√
n− 1

[√
r(n− r) +

√
(r + 1)(n− r − 1)

]

≤ (n− 1)(
√
n+ 1 + 1).

which for n ≥ 6 is better than (89).

Remark 3.3. [156] A strongly regular graph G with parameters (n, r, ρ, σ) is an r-regular graph on

n vertices, in which each pair of adjacent vertices has ρ common neighbors and each pair of non-

adjacent vertices has σ common neighbors. If σ ≥ 1 and G is non-complete, then the eigenvalues of G

are [19] r, s, and t , with multiplicities 1, ms, and mt, where s and t are the solutions of the equation

x2+(σ−ρ)x+(σ−r) = 0, and ms and mt are determined by ms+mt = n−1 and r+mss+mtt = 0.

If G is a strongly regular graph with parameters (n, (n+
√
n)/2, (n+2

√
n)/4, (n+2

√
n)/4) (for some

conveniently chosen value of n), then

E(G) + E(G) =
n

2
(
√
n+ 1) +

n

2
(
√
n+ 1)−√n− 2 = (n− 1)(

√
n+ 1)− 1.

If we consider a Paley graph H , which is a strongly regular graph with parameters (n, (n− 1)/2, (n−
5)/4, (n− 1)/4), then

E(H) + E(H) = (n− 1)(
√
n+ 1).

The results stated in Remark 3.3 show that the bound in (89) is asymptotically tight.
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Remark 3.4. [156] Using Theorem 3.8, from the proof of Theorem 3.10, we have

E1(G) + E1(G) ≤
√(

2− 1

ω(G)
− 1

ω(G)

)
n(n− 1) + (n− 1)

√
n− 1,

where ω denotes the clique number of G.

Das, Mojallal, and Gutman [34] have given the following lower bound, valid for non-singular graphs:

Lemma 3.4. [34] Let G ∈ G(n,m) be a connected non-singular graph. Then

E(G) ≥ 2m

n
+ n− 1 + ln

(
n| detA|

2m

)
, (90)

where detA ( 6= 0) is the determinant of the adjacent matrix.

Das and Gutman [28] derived the following upper bound for graph energy.

Lemma 3.5. [28] Let G ∈ G(n,m) be a connected non-singular graph. Then

E(G) ≤ 2m− 2m

n

(
2m

n
− 1

)
− ln

(
n| detA|

2m

)
, (91)

where detA ( 6= 0) is the determinant of the adjacent matrix. Equality holds if and only if G ∼= Kn.

Motivated by the seminal work of Noradhaus and Gaddum, Das and Gutman [28] reported here
analogous results for graph energy.

Theorem 3.11. [28] Let G and G be both connected non-singular graphs. If G ∈ G(n,m), then

3(n− 1) + ln

(
n2| det(AA)|

2m(n(n− 1)− 2m)

)
≤ E(G) + E(G)

≤ 2(n− 1) +
4m(n(n− 1)− 2m)

n2
− ln

(
n2| det(AA)|

2m(n(n− 1)− 2m)

)
, (92)

where detA (6= 0) and detA (6= 0) are the determinants of the adjacency matrices of G and G, respec-

tively.

Proof. By (90),

E(G) + E(G) ≥ 2m+ 2m

n
+ 2(n− 1) + ln

(
n| detA|

2m

)
+ ln

(
n| detA|

2m

)

where m and A are the numbers of edges and the adjacency matrix of G. Since 2m + 2m = n(n − 1)

and detAA = detA detA, the lower bound in (92) follows.
By (91), we have

E(G) + E(G) ≤ 2m+ 2m+
2m+ 2m

n
− 4m2 + 4m2

n2
− ln

(
n| detA|

2m

)
− ln

(
n| detA|

2m

)
.

This straightforwardly leads to the upper bound in (92).

The following inequality is due to Dragomir.
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Lemma 3.6. [41] Let a1, a2, . . . , an and b1, b2, . . . , bn be non-negative real numbers. If p > 1, then
(

n∑

i=1

(ai + bi)
p

)1/p

≤
(

n∑

i=1

api

)1/p

+

(
n∑

i=1

bpi

)1/p

.

Moreover, the above equality holds if and only if the rows {ai} and {bi} are proportional.

Theorem 3.12. [28] Let G ∈ G(n,m) be a graph. Then

E(G) + E(G) ≤ n+∆− δ − 1

+

[
(n− 1)

(
n− 1 +

4m(n(n− 1)− 2m)

n2
+

2

n2

√
2m(2m+ n)(n2 − 2m)(n2 − 2m− n)

)] 1
2

,

(93)

where ∆ and δ are the maximum degree and minimum degree of G, respectively.

Proof. By Lemma 3.6, we have
(

n∑

i=2

(|λi|+ |λi|)2
) 1

2

≤
(

n∑

i=2

λ2
i

) 1
2

+

(
n∑

i=2

λ
2

i

) 1
2

where λi and λi are eigenvalues of G and G, respectively. Since
n∑

i=1

λ2
i = 2m and

n∑

i=1

λ
2

1 = 2m,

we get
(

n∑

i=2

|λi|+ |λi|
)2

≤
n∑

i=2

λ2
i +

n∑

i=2

λ
2

i + 2

√√√√
n∑

i=2

λ2
i

n∑

i=2

λ
2

i

= 2m− λ2
1 + 2m− λ

2

1 + 2

√
(2m− λ2

1)(2m− λ
2

1)

≤ n(n− 1)− 4m2 + 4m2

n2
+ 2

√
4mm

n4
(n2 − 2m)(2m+ n)

= n− 1 +
4m(n(n− 1)− 2m)

n2

+
2

n2

√
2m(n2 − 2m− n)(n2 − 2m)(2m+ n). (94)

Since λ1 ≤ ∆, using the Cauchy-Schwarz inequality, we obtain

E(G) + E(G) = |λ1|+ |λ1|+
n∑

i=2

(|λi|+ |λi|)

≤ ∆+ n− δ − 1 +

√√√√(n− 1)
n∑

i=2

(|λi|+ |λi|)2

Together with (94) this yields (93).
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3.2 Eigenvalues of the Laplacian matrix

Recall that Laplacian matrix of a graph is defined as L = Diag − A where Diag is the diagonal
matrix with degrees of the vertices on the main diagonal. In this section, we denote its eigenvalues by
µ1 ≥ µ2 ≥ · · · ≥ µn = 0, except in Section 3.2.6.

The Laplacian energy of a graph G, denoted by LE(G), has been defined as [71]

LE(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣ .

Liu and Liu [106] proposed another Laplacian-spectrum based “energy”, and called it Laplacian-

energy-like invariant, LEL, which is defined as

LEL(G) =
n∑

i=1

√
µi.

In analogy to the Estrada index, the Laplacian Estrada index of a graph G was introduced in [48] as

LEE(G) =
n∑

i=1

eµi .

Güngör [59] proposed another Laplacian spectrum based on “Estrada index”, and called it Laplacian

Estrada-like invariant, denoted by LEEL. In fact it is defined as

LEEL(G) =
n∑

i=1

e
√
µi . (95)

In 1993, Klein and Randić [95] introduced a new distance function named resistance distance, based
on the theory of electrical networks. They viewed G as an electrical network N by replacing each edge
of G with a unit resistor. The resistance distance between the vertices u and v of the graph G, denoted
by R(u, v) = R(u, v |G), is then defined to be the effective resistance between the nodes u and v in
N . Similar to the long recognized shortest–path distance, the resistance distance is also intrinsic to the
graph, not only with some nice purely mathematical properties, but also with a substantial potential for
chemical applications [93, 95, 138, 139].

The Kirchhoff index (or resistance index) is defined in analogy to the Wiener index as:

Kf(G) =
∑

{u,v}⊆V (G)

R(u, v).

Then a long time known result for the Kirchhoff index [69] is

Kf(G) = n

n−1∑

i=1

1

µi

. (96)

Let G be a simple, undirected, connected molecular graph and the vertices of it will be labelled by
v1, v2, · · · , vn. The shortest path distance between two vertices vi and vj is denoted by dij , whereas the
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resistance distance between vi and vj is denoted by rij . It is well known that rij ≤ dij with equality iff
vi and vj are connected by only one path. Palacios and Renom gave the following lower bound on the
resistance distance:

rij ≥
{

degG(vi)+degG(vj)−2

degG(vi)degG(vj)−1
if vivj ∈ E(G),

1
degG(vi)

+ 1
degG(vj)

if vivj /∈ E(G),
(97)

3.2.1 Laplacian spectral radius

The well known bound µ1 ≤ 2∆ easily implies the simplest upper bound on the sum of Laplacian
spectral radii of a graph G and its complement G :

µ1(G) + µ1(G) ≤ 2(n− 1) + 2(∆− δ).

Shi [128] derived the following upper bound of µ1(G) for a connected irregular graph G in terms of
the order and maximum degree.

Lemma 3.7. [128] Let G ∈ G(n) be a connected irregular graph with maximum degree ∆. Then

µ1(G) < 2∆− 2

2n2 − n
.

If both G and G are connected and irregular then Lemma 3.7 implies a slightly better upper bound
as follows:

µ1(G) + µ1(G) ≤ 2

⌊
n− 1− 2

2n2 − n

⌋
+ 2(∆− δ).

Liu, Lu, and Tian [107] proved that

µ1(G) + µ1(G) ≤ n− 2 +
√
(∆ + δ + 1− n)2 + n2 + 4(∆− δ)(n− 1).

The following bounds are given by Shi [128] in 2007, which will be used later.

Lemma 3.8. [128] Let G ∈ G(n,m) be a graph with no isolated vertex. Let ∆ = ∆(G) and δ = δ(G).

Then

µ1(G) ≤ [2∆2 + 4m− 2δ(n− 1) + 2∆(δ − 1)]1/2.

Moreover, if G is connected then the equality holds if and only if G is a regular bipartite graph. In

particular, if G is bipartite then

µ1(G) ≥ [2δ2 + 4m− 2∆(n− 1) + 2δ(∆− 1)]1/2.

Moreover, if G is connected then the equality holds if and only if G is regular.

By the above lemma, they obtained the following Nordhaus–Gaddum-type result for Laplacian spec-
tral radius.
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Theorem 3.13. [128] Let G ∈ G(n) be a graph with 0 < δ(G) ≤ ∆(G) < n− 1. Then

µ1(G) + µ1(G) ≤ 2
√
2(n− 1)2 − 3δ(n− 1) + (∆ + δ)2 −∆+ δ.

Moreover, if both G and G are connected then the upper bound is strict.

Proof. Let f(m,∆, δ) = [2∆2 + 4m − 2δ(n − 1) + 2∆(δ − 1)]1/2. Note that ∆(G) = n − 1 − δ,
δ(G) = n− 1−∆ and m(G) =

(
n
2

)
−m. Lemma 3.8 gives that

µ1(G) ≤ f(m,∆, δ) and µ(G) ≤ f

((
n

2

)
−m,n− 1− δ, n− 1−∆

)
.

Now let g(m) = f(m,∆, δ) + f
((

n
2

)
−m,n− 1− δ, n− 1−∆

)
. Then

µ1(G) + µ1(G) ≤ g(m).

Since
dg

dm
= 2/f(m,∆, δ)− 2/f

((
n

2

)
−m,n− 1− δ, n− 1−∆

)
,

it is easy to check that dg
dm
≥ 0 if and only if f(m,∆, δ) ≤ f

((
n
2

)
−m,n− 1− δ, n− 1−∆

)
i.e.

m ≤ [2(n− 1)2 − δ(n− 2)−∆2 + δ2 +∆]/4. Thus

µ1(G) + µ1(G) ≤ g([2(n− 1)2 − δ(n− 2)−∆2 + δ2 +∆]/4)

= 2f([2(n− 1)2 − δ(n− 2)−∆2 + δ2 +∆]/4,∆, δ)

= 2
√
2(n− 1)2 − 3δ(n− 1) + (∆ + δ)2 −∆+ δ

If both G and G are connected, then either G or G fails to be a bipartite regular graph. Lemma 3.8
implies that the Laplacian spectral radius of either G or G fails to attain its upper bound and so does the
sum.

3.2.2 Laplacian energy

Zhou and Gutman [156] got the following result for Laplacian eigenvalues.

Lemma 3.9. [156] If G is not the complete graph, and has at least one edge, then µ1 − µn−1 > 1.

Proof. Since G has at least one edge, it follows that µ1 ≥ ∆+1, where ∆ is the maximum vertex degree
of G. If G is connected, then equality holds if and only if ∆ = n − 1. Suppose that G is connected.
Then µ1 − µn−1 ≥ ∆− 2m/n + 1 ≥ 1. If µ1 − µn−1 = 1, then 2m/n = ∆ = n− 1 and then it would
be G ∼= Kn, a contradiction. If G is not connected, then µ1 − µn−1 = µ1 ≥ ∆+ 1 > 1.

Let d(G) be the average degree of G, i.e., d(G) = 1
n

∑
u∈V (G) degG(u) = 2m

n
, where n and m are

respectively the numbers of vertices and edges of G. The discrepancy of the graph G with n vertices is
defined as

disc(G) =
1

n

∑

u∈V (G)

|degG(u)− d(G)|.

By the above lemma, they [156] derived the Nordhaus–Gaddum-type results for Laplacian energy.
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Theorem 3.14. [156] Let G ∈ G(n) be a graph. Then

2n− 2 ≤ LE(G) + LE(G) < n
√
n2 − 1.

The lower bound attains if and only if G is isomorphic to Kn or Kn.

Proof. We only give the proof of the lower bound. If G is isomorphic to Kn or Kn, then it is easy to
show that LE(G) + LE(G) = 2n − 2. Suppose that n ≥ 3 and that G is different from Kn and Kn.
Then

LE(G) + LE(G) = µ1 − µn−1 +
2m

n
+

n−2∑

i=2

∣∣∣∣µi −
2m

n

∣∣∣∣

+µ1 − µn−1 +
2m

n
+

n−2∑

i=2

∣∣∣∣n− µi −
2m

n

∣∣∣∣

≥ 2(µ1 − µn−1) + n− 1 +
n−2∑

i=2

1

= 2(µ1 − µn−1) + 2n− 4.

By Lemma 3.9, we have LE(G) + LE(G) > 2n− 2.

Zhou [147] improved the upper bound in Theorem 3.14, and obtained the following result.

Proposition 3.2. [147] Let G ∈ G(n) (n ≥ 3) be a graph. Then

LE(G) + LE(G) < n− 1 + (n− 1)
√
n+ 1 + 2a(2n− 1−

√
4na+ 1)

LE(G) + LE(G) < n− 1 + (n− 1)
√
n+ 1 +

4[(2n− 1)(n+ 1)(n− 2) + 2(n2 − n+ 1)3/2]

27n
.

Proof. Let m be the number of edges of G. Note that
∑n

i=1 λ
2
i = 2m and by the Cauchy-Schwarz

inequality,

E(G) ≤ λ1 +
√
(n− 1)(2m− λ2

1)

with equality if and only if |λ2| = · · · = |λn|, where λ1 is the largest eigenvalue of G. Let λ1 be the
largest eigenvalue of G. Then

E(G) + E(G) ≤ λ1 +
√
(n− 1)(2m− λ2

1) + λ1 +

√
(n− 1)[n(n− 1)− 2m− λ1

2
]

≤ λ1 + λ1 +

√
2(n− 1)

[
n(n− 1)− (λ2

1 + λ1
2
)
]

≤ λ1 + λ1 +

√
2(n− 1)

[
n(n− 1)− 1

2
(λ1 + λ1)2

]
.

Note that the function

f(x) = x+

√
2(n− 1)

[
n(n− 1)− x2

2

]
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is monotonously decreasing for x ≥
√
2(n− 1) and that by Weyl’s theorem [79], λ1+λ1 is no less than

the largest eigenvalue n − 1 of the matrix A(G) + A(G) = A(Kn), implying that λ1 + λ1 ≥ n − 1 ≥√
2(n− 1). Thus,

E(G) + E(G) ≤ f(n− 1) = n− 1 + (n− 1)
√
n+ 1,

and if equality is attained then G is regular, λ1 = λ1 =
n−1
2

, and thus
√

1

n− 1
(2m− λ2

1) =

√
n+ 1

2

is an eigenvalue of G with multiplicity n−1
2
(1 − 1√

n+1
), which can not be an integer for n ≥ 3. Then

the above bound for E(G) + E(G) can not be attained. Now the result follows from the bound for
n · disc(G).

Let G = Kq ∪Kn−q. Then d(G) = q(q−1)
n

. The Laplacian spectrum of G consists of q (q − 1 times)
and 0 (n− q + 1 times). It follows that

LE(G) =
nq − q(q − 1)

n
(q − 1) +

q(q − 1)

n
(n− q + 1) =

2q(q − 1)(n− q + 1)

n
.

Let q = 2n
3

. Then

LE(G) =
4(2n− 3)(n+ 3)

27
.

Note that d(G) = n(n−1)−q(q−1)
n

and the Laplacian spectrum of G consists of n (n− q times), n− q (q−1

times) and 0 (1 times). Therefore, we have

LE(G) =
n+ q(q − 1)

n
(n− q) +

nq − n− q(q − 1)

n
(q − 1) +

n2 − n− q(q − 1)

n

=
2(n− q)[n+ q(q − 1)]

n

=
2n(4n+ 3)

27
.

This example and the previous two propositions imply.
In [147], Zhou proved that:

Proposition 3.3. [147] Let G be a graph. Then

LE(G) ≤ E(G) +
∑

u∈V (G)

|degG(u)− d(G)|.

Proposition 3.4. [147] Let Gn be the class of graphs with n vertices. Let

LE(n) = max{LE(G) : G ∈ Gn}

NGLE(n) = max{LE(G) + LE(G) : G ∈ Gn}
Then

lim
n→∞

LE(n)

n2
=

8

27

lim
n→∞

NGLE(n)

n2
=

16

27
.



94

Recall that the first Zagreb index of the graph G is M1(G) =
∑

u∈V (G) degG(u)
2. Let G be a graph

with n vertices and m edges. By the Cauchy-Schwarz inequality,
∑

u∈V (G)

|degG(u)− d(G)| ≤
√
n
∑

u∈V (G)

[|degG(u)− d(G)|]2 =
√
nM1(G)− 4m2

with equality if and only if |degG(u) − d(G)| is a constant for each u ∈ V (G). We note that
1
n

∑
u∈V (G)[|degG(u)− d(G)|]2 was called the variance of G. From Proposition 3.3, we have

LE(G) ≤ E(G) +
√
nM1(G)− 4m2.

Remark 3.5. [147] We may give somewhat finer upper bounds for the Laplacian energy by applying

Proposition 3.3. We give an example. Let G be a graph with n ≥ 2 vertices, m edges and the first Zagreb

index M1. Then [150]

E(G) ≤
√

M1

n
+

√
(n− 1)

(
2m− M1

n

)

with equality if and only if G is Kn, Kn, mK2 (m copies of vertex-disjoint K2), or a non-complete

connected strongly regular graph with two non-trivral eigenvalus both with absolute value
√

2m−(2m/n)2

n−1
.

Thus,

LE(G) ≤
√

M1

n
+

√
(n− 1)

(
2m− M1

n

)
+
√
nM1(G)− 4m2

with equality if and only if G is Kn, Kn, mK2, or a non-complete connected strongly regular graph with

two non-trivial eigenvalues both with absolute value
√

2m−(2m/n)2

n−1
; and

LE(G) ≤
√

M1

n
+

√
(n− 1)

(
2m− M1

n

)
+ a

(
2n− 1−

√
4na+ 1

)
.

with equality if and only if G = Kn or G = Kn.

Remark 3.6. [147] Let G ∈ G(n,m) (n ≥ 3, m > 0) be a graph. If G is Kr+1-free with 2 ≤ r ≤ n−1,

then [151]

M1(G) ≤ 2r − 2

r
nm

with equality for r = 2 if and only if G is a complete bipartite graph, and thus

LE(G) ≤ E(G) +

√
2r − 2

r
n2m− 4m2.

In particular, if G is bipartite (r = 2), then [97]

E(G) ≤ n(
√
n+
√
2)√

8

and thus

LE(G) ≤ E(G) +
√
n2m− 4m2

<
n(
√
n+
√
2)√

8
+

n2

4
.
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The second inequality is strict because the bounds for E(G) can not be attained for the complete bipartite

graph, which is equal to 2
√

s(n− s) ≤ n for some 1 ≤ s ≤ bn
2
c. Note that for rational number α with

0 < α ≤ 1
2
, LE(Kan,(1−α)n) = 2αn + 2α(1− α)(1− 2α)n2. Let LEbip(n) be the maximum Laplacian

energy of n-vertex bipartite graphs. Then 2α(1 − α)(1 − 2α) < limn→∞
LEbip(n)

n2 ≤ 0.25. For real x

with 0 < x ≤ 1
2
, x(1 − x)(1 − 2x) is maximum if and only if x = 3−

√
3

6
. Let α = 0.211 < 3−

√
3

6
. Then

0.19 < limn→∞
LEbip(n)

n2 ≤ 0.25. If G is a tree, then Zg(G) ≤ n(n− 1), and thus

LE(G) ≤ E(G) +
√
n− 1(n− 2).

3.2.3 Laplacian–energy–like invariant

Grone and Merris [58] got the following result.

Lemma 3.10. [58] Let G be a graph with at least one edge and maximum vertex degree ∆. Then

µ1 ≥ 1 + ∆

with equality for connected graphs if and only if ∆ = n− 1.

Gutman, Zhou, and Furtula [72] obtained the following Nordhaus–Gaddum-type result for Laplacian-
energy-like invariant.

Theorem 3.15. [72] Let G ∈ G(n) (n ≥ 2) be a graph. Then
√
n(n− 1) ≤ LEL(G) + LEL(G) <

√
2(n+ 1) +

√
2(n− 2)(n2 − 2n− 1)

with left equality if and only if G ∼= Kn and G ∼= Kn.

Proof. Let m and m be respectively the number of edges of G and G. Let µ1, µ2, . . . , µn be the Laplacian
eigenvalues of G arranged in an non-increasing order. Then µi = n − µn−i for i = 1, 2, . . . , n − 1. It
follows that

LEL(G) + LEL(G) =
n−1∑

i=1

(
√
µi +

√
n− µi) ≥

n−1∑

i=1

√
n = (n− 1)

√
n

with equality if and only if either µ1 = · · · = µn−1 = n and then G ∼= Kn, or (by Lemma 3.10)
µ1 = · · · = µn−1 = 0 and then G ∼= Kn.

On the other hand, by the Cauchy-Schwarz inequality,

LEL(G) + LEL(G) ≤ √
µ1 +

√
µ1 +

√
(n− 2)(2m− µ1) +

√
(n− 2)(2m− µ1)

≤
√
2(µ1 + µ1) +

√
2(n− 2)[n(n− 1)− (µ1 + µ1)].

Consider the function g(x) =
√
2x+

√
2(n− 2)[n(n− 1)− x]. It is decreasing for x ≥ n.

If one of G or G is empty, then µ1+µ1 = n. Otherwise, since one of G and G is connected, we have
by Lemma 3.10 that µ1 + µ1 ≥ 1 +∆+ 1 + (n− 1− δ) = n+ 1 +∆− δ > n+ 1, where ∆ and δ are
respectively the maximum and minimum vertex degree of G. Thus,

LEL(G) + LEL(G) < g(n+ 1) =
√
2(n+ 1) +

√
2(n− 2)(n2 − 2n− 1),
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as desired.

Note that

LEL(Kn/2,n/2) =
√
n+

√
2

2
(n− 1)

√
n and LEL(Kn/2,n/2) =

√
2

2
(n− 2)

√
n.

Then
LEL(Kn/2,n/2) + LEL(Kn/2,n/2) =

√
n+
√
2

(
n− 3

2

)√
n.

This example shows that the upper bound in the previous proposition is asymptotically best possible.
More precisely: Let maxLELNG(n) be the maximum value of LEL(G) +LEL(G) over all graphs with
n vertices. Then

lim
n→∞

maxLELNG(n)

n3/2
=
√
2.

3.2.4 Laplacian Estrada Index

Chen and Hou [16] first obtained a lower bound of LEE(G) for a connected graph G.

Lemma 3.11. [16] Let G ∈ G(n) (n > 3) be a connected graph with a connected complement G. Let

∆(G) = ∆ and δ(G) = δ. Then

LEE(G) ≥ 1 + e∆+1 + eδ + (n− 3)e
2m−∆−δ−1

n−3 ,

with equality holding if and only if G ∼= 2K1 ∨Kn−2, or G ∼= K1,n−1, or G ∼= (K1 ∪Kn−2) ∨K1.

Next, they derived the following Nordhaus–Gaddum-type result.

Proposition 3.5. [16] Let G ∈ G(n) (n > 3) be a connected graph with a connected complement G.

Let ∆(G) = ∆ and δ(G) = δ. Then

LEE(G) + LEE(G) > e∆+1 + en−1−∆ + eδ + en−δ + 2(n− 3)e
n
2 + 2.

Proof. For convenience, we let

f(m,∆, δ) = 1 + e∆+1 + eδ + (n− 3)e
2m−∆−δ−1

n−3 .

Observing that |E(G)| = n(n−1)
2
−m, ∆(G) = n− 1− δ, and δ(G) = n− 1−∆. From Lemma 3.11,

we have

LEE(G) + LEE(G) > f(m,∆, δ) + f

(
n(n− 1)

2
−m,n− 1− δ, n− 1−∆

)

= 2 + e∆+1 + eδ + en−δ + en−1−∆

+(n− 3)
(
e

2m−∆−δ−1
n−3 + e

(n−1)(n−2)−2m+∆+δ−1
n−3

)

≥ e∆+1 + en−1−∆ + eδ + en−δ + 2(n− 3)e
n
2 + 2,

where the first inequality holds strictly since G is required to be connected, while the second inequality
follows from the fact that ea + eb ≥ 2e

a+b
2 holds for a, b ≥ 0, which is a direct consequence of the

arithmetic-geometric inequality. The proof is completed.
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Remark 3.7. [16] Zhou [152] showed that,

LEE(G) + LEE(G) > (n− 1)e
n
2 + 2. (98)

Observing that ex + en−x ≥ 2e
n
2 holds for 0 ≤ x ≤ n, one can see easily that the bound in Proposition

3.5 is always better than the bound (98).

3.2.5 Laplacian Estrada–like invariant

Güngoör [59] got the upper and lower bounds for Laplacian Estrada-like invariant.

Lemma 3.12. [59] Let G ∈ G(n,m) be a graph. Then
√
n[(n− 1)e2LEL(G)/n + 1] + 2LEL(G) + 4m ≤ LEEL(G) ≤ n− 1 + e

√
2m.

By these bounds, they derived the following Nordhaus–Gaddum-type results.

Theorem 3.16. [59] Let G ∈ G(n,m) (n ≥ 2) be a connected graph with a connected component G.

Then

n
√
2e

√
n ≤ LEEL(G) + LEEL(G) ≤ 2(n− 1) + e

√
2m + e

√
n(n−1)−2m.

Proof. Let µ1, µ2, · · · , µn be the Laplacian eigenvalues of G arranged in a nonincreasing order. Then,
for i = 1, 2, · · · , n− 1, µi = n− µn−i. By considering (95), a direct calculation gives that

LEEL(G) + LEEL(G) =
n∑

i=1

(e
√
µi + e

√
n−µi) ≥

n∑

i=1

√
2e

√
n = n

√
2e

√
n.

By Lemma 3.12, we did obtain an upper bound n − 1 + e
√
2m for LEEL(G). Now recalling that

m = (n(n− 1)− 2m)/2, again a direct calculation shows that

LEEL(G) + LEEL(G) ≤ 2(n− 1) + e
√
2m + e

√
n(n−1)−2m.

Hence the result is attained.

3.2.6 Kirchhoff index

A strongly regular graph with parameters (n, k, a, c), denoted by srg(n, k, a, c), is a k-regular graph on
n vertices such that for every pair of adjacent vertices there are a vertices adjacent to both, and for every
pair of non-adjacent vertices there are c vertices adjacent to both. We exclude k = 0 and k = n− 1 from
being strongly regular. In this section, we let µn−1 ≥ µn−2 ≥ · · · ≥ µ1 ≥ µ0 = 0 be the eigenvalues of
G.

It is well known [56] that a srg(n, k, a, c) has eigenvalues

k, and θ± =
a− c±

√
∆

2
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with corresponding multiplicities

1, andm∓ =
1

2

(
n− 1∓ (n− 1)(c− a)− 2k√

∆

)
,

where ∆ = (a− c)2 + 4(k − c) > 0.
A conference graph is a strongly regular graph with multiplicities m+ = m−.

In [162], Zhou and Trinajstić obtained a Nordhaus–Gaddum-type result for the Kirchhoff index.

Theorem 3.17. [162] Let G ∈ G(n) (n ≥ 5) be a connected (molecular) graph with a connected

complement G. Then

4n− 2 ≤ Kf(G) +Kf(G) <
n3 + 3n2 + 2n− 6

6
. (99)

Later, Yang, Zhang, and Klein [142] improved their results by showing that

Theorem 3.18. [142] Let G ∈ G(n) (n ≥ 5) be a connected (molecular) graph with a connected

complement G. Then

4n ≤ Kf(G) +Kf(G) <
n3 + 17n− 18

6
, (100)

and equality holds (at the lower bound) if and only if G is a conference graph.

Zhou [148] proved the following result.

Lemma 3.13. [148] Let G ∈ G(n) be a connected graph. Then λ1 = λ2 = . . . = λn−1 if and only if

G ∼= Kn.

Lemma 3.14. [56] A connected regular graph with exactly three distinct eigenvalues is strongly regular.

Lemma 3.15. [142] Let G ba a connected srg(n, n−1
2
, a, c). Then

a+ c =
n− 3

2
.

We are now in a position to give the proof of Theorem 3.18.
Proof of Theorem 3.18: We first prove the lower bound. Let d1 ≤ d2 ≤ · · · ≤ dn and 0 = λ0 < λ1 ≤
· · · ≤ λn−1 be the vertex degrees and the Laplacian eigenvalues of G, respectively. Then it is well known
that [19]

S(G) = (0, n− λn−1, n− λn−2, · · · , n− λ1).

From (96), we have

Kf(G) +Kf(G) = n
n−1∑

i=1

1

λi

+ n
n−1∑

i=1

1

n− λi

= n

n−1∑

i=1

(
1

λi

+
1

n− λi

)

= n2

n−1∑

i=1

1

λi(n− λi)
,
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and by the Cauchy-Schwarz inequality, we have

n−1∑

i=1

1

λi(n− λi)
≥ (n− 1)2∑n−1

i=1 λi(n− λi)
. (101)

Since

tr(L(G)) =
n∑

i=1

di =
n−1∑

i=0

λi

and

tr(L(G)2) =
n∑

i=1

(d2i + di) =
n−1∑

i=0

λ2
i ,

it follows that

n−1∑

i=1

λi(n− λi) = n

n−1∑

i=1

λi −
n−1∑

i=1

λ2
i = n

n∑

i=1

di −
n∑

i=1

(d2i + di)

=
n∑

i=1

di(n− 1− di) ≤
n∑

i=1

(
n− 1

2

)2

=
n(n− 1)2

4
,

(102)

and thus

Kf(G) +Kf(G) = n2

n−1∑

i=1

1

λi(n− λi)
≥ n2 (n− 1)2

n(n−1)2

4

= 4n. (103)

To show the sharpness of the lower bound, we can see that equality holds in (103) if and only if
equalities in both (101) and (102) hold. Equality can only hold in (101) if for all 1 ≤ i 6= j ≤ n− 1,

λi(n− λi) = λj(n− λj),

or equivalently
(λi − λj)(n− λi − λj) = 0,

which indicates that either λi = λj or λi+λj = n; and equality can only hold in (102) if G is (n− 1)/2-
regular. From our hypothesis G is not complete, so by Lemma 3.13 we know λ1 = λ2 = · · · = λn−1

is impossible, and equality can only hold in (101) if G has exactly two distinct non-zero Laplacian
eigenvalues λ1 and n− λ1; in other words, G has exactly three distinct Laplacian eigenvalues 0, λ1 and
n − λ1. Since G is (n − 1)/2-regular, it follows that G also has exactly three distinct adjacency-matrix
eigenvalues

n− 1

2
,
n− 1

2
− λ1 and λ1 −

n+ 1

2
. (104)

By Lemma 3.14, G is strongly regular and thus we may suppose that G is a srg(n, n−1
2
, a, c). Then

by the spectral property of a strongly regular graph we get that the three distinct eigenvalues of G are

n− 1

2
, and θ± =

a− c±
√
∆

2
, (105)



100

where ∆ = (a− c)2 + 4((n− 1)/2− c). Comparing (104) with (105), we know

θ+ + θ− =
a− c+

√
∆

2
+

a− c−
√
∆

2
= a− c =

n− 1

2
− λ1 + λ1 −

n+ 1

2
= −1,

that is

c− a = 1. (106)

On the other hand, by Lemma 3.15,

a+ c =
n− 3

2
. (107)

Combining (106) and (107), one finds a = n−5
4

and c = n−1
4

. Hence G is a srg(n, n−1
2
, n−5

4
, n−1

4
) and

it follows that G is a conference graph. Hence

Kf(G) +Kf(G) ≥ 4n

with equality if and only if G is a conference graph.

To prove the upper bound, we use the famous Foster’s formula [53], which states that the sum
of resistance distance between all pairs of adjacent vertices in a connected n-vertex graph is n − 1,
whence

∑
i<j, dij(G)=1 rij(G) +

∑
i<j, dij(G)=1 rij(G) = 2(n − 1). Clearly,

∑
i<j, dij(G)=1 dij(G) +∑

i<j, dij(G)=1 dij(G) = n(n−1)
2

and recall that [144] W (G) + W (G) ≤ n3+3n2+2n−6
6

with equality if
and only if G = Pn or G = Pn. Then it follows that

Kf(G) +Kf(G) ≤ W (G) +W (G)−
(
n(n− 1)

2
− 2(n− 1)

)
≤ n3 + 17n− 18

6
. (108)

For equality in (108) to hold requires not only G = Pn or G = Pn, but also the resistance distance
between every pair of nonadjacent vertices in both G and G be equal to the distance between them. But
this is impossible since the resistance distance between every pair of nonadjacent vertices in Pn is less
than the shortest-path distance between them because they are connected by more than one path. So

Kf(G) +Kf(Ḡ) <
n3 + 17n− 18

6
,

and the proof is completed.

Though the upper bound is not sharp, they showed that it is nearly the best possible with an example.
Take the n-vertex path Pn for an example. It is well known that

Kf(Pn) = W (Pn) =
n3 − n

6
,

so it suffices to compute Kf(Pn). Since [5]

S(Pn) =

(
0, 4 sin2 π

2n
, 4 sin2 2π

2n
, · · · , 4 sin2 (n− 1)π

2n

)
,
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it follows that

S(Pn) =

(
0, n− 4 sin2 π

2n
, n− 4 sin2 2π

2n
, · · · , n− 4 sin2 (n− 1)π

2n

)
.

Then by (96), we have

Kf(Pn) = n
n−1∑

k=1

1

n− 4 sin2 kπ
2n

Thus

Kf(Pn) +Kf(Pn) =
n3 − n

6
+ n

n−1∑

k=1

1

n− 4 sin2 kπ
2n

>
n3 − n

6
+ n− 1 =

n3 + 5n− 6

6
.

Comparing Kf(Pn) +Kf(Pn) with the upper bound in Theorem 3.18, we can conclude that the upper
bound is nearly the best possible.

The above example illustrates that the upper bound is the best possible. Yang, Zhang, and Klein
proposed the following conjecture.

Conjecture 3.3. [142] Let G ∈ G(n) be a connected graph with a connected G. Then

Kf(G) +Kf(G) ≤ n3 − n

6
+ n

n−1∑

k=1

1

n− 4 sin2 kπ
2n

with equality holding if and only if G = Pn or G = Pn.

The diameter of a graph G, denote by d(G), is the maximum shortest-path distance between any two
vertices in G. In their paper, Yang, Zhang, and Klein [142] gave bounds for the product of Kf(G) and
Kf(Ḡ) in terms of the vertex number n and the maximum diameter of G and G.

Theorem 3.19. [142] Suppose that d = max{d(G), d(G)}. Then

4(n− 1)2 < Kf(G)×Kf(G) <

{
1
16
(9n4 + 6n3 − 23n2 − 8n+ 16), if d = 3

d
8
n4 + 1

2
n3 − d2+2d−2

4d
n2 − d+2

2d
n+ d2+4d+4

8d
, otherwise.

Proof. We only prove the upper bound, since the lower bound has been improved. Without loss of
generality, suppose that d = d(G). If d = 3, then d(G) ≤ 3 and

Kf(G)×Kf(G) =

[∑

i<j

rij(G)

][∑

i<j

rij(G)

]

=


 ∑

i<j, dij(G)=1

rij(G) +
∑

i<j, 2≤dij(G)≤3

rij(G)




×


 ∑

i<j, dij(G)=1

rij(G) +
∑

i<j, 2≤dij(G)≤3

rij(G)


 .
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But then nothing that by Foster’s theorem
∑

ij∈E rij = n − 1,and further for 2 ≤ dij ≤ 3 that the
corresponding rij ≤ dij ≤ 3, we have

Kf(G)×Kf(G) <

[
n− 1 + 3

(
n(n− 1)

2
−m

)]
[n− 1 + 3m]

= (n− 1)2 + 3(n− 1)
n(n− 1)

2
+ 9

(
n(n− 1)

2
−m

)
m

≤ (n− 1)2 + 3(n− 1)
n(n− 1)

2
+ 9

(
n(n− 1)

4

)2

=
1

16
(9n4 + 6n3 − 23n2 − 8n+ 16).

Else, d = 2 or d > 3. If d(G) > 3, then d(G) < 3, and hence it holds for both d = 2 and d > 3 that
d(Ḡ = 2). Thus if d = 2 or d > 3, then

Kf(G)×Kf(G) =

[∑

i<j

rij(G)

][∑

i<j

rij(G)

]

=



∑

i<j

dij(G)=1

rij(G) +
∑

i<j

2≤dij(G)≤d

rij(G)




×



∑

i<j

dij(G)=1

rij(G) +
∑

i<j

dij(G)=2

rij(G)




<

[
n− 1 + d

(
n(n− 1)

2
−m

)]
[n− 1 + 2m]

= −2dm2 + (n− 1)(dn− d+ 2)m+
n(n− 1)2d

2
+ (n− 1)2

= −2d
[
m− (n− 1)(dn− d+ 2)

4d

]2
+

d

8
n4 +

1

2
n3

−d2 + 2d− 2

4d
n2 − d+ 2

2d
n+

d2 + 4d+ 4

8d

≤ d

8
n4 +

1

2
n3 − d2 + 2d− 2

4d
n2 − d+ 2

2d
n+

d2 + 4d+ 4

8d
.

If we choose G to be a conference graph on n vertices, then as indicated in the proof of Theorem
3.18,

Kf(G) = Kf(Ḡ) = 2n
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Thus

Kf(G)×Kf(Ḡ) = 2n× 2n = 4n2,

which enables us to conclude that the lower bound obtained in Theorem 3.19 is nearly the best possible.
However, as far as the upper bound is concerned, it can be seen from the proof process that it is somewhat
rough, so we have every reason to believe that it will be improved in the future.

Das, Yang and Xu [36] gave a new lower bound for Kf(G)×Kf(G) in terms of n. For this we need
the following result:

Lemma 3.16. [53] Let G ∈ G(n) be a connected graph. Then the sum of resistance distances between

all pairs of adjacent vertices is equal to n− 1, i.e.,

∑

vivj∈E(G)

rij = n− 1. (109)

By the above lemma, they derived the new lower bound of Kf(G)×Kf(G).

Theorem 3.20. [36] Let G ∈ G(n) be a connected graph with connected complement G. Then

Kf(G)×Kf(G) ≥ (2n− 1)2.

Proof. By the arithmetic-harmonic mean inequality, we have

n∑

i=1

di
n− di − 1

n∑

i=1

n− di − 1

di

=

[
−n+ (n− 1)

n∑

i=1

1

n− di − 1

][
−n+ (n− 1)

n∑

i=1

1

di

]

≥
[
−n+ (n− 1)

n2

n(n− 1)− 2m

] [
−n+ (n− 1)

n2

2m

]

=
2mn

n(n− 1)− 2m

n2(n− 1)− 2mn

2m
= n2.

(110)

One can easily see that

di
n− di − 1

+
n− di − 1

di
≥ 2. (111)
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Using (109), we get

Kf(G)×Kf(G) =
∑

i<j

rij
∑

i<j

rij

=


n− 1 +

∑

dij≥2

rij




n− 1 +

∑

dij≥2

rij




= (n− 1)2 + (n− 1)


∑

dij≥2

rij +
∑

dij≥2

rij


+

∑

dij≥2

rij
∑

dij≥2

rij

≥ (n− 1)2 + (n− 1)


∑

dij≥2

(
1

di
+

1

dj

)
+
∑

dij≥2

(
1

n− di − 1
+

1

n− dj − 1

)


+
∑

dij≥2

(
1

di
+

1

dj

) ∑

dij≥2

(
1

n− di − 1
+

1

n− dj − 1

)
by (97)

= (n− 1)2 + (n− 1)
n∑

i=1

(
di

n− di − 1
+

n− di − 1

di

)
+

n∑

i=1

di
n− di − 1

n∑

i=1

n− di − 1

di

≥ (n− 1)2 + 2n(n− 1) + n2 = (2n− 1)2,

by (110) and (111). This completes the proof.

Remark 3.8. [36] Since (2n− 1)2 > 4(n− 1)2, the result is better than the previous result in Theorem

3.19.

3.3 Eigenvalues of the signless Laplacian matrix

Recall that the signless Laplacian matrix is defined by Q = Diag+A where Diag is the diagonal matrix
with degrees of the vertices on the main diagonal. We denote its eigenvalues by q1 ≥ q2 ≥ · · · ≥ qn. It
is well known that q1 ≤ 2∆, which easily implies that

q1(G) + q1(G) ≤ 2(n− 1) + 2(∆− δ)

with equality if and only if the graph is regular.
The concept of graph energy was extended to any matrix by Nikiforov [117] in the following manner.

The singular values of a real (not necessarily square) matrix M are the square roots of the eigenvalues
of the (square) matrix MM t, where M t denotes the transpose of M . The energy E(M) of the matrix M

is then defined [117] as the sum of its singular values. Obviously, E(G) = E(A(G)).
Let I(G) be the (vertex-edge) incidence matrix of the graph G. For a graph G with vertex set

{v1, v2, . . . , vn} and edge set {e1, e2, . . . , em}, the (i, j)-entry of I(G) is 1 if vi is incident with ej and
0 otherwise. (In what follows, the unit matrix of order p will be denoted by Ip, and it should not be
confused with the incidence matrix.)
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Motivated by Nikiforov’s idea, Jooyandeh, Kiani, and Mirzakhah [89] introduced the concept of
incidence energy IE(G) of a graph G, defining it as the sum of the singular values of the incidence
matrix I(G). Some basic properties of this quantity were established in [66, 89].

If the singular values of I(G) are σ1, σ2, . . . , σn, then, by definition [89],

IE(G) =
n∑

i=1

σi.

A well known fact is the identity [114, 115]:

I(G)I(G)t = D(G) + A(G), i.e., I(G)I(G)t = Q(G).

Its immediate consequence is that σi =
√
qi and therefore,

IE(G) =
n∑

i=1

√
qi.

3.3.1 Signless Laplacian spectral radius

The well known inequality 2λ1 ≤ q1 and Theorem 3.1 directly leads to the following result of Gutman,
Kiani, Mirzakhah, and Zhou obtained in 2009.

Theorem 3.21. [67] Let G ∈ G(n) be a simple graph. Then

q1(G) + q1(G) ≥ 2n− 2

with equality if and only if the graph is regular.

Concerning the upper bounds, Aouchiche and Hansen [7] obtained the following conjecture using
the AutoGraphix system.

Conjecture 3.4. [7] Let G ∈ G(n) (n ≥ 2) be a simple graph. Then

q1(G) + q1(G) ≤ 3n− 4,

q1(G) · q1(G) ≤ 2n(n− 2).

The equalities hold if and only if the graph is the star.

3.3.2 Incidence energy

Gutman, Kiani, Mirzakhah, and Zhou [67] obtained a lower bound for the incidence energy.

Lemma 3.17. [67] Let G ∈ G(n,m) be a graph. Then

IE(G) ≥ 2m√
n

with equality if and only if G ∼= Kn or G ∼= K2.
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By the above result, they [67] derived Nordhaus–Gaddum-type results for the incidence energy.

Theorem 3.22. [67] Let G ∈ G(n) (n ≥ 2) be a graph. Then

√
n(n− 1) ≤ IE(G) + IE(G) < 2

√
n− 1 + (n− 1)

√
2n− 4,

with left equality if and only if n = 2.

Proof. Let m and m be, respectively, the number of edges of G and G. By Lemma 3.17, we have

IE(G) + IE(G) ≥ 2m+ 2m√
n

=
√
n(n− 1), (112)

with equality if and only if m, m = 0, 1, i.e, n = 2 for n ≥ 2.
Let q1 be the largest signless Laplacian eigenvalue of G. By the Cauchy-Schwarz inequality,

IE(G) + IE(G) ≤ √
q1 +

√
q1 +

√
(n− 1)(2m− q1) +

√
(n− 1)(2m− q1)

≤
√

2(q1 + q1) +
√
2(n− 1)[n(n− 1)− (q1 + q1)]

and if equalities are attained, then q1 = q1 and q2 = · · · = qn. Consider the function g(x) =
√
2x +√

2(n− 1)[n(n− 1)− x]. It is decreasing for x ≥ n− 1. Note that

q1 + q1 ≥
4m

n
+

4m

n
= 2(n− 1),

with equality if and only if G is regular. Now

IE(G) + IE(G) ≤ g(2(n− 1)) = 2
√
n− 1 + (n− 1)

√
2(n− 2)

and the equality can not be attained, otherwise, λ2(G) = · · · = λn(G) = −1
2
, which is impossible,

because by the interlacing theorem, λn(G) = 0 or λn(G) ≤ −1.

They [67] also gave two examples. For the complete graph Kn,

IE(Kn) + IE(Kn) = IE(Kn) =
√
2n− 2 + (n− 1)

√
n− 2

For the complete bipartite graph Kn/2,n/2, with n even,

IE(Kn/2,n/2) =
√
n+

√
2

2
(n− 1)

√
n

and

IE(Kn/2,n/2) = 2
√
n− 2 +

√
2

2
(n− 2)

√
n− 4

Thus,

IE(Kn/2,n/2) + IE(Kn/2,n/2) =
√
n+

√
2

2
(n− 1)

√
n+ 2

√
n− 2 +

√
2

2
(n− 2)

√
n− 4.

These examples and the Theorem 3.22 imply:
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Theorem 3.23. [67] Let min IENG(n) and max IENG(n) be respectively the minimum and maximum

values of IE(G) + IE(G) over all graphs with n vertices. Then

lim
n→∞

min IENG(n)

n3/2
= 1 and lim

n→∞
max IENG(n)

n3/2
=
√
2.

By using structural parameters other than the number of vertices, the upper bound in Theorem 3.22
was improved as follows. Let

κ =
2√
n

[√
M1(G) +

√
n(n− 1)2 − 4m(n− 1) +M1(G)

]
.

Theorem 3.24. [67] Under the same conditions as in Theorem 3.22

IE(G) + IE(G) <
√
2κ+

√
2(n− 1)[n(n− 1)− κ] . (113)

Proof. Repeat the reasoning in the proof of Theorem 3.22 until (112). From the proof of Lemma 3.17
we get

q1 + q1 ≥ α(G) + α(G)

=
2√
n



√√√√

n∑

i=1

di(G)2 +

√√√√
n∑

i=1

di(G)2




=
2√
n



√√√√

n∑

i=1

di(G)2 +

√√√√
n∑

i=1

(n− 1− di(G))2




=
2√
n

[√
M1(G) +

√
n(n− 1)2 − 4m(n− 1) +M1(G)

]
.

with equality if and only if G is regular. As explained in the proof of Theorem 3.22 we now have
IE(G) + IE(G) ≤ g(κ) which immediately implies (113).

3.4 Eigenvalues of the distance matrix

Recall that the distance matrix D is the n× n matrix (Dij) such that Dij = dij . Such D is a symmetric
matrix, its eigenvalues are real. We denote the largest eigenvalue of (Dij) by Λ1.

The reciprocal distance matrix RD of G, also called the Harary matrix, is an n× n matrix (RDij),
defined by

RDij =

{ 1
dij

if i 6= j,

0 if i = j.

3.4.1 Distance spectral radius

Let A be the class of connected graphs for which the distance matrix of each graph has exactly one
positive eigenvalue.

In 2007, Zhou and Trianjstić [161] obtained the following upper and lower bounds for distance
spectral radius.
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Lemma 3.18. [161] Let G ∈ G(n,m) (n ≥ 2) be a connected graph. Then

Λ1(G) ≥ 2(n− 1)− 2m

n

with equality if and only if G = Kn or G is a regular graph of diameter two.

Lemma 3.19. [161] Let G ∈ G(n) (n ≥ 2) be a connected graph. Let Di =
∑n

j=1Dij for i = 1, . . . , n.

Then

Λ1(G) ≤ max
1≤i≤n

n∑

j=1

Dij

√
Dj

Di

with equality if and only if D1 = . . . = Dn.

By the above bounds, they [161] gave the following Nordhaus–Gaddum-type result for Λ1.

Theorem 3.25. [161] Let G ∈ G(n) (n ≥ 4) be connected graph with a connected G. Then

3(n− 1) ≤ Λ1(G) + Λ1(G) <
n(n+ 3)

2
− 3 (114)

with left equality if and only if G and G are both regular graphs of diameter two. Moreover, if G ∈ A or

G ∈ A, then

Λ1(G) + Λ1(G) <

√
(n+ 1)n(n− 1)2

6
+ 2n− 3. (115)

Proof. Let m and m be respectively the number of edges of G and G. Then 2(m+m) = n(n− 1). By
Lemma 3.18,

Λ1(G) + Λ1(G) ≥ 4(n− 1)− 2(m+m)

n
= 3(n− 1)

with equality if and only if G and G are both regular graphs of diameter two.
Let f(n) = n(n+3)

2
− 3. By Lemma 3.19, the maximum sum of the distance matrix of G is an upper

bound for Λ1(G), and it is attained if and only if the row sums are all equal. We have Λ1(G) < 1
2
n(n−1),

moreover, if G has diameter two then Λ1(G) < 1 + 2(n − 2) = 2n − 3. Thus, if one of G and G has
diameter two, then Λ1(G) + Λ1(G) < n(n−1)

2
+ 2n− 3 = f(n).

Suppose that both G and G has diameter three. For n = 4, we have G = G = P4, and so Λ1(G) +

Λ1(G) < 10.3246 < 11 = f(4). Suppose that n ≥ 5. Then we have either

Λ1(G) + Λ1(G) < [1 + 2 + 3(n− 3)] + [1 + 2(n− 3) + 3] = 5n− 8

or Λ1(G)+Λ1(G) < 2 · [1+2+3(n−3)−1] = 6n−14. Thus for n = 5, Λ1(G)+Λ1(G) < 17 = f(5),
and for n ≥ 6, Λ1(G) + Λ1(G) < 6n− 14 < f(n). Now the right inequality in (114) follows.

Suppose that G ∈ A or G ∈ A. Recall that Λ1(G) <
√

(n+1)n(n−1)2

6
if G ∈ A. Thus if one of

G and G has diameter two, then (115) holds. Suppose that both G and G has diameter three. From
the argument above, it is easy to see that (115) follows for n 6= 5. If n = 5, then one of G or G is
G1, G2 or G3, where G1 (G2, G3, respectively) is obtained from the path P5, labeled consecutively by
v1, · · · , v5, by adding edges v2v4 (edge v3v5, edge v2v5 and v3v5, respectively), by direct calculation, we
have Λ1(G) + Λ1(G) = 13.2750, 13.5467, or 13.6754, and so (115) follows again.
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3.4.2 Reciprocal distance spectral radius

Let RΛ1(G) be the maximum eigenvalue of the reciprocal distance matrix of G. In 2008, Zhou and
Trianjstić [160] obtained Nordhaus–Gaddum type bounds for RΛ1(G) in terms of n only.

Theorem 3.26. [160] Let G ∈ G(n) (n ≥ 4) be connected graph with a connected G. Then

n < RΛ1(G) +RΛ1(G) < 2n− 3. (116)

Improvements of the lower bound have then been given by Zhou, Cai, and Trianjstić [154] and by
Das [25].

Theorem 3.27. [154] Let G ∈ G(n) (n ≥ 4) be connected graph with a connected G. Then

RΛ1(G) +RΛ1(G) > n− 1 +
3

n
+ 2

n−1∑

i=3

1

i
. (117)

Zhou and Trianjstić [160] gave the following lower bound for RΛ1(G) in terms of n, m and d:

Lemma 3.20. [160] Let G ∈ G(n,m) (n ≥ 2) be a connected graph with diameter d. Then

RΛ1(G) ≥ 2m

n
+

1

d

(
n− 1− 2m

n

)
,

with equality holds if and only if G is a complete graph Kn or G is a regular graph of diameter 2.

By the above bound, Das [25] derived the following Nordhaus–Gaddum-type result.

Theorem 3.28. [25] Let G ∈ G(n) (n ≥ 4) be connected graph with a connected G. Then

RΛ1(G) +RΛ1(G) ≥ (n− 1)

(
1 +

1

k

)
, (118)

where k = max{diam(G), diam(G)}. Moreover, the second bound is reached if and only if both G and

G are regular graphs of diameter 2.

Proof. From Lemma 3.20 we arrive at

RΛ1(G) +RΛ1(G) ≥ 2m+ 2m

n
+

n(n− 1)− 2m

nd
+

n(n− 1)− 2m

nd
(119)

where m and d are, respectively, the number of edges and diameter of G. Since m + m = n(n−1)
2

and
k = max{d, d}, we get (118) from (119). First part of the proof is over.

Now suppose that equality holds in (118). Then the equality holds in (119) and k = d = d. From
equality in (119), we get both G and G are regular graph of diameter 2, by Lemma 3.20. Hence both G

and G are regular graph of diameter 2.
Conversely, let both G and G be regular graph of diameter 2. Then RΛ1(G) = n+r−1

2
and RΛ1(G) =

2(n−1)−r
2

. Hence RΛ1(G) +RΛ1(G) = 3
2
(n− 1).

For G = C5, we have RΛ1(G) +RΛ1(G) = 6, since complement of C5 is also C5.
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Remark 3.9. [25] It is easily see that our lower bound (118) is always better than (116) as 2 ≤ k ≤
n− 1.

Das [25] obtained an upper bound of RΛ1 in terms of the order, size, and minimum degree.

Lemma 3.21. [25] Let G ∈ G(n) (n ≥ 2) be a connected graph with minimum vertex degree δ. Then

RΛ1(G) ≤ 1

2

√
(n− 1)2 + 3(2m− δ), (120)

with equality if and only if G is a complete graph Kn.

A sharp upper bound using the minimum degree δ and the maximum degree ∆ in addition to n has
also been given by Das [25].

Theorem 3.29. [25] Let G ∈ G(n) (n ≥ 4) be connected graph with a connected G. Then

RΛ1(G) +RΛ1(G) ≤
√

1

2
[5(n− 1)2 + 3(∆− δ)]. (121)

Proof. Using the inequality (120) from Lemma 3.21 we arrive at

RΛ1(G) +RΛ1(G) ≤ 1

2

√
(n− 1)2 + 3(2m− δ) +

1

2

√
(n− 1)2 + 3(2m− δ)

=
1

2

√
(n− 1)2 + 3(2m− δ) +

1

2

√
4(n− 1)2 − 6m+ 3∆ (122)

as 2m = n(n− 1)− 2m and ∆ = n− 1− δ,

where m and δ are, respectively, the number of edges and the minimum vertex degree of G. Now we
consider a function

f(m) =
√
(n− 1)2 + 3(2m− δ) +

√
4(n− 1)2 − 6m+ 3∆.

It is easy to show that

f(m) ≤ f

(
(n− 1)2 +∆+ δ

4

)
= 2

√
1

2
[5(n− 1)2 + 3(∆− δ)]. (123)

From (122) and (123), we get the required result (121).

Remark 3.10. [25] In order to see that the upper bound (121) is always better than the upper bound

(116) for any graphs, note that

(2n− 3)2 ≥ 1

2
[5(n− 1)2 + 3(∆− δ)]

holds if and only if (
n− 1

3

)2

+
38

9
− (∆− δ) ≥ 0

which, evidently, is always obeyed.
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4. Distance–degree–based parameters

In chemical graph theory, distance-degree-based topological indices are expressions of the form
∑

u,v∈V (G)

F (degG(u), degG(v), dG(u, v))

where F is a function, degG(u) denotes the degree of u, and dG(u, v) denotes the distance between u

and v.
The following Table 4.1 shows the authors contributing the Nordhaus–Gaddum problem for distance-

degree-based parameters.

Distance-degree-based Parameters Authors Contributing N -G Problem

Reciprocal molecular topological index Zhou and Trinajstić [159]

Additive degree Kirchhoff index Das, Yang, and Xu [36]

Multiplicative degree Kirchhoff index Das, Yang, and Xu [36]

Feng, Yu, and Liu [51]

Table 4.1. Distance–degree–based parameters

4.1 Reciprocal molecular topological index

In 1998, Schultz and Schultz [127] introduced the reciprocal molecular topological index Sc(G) of a
connected graph G = (V,E). It is defined by

RMTI(G) =
∑

v∈V
(d(v))2 +

∑

v∈V
d(v)


 ∑

u∈V−{v}

1

dG(u, v)


 .

Zhou and Trinajstić [163] presented a relation between RMTI and the first Zagreb index M1.

Lemma 4.1. [163] Let G ∈ G(n,m) be a connected simple graph. Then

RMTI(G) ≤ 3

2
M1(G) + (n− 1)m

with equality if and only if the diameter of G is at most two.

In the same paper, they [163] first give a Nordhaus–Gaddum type result for the first Zagreb index.

Lemma 4.2. [163] Let G ∈ G(n) (n ≥ 4) be a connected graph with a connected G. Then

M1(G) + M1(G) ≤ n3 − 4n2 + 3n+ 8

with equality if and only if G or G is the graph S ′
n, which is obtained by attaching a pendant vertex to a

pendant vertex of the star Sn−1.

Next, Zhou and Trinajstić [159] proved the following theorem.
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Theorem 4.1. [159] If G ∈ G(n) (n ≥ 4) is a graph such that both G and G are connected, then

RMTI(G) + RMTI(G) < 2n3 − 7n2 + 5n+ 12.

Proof. From Lemmas 4.1 and 4.2,

RMTI(G) + RMTI(G) ≤ 3

2
[M1(G) + M1(G)] +

1

2
n(n− 1)2

≤ 3

2
(n3 − 4n2 + 3n+ 8) +

1

2
n(n− 1)2

= 2n3 − 7n2 + 5n+ 12.

Note that if the upper bound in Lemma 4.2 is attained, then the diameter of G is 3. Hence the upper
bound in Lemmas 4.1 and 4.2 cannot be achieved at the same time. The theorem is thus proved.

4.2 Additive degree Kirchhoff index

The additive degree Kirchhoff index was put forward in [64]. It is defined as

Kf+(G) =
∑

{u,v}⊆V (G)

(d(u) + d(v))R(u, v) =
∑

i<j

(di + dj) rij, (124)

where di is the degree of vertex vi for i = 1, 2, . . . , n, and rij is the resistance distance between vi and
vj .

To obtain the Nordhaus–Gaddum-type result for Kf+(G), the following two graph invariants are
used. One is the inverse degree of G [21],

ID(G) =
∑

vi∈V (G)

1

di
;

the other is the modified second Zagreb index of G [33],

M∗
2 (G) =

∑

vivj∈E(G)

1

didj
. (125)

Das, Yang, and Xu [36] studied Kf(G), Kf+(G) and Kf ∗(G) (defined in the next subsection) in
more detail, especially Nordhaus–Gaddum-type results for them, which are given in terms of the number
of vertices, the number of edges, minimum and maximum vertex degree, the inverse degree and the
modified second Zagreb index.

They first gave a lower bound for Kf+(G) +Kf+(G) in terms of n only.

Theorem 4.2. [36] Let G ∈ G(n) be a connected graph with connected complement G. Then

Kf+(G) +Kf+(G) > 4n(n− 2).
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Proof. From (124),

Kf+(G) +Kf+(G)

=
∑

i<j

[(di + dj)rij + (2n− di − dj − 2)rij]

≥
∑

vivj∈E(G)

[
(di + dj − 2)(di + dj)

didj − 1
+

(
1

n− di − 1
+

1

n− dj − 1

)
(2n− di − dj − 2)

]

+
∑

i<j, dij≥2

[(
1

di
+

1

dj

)
(di + dj) +

2n− di − dj − 4

(n− di − 1)(n− dj − 1)− 1
(2n− di − dj − 2)

]

by (97)

>
∑

vivj∈E(G)

[
(di + dj − 2)(di + dj)

didj
+

(
1

n− di − 1
+

1

n− dj − 1

)
(2n− di − dj − 2)

]

+
∑

i<j, dij≥2

[(
1

di
+

1

dj

)
(di + dj) +

2n− di − dj − 4

(n− di − 1)(n− dj − 1)− 1
(2n− di − dj − 2)

]

=
∑

vivj∈E(G)

[
di
dj

+
dj
di

+ 2− 2

(
1

di
+

1

dj

)
+ 2 +

(
n− dj − 1

n− di − 1
+

n− di − 1

n− dj − 1

)]

+
∑

i<j, dij≥2

[
di
dj

+
dj
di

+ 2 +

(
n− dj − 1

n− di − 1
+

n− di − 1

n− dj − 1
+ 2

)

−2
(

1

n− di − 1
+

1

n− dj − 1

)]
≥ 8m− 2n+ 8

(
n(n− 1)

2
−m

)
− 2n

= 4n(n− 2),

as
di
dj

+
dj
di
≥ 2,

n− dj − 1

n− di − 1
+

n− di − 1

n− dj − 1
≥ 2 and

∑

vivj∈E(G)

(
1

di
+

1

dj
) = n.

This completes the proof.

Remark 4.1. [36] If we choose G to be a conference graph on n vertices, then as proved in [142],

Kf(G) = Kf(G) = 2n.

Noticing that both G and G are n−1
2

-regular, it follows that

Kf+(G) +Kf+(G) = 2n(n− 1) + 2n(n− 1) = 4n(n− 1),

which indicates that the lower bound obtained in Theorem 4.2 is asymptotically best.

In the same paper, they [36] also gave an upper bound for Kf+(G) +Kf+(G) in terms of the order,
size, maximum degree, and minimum degree.
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Theorem 4.3. [36] Let G ∈ G(n,m) be a connected graph, maximum degree ∆ and minimum degree

δ. Then

Kf+(G) +Kf+(G) ≤ 2(n− 1)(n− 1 + ∆− δ) + [n(n− 1)− 2m](n+ 3− 2δ)∆

+2(n− 1− δ)(2∆ + 5− n)m.

Proof. By graph theoretic knowledge, it is easily seen that if dij ≥ 3, then the length of any path
connecting vi and vj must be less than or equal to n+ 1− di − dj , thus

rij ≤ n+ 1− di − dj.

Similarly, if dij ≥ 3, then

rij ≤ n+ 1− di − dj = di + dj + 3− n.

Using the above results, we get

Kf+(G) +Kf+(G)

=
∑

i<j

[(di + dj)rij + (2n− di − dj − 2)rij]

=
∑

vivj∈E(G)

(di + dj)rij +
∑

vivj∈E(G)

(2n− di − dj − 2)rij +
∑

dij=2

(di + dj)rij

+
∑

dij=2

(2n− di − dj − 2)rij +
∑

dij≥3

(di + dj)rij +
∑

dij≥3

(2n− di − dj − 2)rij

≤ 2(n− 1)∆ + 2(n− δ − 1)(n− 1) + 2
∑

dij=2

(di + dj) + 2
∑

dij=2

(2n− di − dj − 2)

+
∑

dij≥3

(di + dj)(n+ 1− di − dj) +
∑

dij≥3

(2n− di − dj − 2)(di + dj + 3− n)

≤ 2(n− 1)∆ + 2(n− δ − 1)(n− 1) + 2
∑

dij=2

(2∆) + 2
∑

dij=2

(2n− 2− 2δ)

+
∑

dij≥3

[2∆(n+ 1− 2δ)] +
∑

dij≥3

[(2n− 2− 2δ)(2∆ + 3− n)].

Then the desired result can be derived by using the following inequalities

∑

dij=2

1 ≤ n(n− 1)

2
−m,

∑

dij≥3

1 ≤ n(n− 1)

2
−m,

∑

dij=2

1 ≤ m,
∑

dij≥3

≤ m.

If δ ≤ n−1
2
≤ ∆, we have 2 ≤ 2∆ + 3− n and 2 ≤ n+ 1− 2δ. Therefore by the proof of Theorem

4.3, the following corollary can be easily obtained.
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Corollary 4.1. [36] Let G ∈ G(n,m) be a connected graph with maximum degree ∆ and minimum

degree δ such that δ ≤ n−1
2
≤ ∆. Then

Kf+(G) +Kf+(G) ≤ 2(n− 1)(n− 1 + ∆− δ) + [n(n− 1)− 2m]∆(n+ 1− 2δ)

+m(2n− 2− 2δ)(2∆ + 3− n).

4.3 Multiplicative degree Kirchhoff index

A new index named multiplicative degree Kirchhoff index was put forward in [15]. It is defined as

Kf ∗(G) =
∑

{u,v}⊆V (G)

d(u) d(v)R(u, v) =
∑

i<j

di dj rij, (126)

where di is the degree of vertex vi for i = 1, 2, . . . , n, and rij is the resistance distance between vi and
vj .

Apparently, we can see that the multiplicative degree Kirchhoff index may be viewed as the resi-
stance–distance analogue of the Gutman index.

In [17], Chung defined the normalized Laplacian matrix L (G) = (Luv)n×n of a graph G as follows:

Luv =





1 if u = v,
− 1√

degG(u)degG(v)
if u ∼ v,

0 otherwise.

We call eigenvalues of L (G) the normalized Laplacian eiganvalues of G, and the eigenvalues of L (G)

are ordered by λ1 ≥ λ2 ≥ · · · ≥ λn−1 > λn = 0. One can find that L = D−1/2LD−1/2.

A remarkable analogy between the Kirchhoff and multiplicative degree Kirchhoff indices is the for-
mula [15]:

Kf ∗(G) = 2m
n−1∑

i=1

1

λi

.

4.3.1 Nordhaus–Gaddum–type inequalities in G(n,m)

Das, Yang, and Xu [36] gave lower bound for Kf ∗(G) +Kf ∗(G) in terms of n, m, ∆ and M∗
2 (G).

Theorem 4.4. [36] Let G ∈ G(n,m) be a connected graph with maximum degree ∆ < n− 1. Then

Kf ∗(G) +Kf ∗(G) > n(n2 − 3n+ 4)− 1

(n−∆− 1)2
[n(n− 1)− 2m]− 2M∗

2 (G).
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Proof. From (126),

Kf ∗(G) +Kf ∗(G)

=
∑

i<j

[didjrij + (n− di − 1)(n− dj − 1)rij]

≥
∑

vivj∈E(G)

[
di + dj − 2

didj − 1
didj +

(
1

n− di − 1
+

1

n− dj − 1

)
(n− di − 1)(n− dj − 1)

]

+
∑

i<j, dij≥2

[(
1

di
+

1

dj

)
didj +

2n− di − dj − 4

(n− di − 1)(n− dj − 1)− 1
(n− di − 1)(n− dj − 1)

]

=
∑

vivj∈E(G)

[
2n− 4 +

di + dj − 2

didj − 1

]
+

∑

i<j, dij≥2

[
2n− 4 +

2n− di − dj − 4

(n− di − 1)(n− dj − 1)− 1

]

>
∑

i<j

(2n− 4) +
∑

vivj∈E(G)

(
1

di
+

1

dj
− 2

didj

)

+
∑

i<j, dij≥2

[
1

n− di − 1
+

1

n− dj − 1
− 2

(n− di − 1)(n− dj − 1)

]

= n(n− 1)(n− 2) + 2n− 2
∑

vivj∈E(G)

1

didj
− 2

∑

i<j, dij≥2

1

(n− di − 1)(n− dj − 1)

≥ n(n2 − 3n+ 4)− 1

(n−∆− 1)2
[n(n− 1)− 2m]− 2M∗

2 (G) as ∆ ≥ di.

This completes the proof.

Remark 4.2. [36] If we choose G to be a conference graph, then

Kf ∗(G) +Kf ∗(G) = 2n · (n− 1)2

4
+ 2n · (n− 1)2

4
= n(n− 1)2,

which indicates that the lower bound obtained in Theorem 4.4 is asymptotically best.

Similarly to Theorem 4.3, we obtain an upper bound for Kf ∗(G) +Kf ∗(G) in terms of n, m, δ and
∆.

Theorem 4.5. [36] Let G ∈ G(n,m) be a connected graph with minimum degree δ and maximum degree

∆. Then

Kf ∗(G) +Kf ∗(G) ≤
[
∆2 + (n− δ − 1)2

]
(n− 1) +

[
n(n− 1)

2
−m

]
(n+ 3− 2δ)∆2

+m(n− 1− δ)2(2∆ + 5− n).

Proof. Bearing in mind that

rij ≤ n+ 1− di − dj ≤ n+ 1− 2δ for dij ≥ 3,
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we have

Kf ∗(G) +Kf ∗(G)

=
∑

vivj∈E(G)

didjrij +
∑

vivj∈E(G)

(n− 1− di)(n− 1− dj)rij +
∑

dij=2

didjrij

+
∑

dij=2

(n− 1− di)(n− 1− dj)rij +
∑

dij≥3

didjrij +
∑

dij≥3

(n− 1− di)(n− 1− dj)rij

≤ ∆2(n− 1) + (n− δ − 1)2(n− 1) +
∑

dij=2

(2∆2) +
∑

dij=2

2(n− 1− δ)2

+
∑

dij≥3

∆2(n+ 1− 2δ) +
∑

dij≥3

(n− 1− δ)2(2∆ + 3− n)

≤ [∆2 + (n− δ − 1)2](n− 1) +

[
n(n− 1)

2
−m

]
(n+ 3− 2δ)∆2

+m(n− 1− δ)2(2∆ + 5− n),

as required.

Similarly as before, we can deduce the following corollary.

Corollary 4.2. [36] Let G ∈ G(n,m) be a connected graph with minimum degree δ and maximum

degree ∆ such that δ ≤ n−1
2
≤ ∆. Then

Kf ∗(G) +Kf ∗(G) ≤ [∆2 + (n− δ − 1)2](n− 1) +

[
n(n− 1)

2
−m

]
(n+ 1− 2δ)∆2

+m(n− 1− δ)2(2∆ + 3− n).

Feng, Yu, and Liu [51] obtained an upper bound for the multiplicative degree Kirchhoff index.

Lemma 4.3. [51] Let G ∈ G(n) (n ≥ 5) be a connected (molecular) graph with diameter d. Then

Kf ∗(G) ≤ 4d(n− 1)m2.

By the upper bound, they [51] derived the Nordhaus–Gaddum-type result.

Theorem 4.6. [51] Let G ∈ G(n) (n ≥ 5) be a connected (molecular) graph with a connected comple-

ment G. Then

Kf ∗(G) +Kf ∗(G) ≤ 4(n− 1)2

(
m2 +

((
n

2

)
−m

)2
)
.

Proof. Note that the diameter of any graph is at most n− 1. From the result in Lemma 4.3, we have

Kf ∗(G) +Kf ∗(G) ≤ 4(n− 1)2

(
m2 +

((
n

2

)
−m

)2
)
.

This implies the result.
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4.3.2 Nordhaus–Gaddum–type inequalities in G(n)

Feng, Yu, and Liu [51] first obtained some lower bounds for the degree Kirchhoff index.

Lemma 4.4. [51] Let G ∈ G(n,m) (n > 2) be a connected graph. Then

Kf ∗(G) ≥ 2m

(
n− 2 +

1

n

)
,

Kf ∗(G) ≥ 2m

(
∆

∆+ 1
+

(n− 2)2

n− 1− 1
∆

)
,

Kf ∗(G) ≥ 2m

(
χ

χ+ 1
+

(n− 2)2

n− 1− 1
χ

)
.

Each of the above equalities holds if and only if G ∼= Kn.

By the lower bounds, they [51] derived the Nordhaus–Gaddum-type result for the degree Kirchhoff
index.

Theorem 4.7. [51] Let G ∈ G(n) (n ≥ 5) be a connected (molecular) graph with a connected comple-

ment G. Then

Kf ∗(G) +Kf ∗(G) ≥ (n− 1)3

2
.

Proof. From the result in Lemma 4.4, we have

Kf ∗(G) +Kf ∗(G) ≥ 2m

(
n− 2 +

1

n

)
+

((
n

2

)
− 2m

)(
n− 2 +

1

n

)

=

(
n

2

)(
n− 2 +

1

n

)
=

(n− 1)3

2
.

This implies the result.
Feng, Yu, and Liu [51] also got an upper bound for the multiplicative degree Kirchhoff index in terms

of the order and maximum degree.

Lemma 4.5. [51] Let G ∈ G(n) be a graph with maximum degree ∆. Then

Kf ∗(G) ≤
(
n+ 1

3

)
∆3.

By Lemma 4.5, they derived the following result.

Theorem 4.8. [51] Let G ∈ G(n) (n ≥ 5) be a connected (molecular) graph with a connected comple-

ment G. Then

Kf ∗(G) +Kf ∗(G) ≤
(
n+ 1

3

)(
∆3 + (n− 1− δ)3

)
.

Acknowledgments: We are grateful to all those who replied to our request, Professors: Ivan Gutman, and
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Variable neighborhood search for extremal graphs 16. Some conjectures related to the largest
eigenvalue of a graph, Eur. J. Oper. Res. 191 (2008) 661–676.

[7] M. Aouchiche, P. Hansen, A survey of Nordhaus–Gaddum type relations, Discr. Appl. Math. 161
(2013) 466–546.
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Mat. 114 (1989) 399–410.

[15] H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum, Discr. Appl. Math.
155(5) (2007) 654–661.

[16] X. Chen, Y. Hou, Some results on Laplacian Estrada index of graphs, MATCH Commun. Math.
Comput. Chem. 73 (2015) 149–162.

[17] F. R. K. Chung, Spectral Graph Theory, AMS, Providence, 1997.
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[94] D. J. Klein, T. Došlić, D. Bonchev, Vertex–weightings for distance moments and thorny graphs,
Discr. Appl. Math. 155 (2007) 2294–2302.
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[160] B. Zhou, N. Trinajstić, Maximum eigenvalues of the reciprocal distance matrix and the reverse
Wiener matrix, Int. J. Quantum Chem. 108 (2008) 858–864.
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Abstract

The vertex PI index of a graph G is the sum over all edges of the number of vertices which are
not equidistant to u and v. In this chapter, we give lower and upper bound for the vertex PI index of
graphs.
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1. Introduction

In the theoretical chemistry molecular–graph based structure descriptors – also called topological indices
– are used for modeling physico–chemical, pharmacologic, toxicologic, etc. properties of chemical com-
pounds [14, 32]. There exist several types of such indices, reflecting different aspects of the molecular
structure for instance Zagreb indices, atom–bond connectivity index, Szeged and GA index [7–9,23,27].

Khadikar [17] defined a topological index and called it Padmakar–Ivan index (PI). It is defined
as PI(G) =

∑
e=uv∈E(G)[mu(e|G) + mv(e|G)] , where mu(e|G) is the number of edges of G lying

closer to u than to v and mv(e|G) is the number of edges of G lying closer to v than to u. This is
the edge version of PI index and in [18, 19], the edge–PI index has been computed for some graphs.
It is useful to mention that the PI index is a unique topological index related to parallelism of edges
(we will make this more precise below) and it has been studied from many different points of view,
see [1–4, 11, 16, 25, 37]. All topological indices mentioned have many chemical applications and it was
shown that the PI index correlates well with the Wiener and Szeged indices and that they all correlate
with the physico–chemical properties and biological activities of a large number of diverse and complex
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compounds. Recently, a new topological index, the vertex PI index, was introduced and some of its
properties were studied [20, 21]. Its definition is similar to that of the (edge) PI index, in that it is
additive, but now the distances of vertices (instead of edges) from edges is considered.

Let G be a connected graph with vertex set V (G) and edge set E(G) . The distance between the
vertices u and v of G is defined as the number of edges in a minimal path connecting them and is
denoted by d(u, v) . The diameter of G is the greatest distance between two vertices of G denoted by
d(G) . Denote by dG(v) , the degree of the vertex v ∈ V (G) . Define NG(u) to be the set of all vertices
adjacent to u . Let e = uv be an edge of the graph G . The number of vertices of G whose distance to
the vertex u is smaller than the distance to the vertex v is denoted by nu(e) . Analogously, nv(e) is the
number of vertices of G whose distance to the vertex v is smaller than the distance to the vertex u. Note
that vertices equidistant to u and v are not counted. The vertex PI index of G is defined as:

PIv(G) =
∑

e=uv∈E(G)

[nu(e) + nv(e)] .

2. Extremal graphs with respect to the vertex PI index

In this section we present some formulas for computing the vertex PI index of a graph. Then we apply
this formula to obtain the extremal graphs with respect to the vertex PI index. These results can be
found in [29].

Lemma 2.1. Let G be a n-vertex graph, n ≥ 4 . Then PIv(G) ≤ |E(G)||V (G)| with equality if and

only if G is bipartite.

Lemma 2.2. Let G be a connected graph. Then PIv(G) =
∑

v∈V (G) mv(G) , where mv(G) = |{e =

uv ∈ E(G); d(x, u) 6= d(x, v)}| .

Theorem 2.1. Let G be n-vertex graph, n ≥ 4 . Then PIv(G) ≤ n bn/2c dn/2e with equality if and

only if G is a complete bipartite graph with balanced bipartition.

Suppose Xn is the set of all n-vertex graphs G with the property that if G has an even cycle
v1, . . . , vk−1, v1 , then there are unique integers s and t , 1 < s < t < k − 1 , such that vs, . . . , vt
are vertices of a layer which constitutes a clique, vi ∈ Ai−1, 1 ≤ i ≤ s , and vt+j ∈ As−j, 1 ≤ j ≤ s .
Suppose Pn, Sn, and, Kn denote the path,star and complete graphs with exactly n vertices. Then X3 =

{P3, K3} and X4 = {P4, K4, S4} . The authors in [29] proved the following theorem.

Theorem 2.2. Let G be n-vertex graph. Then PIv(G) ≥ n(n− 1) with equality if and only if G ∈ Xn .

3. Lower and upper bounds on vertex PI index

In this section we consider some of bounds on the vertex PI index of a graph. For any n-vertex tree T

and for the complete graph Kn it is easy to see that PIv(T ) = PIv(Kn) = n(n− 1) .
The authors in [6] found lower and upper bounds on vertex PI index of a graph as followings.
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Theorem 3.1. Let G be a connected graph on n vertices, m edges, and diameter d . Then

PIv(G) ≥ 2m+ d2 − d

with equality holding if and only if G ∼= Kn or G ∼= Pn .

Lemma 3.1. Let G be a simple graph of order n , possessing t(G) triangles. Then

∑

uv∈E(G)

|Nu ∩Nv| = 3 t(G)

where |Nu ∩Nv| is the number of common neighbors of u and v .

The proof of this Lemma can be found in [6].

In the following by using above lemma we give an upper bound on the vertex PI index in terms of
the number of vertices n , the number of edges m , and the number of triangles t(G) in G .

Theorem 3.2. Let G be a connected graph with n > 2 vertices and m edges. Also let t(G) be the number

of triangles of G . Then

PIv(G) ≤ nm− 3t(G)

with equality holding if and only if G is a bipartite graph or G ∼= K3 .

Theorem 3.3. Let G be a connected graph on n ≥ 5 vertices, diameter d , and with a connected com-

plement G . Then

PIv(G) + PIv(G) ≥ n(n− 1) + (d− 1)(3d− 4)

with equality holding if and only if G ∼= Pn .

The proof of this theorem can be found in [6].

Suppose that G is a triangle free graph. Then the following result for the vertex PI index of G is
obtained in [28].

Theorem 3.4. Let G be a triangle free graph. Then

PIv(G) ≥
∑

v∈V (G)

dG(v)
2

where dG(v) is the degree of the vertex v and with equality if and only if dG(v) = 2 .

Shabani [31] calculated the PIv index of a class of dendrimers where are parts of a group of macro-
molecules which is built from a starting atom, such as nitrogen, to which carbon and other elements
are added by a repeating series of chemical reactions that produce a spherical branching structure. In a
divergent synthesis of a dendrimer, one starts from the core (a multi connected atom or group of atoms)
and growths out to the periphery. The following theorem is about of the PIv index of tetrathiafulvalene
dendrimers, denoted by T = D[k] .
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Theorem 3.5. The PIv index of T = D[k] is computed as follows

PIv(T ) = 16368× 4k − 19564× 2k + 5806 .

Some authors discuss on the some operations of two graphs such as the corona product of two graphs,
the Cartesian product of graphs and the join of graphs. In the following we consider these operations on
graphs and we discuss the vertex PI index of them.

The corona product G ◦ H of two graphs G and H is defined as the graph obtained by taking one
copy of G and |V (G)| copies of H and joining the i-th vertex of G to every vertex in the i-th copy of H .
Yarahmadi and Ashrafi [35, 36] computed some of indices such as the Szeged, vertex PI and the first
and second Zagreb indices of corona product of two graphs G and H . We give the following results for
the vertex PI index of the corona product of two graphs G and H .

Theorem 3.6. Let G be a connected graph of order n and H be a graph with m vertices and q edges,

then the vertex PI index of G ◦H is given by

PIv(G ◦H) = (m+ 1)PIv(G) + nM1(H) + n2m(m+ 1)− 2n(q + 3t) ,

where t is the number of triangles of H and M1(H) is the first Zagreb index of H , that is defines as

M1(H) =
∑

u∈V (H)

dH(u)
2

Corollary 3.1. Suppose H is triangle–free graph with m vertices and q edges and G is a connected

graph of order n . Then

PIv(G ◦H) = (m+ 1)PIv(G) + nM1(H) + n2m(m+ 1)− 2nq .

The join G = G1 +G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets E1 and
E2 is the graph union G1 ∪G2 together with all the edges joining V1 and V2 , [22].

Theorem 3.7. Let Gi be graphs with adjacency matrix Ai, 1 ≤ i ≤ n , and G = G1 + G2 + · · · + Gn .

Then

PIv(G) =
∑

i

|Vi|
(∑

j 6=i

(
|Vj|2 − 2|Ej|

)
)

+
∑

i

((
A2

i

)
d

(
A2

i

)t
d
− tr (Ai)

3
)

.

The Cartesian product G×H of graphs G and H has the vertex set V (G×H) = V (G)×V (H) and
(a, x)(b, y) is an edge of G×H if a = b and xy ∈ E(H) , or ab ∈ E(G) and x = y . If G1, G2, . . . , Gn

are graphs then we denote G1×· · ·×Gn by⊗n
i=1Gi . The vertex PI index of⊗n

i=1Gi is as following [20].

Theorem 3.8. Let G1, G2, . . . , Gn be connected graphs. Then

PIv

(
n
⊗
i=1

Gi

)
=

n∑

i=1

(
n∏

j=1,j 6=i

|V (Gj)|2
)
PIv(Gi) .

By using the above theorem the following examples are obtained in [20].
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Example 3.1. Let Cn be a cycle graph with n vertices. Then PIv(Cn) = n2 if n is even and PIv(Cn) =

n(n− 1) if n is odd.

Example 3.2. Let Ln = P2 × Pn be a ladder graph with 2n vertices. Then PIv(Ln) = 6n2 − 4n .

Now consider the graph G whose vertices are the N -tuples b1 b2 . . . bN with bi ∈ {0, 1, . . . , ni −
1}, ni ≥ 2 , and let two vertices be adjacent if the corresponding tuples differ in precisely one place.
Such a graph is called a Hamming graph. It is well-known fact that a graph G is a Hamming graph if and
only if it can be written in the form ⊗n

i=1Kni
. In the following example, the vertex and edge PI indices

of a Hamming graph is computed.

Example 3.3. Let G be a Hamming graph with above parameter. Then

PIv(G) =
N∏

i=1

n2
i

(
N −

N∑

i=1

1

ni

)
.

Example 3.4. Let Qn denote the hypercube of dimension n then PIv(Qn) = n22n−1 .

Let H(n,w), w ≤ n−1 be the graph on n vertices consisting of a clique on w vertices and randomly
connect n − w pendent to arbitrary vertices of Kw . In [5] the authors obtained a lower bound on the
vertex PI index of a connected graph G in terms of the number of vertices (n), edges (m), pendent
vertices (p), and clique number (w), and characterize the extremal graphs as the following.

Theorem 3.9. Let G be a connected graph with n vertices, m edges, p pendent vertices, and clique

number w(w ≥ 3) . Then

PIv(G) ≥ 2m+ (n− 2)p+ (n− w)(w − 1) ,

with equality holding if and only if G ∼= Kn or G ∼= H(n,w) .

Let {Gi}di=1 be a set of finite pairwise disjoint graphs with vi ∈ V (Gi) . The bridge graph B(G1, G2,

. . . , Gd) = B(G1, G2, . . . , Gd; v1, v2, . . . , vd) of {Gi}di=1 with respect to the vertices {vi}di=1 is a graph
obtained from the graphs G1, G2, . . . , Gd by connecting the vertices vi and vi+1 by an edge for i =

1, 2, . . . , d−1, see Figure 1. Let G be any graph and let v be a vertex of G. We denote the set of all edges
uu′ ∈ E(G) such that d(u, v) = d(u′, v) by Mv(G) . The cardinality of Mv(G) is denoted by mv(G) .
The following result was obtained in [26], for the vertex PI index of a bridge graph B(G1, G2, . . . , Gd) .

Figure 1. The bridge graph.
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Theorem 3.10. The vertex PI index of the bridge graph B(G1, G2, . . . , Gg) of {Gi}di=1 with respect to

the vertices {vi}di=1 is given by

PIv(G) =
d∑

i=1

PIv(Gi) + (|E(G)−m(G)) |V (G)| − ev(G) +mv(G) ,

where

m(G) =
d∑

i=1

mvi(Gi), ev(G) =
d∑

i=1

|E(G)||V (Gi)|, mv(G) =
d∑

i=1

mvi(Gi)|V (Gi)| .

Corollary 3.2. Let H be a graph with fixed vertex v . Then the vertex PI index of the bridge graph

Gd(H, v) is given by

PIv(Gd(H, v)) = dPIv(H) + d(d− 1) (|E(H)|+ 1−mv(H)) |V (H)| .

The fan molecular graph Fn is a graph obtained by join of the path Pn and a vertex v and the wheel
graph Wn is a graph obtained by join the cycle Cn and a vertex v . The PI index of Fn and Wn is
obtained as following [34].

Theorem 3.11.
PIv(Fn) = n2 + 3n− 4 and PIv(Wn) = n2 + 3n .

Let {Gi}di=1 be the set of pairwise disjoint graphs with vi, wi ∈ V (Gi) . Then the chain graph
G = C(G1, . . . , Gd; v1, w1, . . . , vd, wd) of {Gi}di=1 with respect to {vi, wi}di=1 is the graph obtained from
the graphs G1, . . . , Gd by identifying the vertex wi and vi+1 for i = 1, 2, . . . , d− 1 as shown in Figure 2.
The vertex PI index of G = C(G1, . . . , Gd; v1, w1, . . . , vd, wd) is obtained as following [24].

Figure 2. The chain graph.

Theorem 3.12. Let G = C(G1, . . . , Gd; v1, w1, . . . , vd, wd) be a chain graph. Then

PIv(G) =
d∑

i=1

PIv(Gi) +
d∑

i=2

(|E(Gi)| − |Mvi(Gi)|)αi +
d−1∑

i=1

(|E(Gi)| − |Mwi
(Gi)|) βi ,

where αi =
∑i−1

j=1 |V (Gj)| and βi =
∑d

j=i+1 |V (Gj)| and Mv(G) is the set of all edges xy ∈ E(G) such

that d(x, v) = d(y, v) .

Suppose that v and w are two vertices of a graph H and let Gi = H and vi = v, wi = w for
i = 1, 2, . . . , d . Then by simple calculation the following result is obtained.
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Corollary 3.3. The vertex PI index of the chain graph G = C(H, . . . , H; v, w, . . . , v, w) (d times) is

given by

PIv(G) = dPIv(H) +

(
d

2

)
(2|E(H)| − |Mv(H)| − |Mw(H)|) .

The fullerene ear was started in 1985 with the discovery of a stable C60 cluster and its interpretation
as a cage structure with the familiar shape of a soccer ball, see [10] for more details. The well-known
fullerene, the C60 molecule, is a closed cage carbon molecule with three–coordinate carbon atoms tiling
the spherical or nearly spherical surface with a truncated icosahedral structure formed by 20 hexagonal
and 12 pentagonal rings. Let p, h, n, andm be the number of pentagons, hexagons carbon atoms and
bounds between them in a given fullerene. One can see that a fullerene with n carbon atoms has 12
pentagonal, and n/2 − 10 hexagonal faces, where n 6= 22 is a natural number equal or greater than 20.
The vertex PI polynomial of C12n+4 fullerenes are computed by Ghorbani [10] as the following.

Theorem 3.13. The vertex PI polynomial of C12n+4 computed as

PIv(C12n+4, x) = (18n− 128)x12n+4 + 32x12n+3 + 48x12n+2 + 16x12n+1 + 8x12n + 8x12n−4

+ 8x12n−8 + 4x12n−20 + 8x37 + 2x34 .

4. The weighted vertex PI index

In order to increase diversity of the PI vertex index for graphs, the authors in [15] introduce weighted
version defined as follows

PIw(G) =
∑

e=uv

(dG(u) + dG(v))(nu(e) + nv(e)) .

For bipartite graphs it holds nu(e) + nv(e) = n , and therefore the diversity of the original PI index is
not satisfying.

The following inequality holds for a graph G with n vertices and m edges [21].

PIv(G) ≤ nm

with equality if and only if G is bipartite.
Assume that every edge e = uv has weight dG(u) + dG(v) . Now, if G is a bipartite graph, then

PIw(G) = n
∑

v∈V (G)

dG(v)
2 .

This means that the weighted vertex PI index is directly connected to the first Zagreb index. Further-
more, it follows that among bipartite graphs path Pn and complete bipartite graph Kbn/2cdn/2e have the
minimum and maximum value of weighted vertex PI index, respectively [12]. These values are

PIw(Pn) = n(4n− 6),

P Iw
(
Kbn/2cdn/2e

)
= n2

⌊n
2

⌋ ⌈n
2

⌉
.
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In the following we give a formula for computing the weighted vertex PI index of a graph where is
found in [15].

Lemma 4.1. Let G be a connected graph. Then

PIw(G) =
∑

x∈V
wx(G) ,

where

wx =
∑

e=uv∈E,d(x,v)6=d(x,u)

[dG(u) + dG(v)] .

Also the authors in [15] are found lower and upper bounds for the weighted vertex PI index of a
graph as following.

Theorem 4.1. Let G be a connected graph on n vertices, m edges and diameter d . Then

PIw(G) ≥ 4d2 − 4d− 2 + 6m,

with equality if and only if G ∼= Pn .

Theorem 4.2. Let G be a connected graph on n vertices. Then

PIw(G) ≥ n(4n− 6) ,

with equality if and only if G ∼= Pn .

Let e = uv be an arbitrary edge, such that it belongs to exactly t(e) triangles. In this case, it easily
follows

nu(e) + nv(e) ≤ n− t(e) ,

dG(u) + dG(v) ≤ n+ t(e) .

Therefore we have the following relation

PIw(G) ≤
∑

e∈E
(n− t(e))(n+ t(e)) = n2m−

∑

e∈E
t(e)2 .

A complete multipartite graph Kn1,n2,...,nk
is a graph in which vertices are adjacent if and only if they

belong to different partite sets. Let Tn,r be the Turán graph which is a complete r-partite graph on n

vertices whose partite sets differ in size by at most one. This famous graph appears in many extremal
graph theory problems [33]. Nikiforov [30] established a lower bound on the minimum number of r-
cliques in graphs with n vertices and m edges (for r = 3 and r = 4 ).

Theorem 4.3. Let G be a connected graph on n vertices, m edges and t triangles. Then

PIw(G) ≤ n2m− 9t2

m
,

with equality if and only if G ∼= Ka,b for t = 0 , and G ∼= Tn,r for r|n and t > 0 .
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In the following we consider the Cartesian product of two graphs G and H and we characterize the
weighted PI index of the Cartesian product of graphs. These formulas are found in [15].

Theorem 4.4. Let G and H be two connected graphs. Then

PIw(G×H) = |V (G)|2PIw(H) + |V (H)|2PIw(G)

= 4 (|V (G)||E(G)|PIv(H) + |V (H)||E(H)|PIv(G)) .

Let ⊗n
i=1(Gi) be the Cartesian product of graphs G1 × G2 × · · · × Gn and let |V (Gi)| = Vi and

|E(Gi)| = Ei for i = 1, 2, . . . , n .

Theorem 4.5. Let G1, G2, . . . , Gn be connected graphs. Then

PIw

(
n
⊗
i=1

Gi

)
=

n∑

i=1

PIw(Gi)
n∏

j=1,j 6=i

V 2
j + 4

n∑

i,j=1,i 6=j

PIv(Gi)VjEj

n∏

k=1,i 6=k 6=j

V 2
k .
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Abstract

Wiener index (i.e., the total distance or the transmission number), defined as the sum of distances
between all unordered pairs of vertices in a graph, is one of the most popular molecular descriptors.
Recently we extended this concept to directed graphs that are not necessarily strongly connected. In
this chapter we survey our results, conjectures and problems on this topic.
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1. Introduction

Wiener index of a graph G, W (G), is defined as the sum of distances between all (unordered) pairs of
vertices of G. It is one of the oldest and most important topological indices, and it was introduced by
H. Wiener [29]. Wiener index not only correlates well with many physicochemical properties of organic
compounds, it has wide application also outside chemistry, and it became the topic of countless studies
also from mathematical point of view. Details can be found in some of many surveys [9, 10, 16, 20, 28].

While new results related to the Wiener index of a graph are constantly being reported, less attention
has been devoted to the study of an analogous concept for digraphs, despite its application in sociometry,
informetric studies etc. The first results on the Wiener index of digraphs are due to Harary [15], whose
investigation was motivated by certain sociometric problems. Ng and Teh [23] found a strict lower bound
for the Wiener index of digraphs. Plesnı́k [24] found the lower bound in terms of the number of vertices
and the diameter. As in the case of graphs, the Wiener index of digraphs was considered indirectly also
through the study of the average (or mean) distance, defined as µ(D) = W (D)/n(n− 1), see [6, 11].

A directed graph (or shortly digraph) D is given by a set of vertices V (D) and a set of ordered
pairs of vertices A(D) called directed edges or arcs. A (directed) path in D is a sequence of vertices
v0, v1, . . . , vn such that vi−1vi is an arc of D for every i ∈ {1, . . . , n}. By adding the arc vnv0 to such
a path we obtain a (directed) cycle

−→
C n. For u ∈ V (D) we denote by idD(u) and odD(u) the in-degree

and out-degree of u, respectively.

The distance dD(u, v) between vertices u, v ∈ V (D) is the length of a shortest path from u to v, and
if there is no such path then we assume

dD(u, v) = 0. (1)

For u ∈ V (D), we will denote wD(u) =
∑

v∈V (D) dD(u, v). We omit the index D when no confusion is
likely.

In analogy to graphs, the Wiener index W (D) of a digraph D is defined as the sum of all distances,
where of course, each ordered pair of vertices has to be taken into account, since the distances dD(u, v)
and dD(v, u) may be different. More precisely,

W (D) =
∑

(u,v)∈V (D)×V (D)

dD(u, v) =
∑

u∈V (D)

wD(u).

In [17] we have the following simple observation.

Observation 1.1. Let D be a digraph and let D− be the reverse of D obtained by reversing the orienta-

tion of all arcs of D. Then W (D) = W (D−).

Note that in real directed networks, there could be no path connecting some pairs of vertices. From
theoretical point of view it is natural to define the distance between such a pair of vertices to be infinite
and thus the study of the Wiener index of digraphs in pure mathematical papers is usually limited to
strongly connected digraphs, i.e. digraphs for which a directed path between every pair of vertices
exists. However, for practical purposes, the distance between two vertices in a digraph can be defined
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in a different way. For instance, Botafogo et al. [3] defined it as the number of vertices in the analyzed
network, while Bonchev [1, 2] already assumed the condition (1).

Under the condition (1) several interesting properties of digraphs (general, not only strongly con-
nected) can be proved. For instance, in Section 2 the famous Wiener theorem as well as a relation
between the Wiener index and betweenness centrality is extended to digraphs. Thus, in this way, the
Wiener index could be applicable in the topics of directed large networks, particularly because with
this measure, one assigns finite values to the average distance and betweenness centrality of the nodes
in a directed network. In next sections we summarize other interesting properties of the Wiener index
of oriented graphs and open questions related to them. Details can be found in papers [17–19], which
represent the basis of this chapter.

2. Wiener theorem and betweenness centrality relation

In [29], Wiener proved that for a tree T

W (T ) =
∑

e=ij∈E(T )

ne(i)ne(j),

where ne(i) and ne(j) are the orders of components of T−ij. The result is known as the Wiener theorem.
An analogous statement for directed trees, i.e. digraphs whose underlying graphs are trees, was proved
in [19]. Let T (a) denote the set of vertices x with the property that there exists a directed path from x to
a. Similarly, let S(a) denote the set of vertices x with the property that there exists a directed path from
a to x. Note that a ∈ S(a) and a ∈ T (a). Let t(a) = |T (a)| and s(a) = |S(a)|.

Theorem 2.1. Let T be a directed tree. Then

W (T ) =
∑

ab∈A(T )

t(a)s(b).

White and Borgatti [30] generalized Freeman’s geodesic centrality measures for betweenness on
graphs to the case of digraphs. The (directed) betweenness centrality B(x) of a vertex x in a digraph D

is defined as
B(x) =

∑

u,v∈V (D)\{x}
u6=v

σu,v(x)

σu,v

,

where σu,v denotes the number of all shortest directed paths in D from u to v and σu,v(x) stands for the
number of all shortest directed paths from u to v passing through the vertex x. Note that in the definition
of B(x) we consider only such ordered pairs (u, v) for which there exists a directed uv-path in D, i.e.,
for which σu,v 6= 0.

Gutman and Škrekovski [13] showed the following result.

Theorem 2.2. For every connected graph G the following holds

W (G) =
∑

x∈V (G)

B(x) +

(
n

2

)
.
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This formula shows that the Wiener index is related to the betweenness centrality. In [19] the above
relation was extended to directed graphs. Let P (D) denote the set of ordered pairs (u, v) such that there
exists a directed path from u to v in D, and let p(D) = |P (D)|.

Theorem 2.3. For any digraph D of order n

W (D) =
∑

x∈V (D)

B(x) + p(D).

Since in a strongly connected digraph there is a directed path between every ordered pair of vertices,
we derive the following.

Corollary 2.1. Let D be a strongly connected digraph of order n. Then

W (D) =
∑

x∈V (D)

B(x) + 2

(
n

2

)
.

3. Extremal values of Wiener index

It is obvious that the minimum possible value of the Wiener index of a digraph cannot be less than the
number of edges in the underlying graph. This lower bound can always be achieved for bipartite graphs
by orienting all edges of such a graph G so that the corresponding arcs go from one bipartition to the
other. In such a case we obtain a digraph D with W (D) = |E(G)|. Thus the minimum value of Wiener
index for a digraph on n vertices, such that the underlying graph is connected, is n − 1. Moreover, it is
attained when the underlying graph is a tree. We further discuss digraphs with minimum Wiener index
in Subsection 5.5.

Regarding the upper bound, Plesnı́k [24] proved that for strongly connected digraphs D on n vertices
the upper bound for the Wiener index is achieved if and only if D is a directed cycle. It can be observed
that the same holds also when not restricted to strongly connected digraphs.

Proposition 3.1. Let D be a directed graph (not necessarily strongly connected) on n vertices. Then

W (D) ≤ n

(
n

2

)

with equality holding if and only if D is the directed cycle
−→
C n.

Proof. Observe that wD(u) is the greatest if all vertices are achievable from u and when there is a unique
vertex at distance i from u, 1 ≤ i ≤ n−1. That is, wD(u) ≤ 1+2+· · ·+(n−1) =

(
n
2

)
for any u ∈ V (D).

This gives W (D) ≤
(
n
2

)
n and if the equality is attained, then odD(u) = 1 for every vertex u ∈ V (D).

By Observation 1.1 we have W (D−) = W (D). Hence, if W (D) =
(
n
2

)
n, then also W (D−) =

(
n
2

)
n,

and so odD−(u) = 1 for every u ∈ V (D−). This gives that if W (D) =
(
n
2

)
n, that is if the Wiener index

is maximum possible in D, then idD(u) = odD(u) = 1 for every u ∈ V (D), and so D is the directed
cycle.
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In [18] digraphs with the second maximum Wiener were considered. By
−→
C +

n we denote a digraph
obtained from

−→
C n by adding the arc vu, where uv is an arc in

−→
C n and by

←→
P 3 we denote a digraph

obtained from the undirected path on 3 vertices by replacing every edge by a pair of opposite arcs, see
Figure 1.

Theorem 3.2. Among all digraphs on n ≥ 4 vertices, the digraph
−→
C +

n is the unique digraph with the

second maximum Wiener index and W (
−→
C +

n ) =
(
n
2

)
n− n+ 2.

Regarding the case n = 3, two graphs, namely
−→
C +

3 and
←→
P 3, attain the second maximum value. Note

that both
−→
C +

n and
←→
P 3 contain pairs of opposite arcs. Therefore, these digraphs cannot be obtained as

orientations of undirected simple graphs.

Figure 1. Two digraphs with opposite pairs of arcs.

Since the Wiener index in directed graphs is considered mainly for orientations of undirected simple
graphs, in what follows we focus our attention to digraphs which do not contain opposite arcs. Such
digraphs are called antisymmetric. To state our results for antisymmetric digraphs, we need to define
orientations of so called theta-graphs.

u2u1 u2u1 u2u1

Figure 2. Orientations of theta-graph Θ3,1,0 .

Let a ≥ b ≥ c ≥ 0 and b ≥ 1. By Θa,b,c we denote a theta-graph, a graph obtained when two
vertices, say u1 and u2, are joined by three paths Pa, Pb, Pc of length a+1, b+1 and c+1, respectively.
Then Θa,b,c has a+b+c+2 vertices. We consider three orientations of Θa,b,c, namely

−→
Θ a−,b−,c,

−→
Θ a−,b+,c

and
−→
Θ a+,b−,c. In all these orientations the path of length c+1 is directed from u1 to u2 and the other two

paths are also directed. The superscript + indicates that the corresponding path is directed from u1 to u2,
while the superscript − indicates that the corresponding path is directed from u2 to u1, see Figure 2 for
−→
Θ 3−,2−,0,

−→
Θ 3−,2+,0 and

−→
Θ 3+,2−,0 (displayed from left to right). In [18] we proved the following theorem.

Theorem 3.3. Among all antisymmetric digraphs on n ≥ 6 vertices, the digraph
−→
Θ (n−3)+,1−,0 has the

second maximum Wiener index and W (
−→
Θ (n−3)+,1−,0) =

(
n
2

)
n − 3n + 9. Moreover,

−→
Θ (n−3)+,1−,0 is the

unique digraph with this property.
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Figure 3. An orientation of Θ3+,1−,0.

In Figure 3 the unique digraph among antisymmetric digraphs on 6 vertices with the second maximal
Wiener index is depicted. Regarding the cases n = 4 and n = 5 we have the following. If n = 4, then
it turns out that there are two antisymmetric digraphs with the second maximum Wiener index, namely
−→
Θ 1+,1−,0 and

−→
Θ 1−,1−,0. If n = 5, then there are three antisymmetric digraphs with the second maximum

Wiener index, namely
−→
Θ 2+,1−,0,

−→
Θ 2−,1+,0 and

−→
Θ 1+,1−,1.

4. Bounds on Wiener index for prescribed graphs

Let G be a given graph. Note that it has 2|E(G)| orientations, and each one yields a digraph with some
value of Wiener index. It is natural to ask what can be the maximum and the minimum of these values.
Let Wmax(G) and Wmin(G) be the maximum possible and the minimum possible, respectively, Wiener
index among all digraphs obtained by orienting the edges of G.

Figure 4. Two extremal orientations of a path on five vertices.

For example, in Figure 4, we have orientations of P5 with the biggest and the smallest Wiener index
Wmax(P5) = 20 and Wmin(P5) = 4. In [17], the following problems where posed.

Problem 4.1. For a given graph G find Wmax(G) and Wmin(G).

Problem 4.2. For a given graph G, what is the complexity of finding Wmax(G) (resp. Wmin(G))? Are

these problems NP-hard?

The above problems have already been considered for strongly connected orientations. Plesnı́k [24]
proved that finding a strongly connected orientation of a given graph G that minimizes the Wiener index
is NP-hard. Note that this does not solve the case for non-necessarily strongly connected digraphs.

In what follows we turn our attention to specific families of graphs. In a subsection about tourna-
ments we will see that the orientation of a complete graph which attains the maximum value is strongly
connected. The same was observed when searching for the maximum and second maximum Wiener
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index for digraphs on n vertices. However, using theta-graphs we described that this is not always the
case. On the other hand, it is our strong conjecture that the minimum value of Wiener index must be
attained for some acyclic orientation.

4.1 Tournaments

Transitive tournaments, i.e. acyclic orientations of complete graphs Kn, clearly yield the smallest possi-
ble Wiener index among all orientations of complete graphs. To see this, note that for any two vertices a
an b in Kn we have

dD(a, b) + dD(b, a) ≥ 1 (2)

for any orientation D of Kn, and to obtain equality in (2) for all pairs a and b, D must be acyclic. Hence,
Wmin(Kn) =

(
n
2

)
= W (Kn).

Plesnı́k [24] gave a sharp upper bound for the Wiener index of strongly connected tournaments. He
proved that if Tn is a strongly connected tournament with n ≥ 3 vertices, then W (Tn) ≤

(
n+2
3

)
− 1. In

addition, he showed that the equality is achieved if and only if Tn is the tournament of diameter n − 1.
Note that for each n ≥ 3 (up to isomorphism) there exists exactly one tournament of diameter n− 1. We
call it a Hamiltonian-path tournament and we denote it by Hn. It can be described as the digraph with
vertices v1, v2, . . . , vn in which vjvi is an arc for every i < j unless j = i + 1 in which case Hn has the
arc vivj .

Moon [22] strengthened the result of Plesnı́k by deriving a bound that involves an additional param-
eter which enabled him to characterize tournaments of order at least 5 with the second maximal Wiener
index. These are two types of tournaments that can be obtained from Hn, n ≥ 5, as follows: to obtain
H1

n, in Hn we reverse the direction of the arc vnvn−2, and to obtain H2
n we reverse the direction of the

arcs vnv3, vnv4, . . . , vnvn−2 (note that H1
5 and H2

5 are isomorphic). The result of Moon states that if Tn

is a strongly connected tournament with n ≥ 5 vertices and Tn is not isomorphic to a Hamiltonian-path
tournament Hn, then W (Tn) ≤

(
n+2
3

)
− n + 3, where the equality is achieved exactly in the case of

tournaments H1
n and H2

n.

In [17] the results of Plesnı́k and Moon were extended to the class of all tournaments (not necessarily
strongly connected).

Theorem 4.3. Let Tn be a tournament with at least 3 vertices which is not-necessary strongly connected.

Then we have the following:

• W (Tn) ≤
(
n+2
3

)
− 1 and the equality is attained if and only if Tn is the Hamiltonian-path tourna-

ment Hn.

• if Tn has at least 5 vertices and is not isomorphic to a Hamiltonian-path tournament, then W (Tn)

≤
(
n+2
3

)
− n+ 3 with equality holding only if Tn is isomorphic to H1

n or H2
n.
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4.2 Theta–graphs

As mentioned above, the motivation for studying theta-graphs originally comes from an intuition that
orientations of digraphs which achieve the maximum Wiener index should be strongly connected. In
such orientations Pa must be a directed path and the same holds for Pb and Pc. By symmetry (also by
Observation 1.1), we can fix the orientation of Pc, say from u1 towards u2 and consequently we obtain
only three orientations of Θa,b,c which are strongly connected, namely

−→
Θ a−,b−,c,

−→
Θ a−,b+,c and

−→
Θ a+,b−,c,

considered already in Section 3. Observe that if a = b then
−→
Θ a−,b+,0 and

−→
Θ a+,b−,0 are isomorphic, hence

we do not distinguish them in the next theorems. In [17] the orientation with the maximum Wiener index
among strongly connected orientations of Θa,b,c was identified.

Theorem 4.4. Among strongly connected orientations of Θa,b,c,
−→
Θ a+,b−,c has the maximum Wiener index

unless a 6= b and ab− c(a+ b)− c2 − 2c− 2 < 0 in which case the maximum Wiener index is attained

by
−→
Θ a−,b+,c.

Next theorem shows that the orientation of a theta-graph Θa,b,c that attains maximum value is strongly
connected if c = 0.

Theorem 4.5. Let
−→
Θ a,b,0 be an orientation of Θa,b,0. Then W (

−→
Θ a,b,0) ≤ W (

−→
Θ a+,b−,0). Moreover, if

W (
−→
Θ a,b,0) = W (

−→
Θ a+,b−,0), then

−→
Θ a,b,0 is strongly connected.

However, already for c = 1 it turns out that the orientation yielding the maximum Wiener index
need not be strongly connected. By reversing the orientation of u1z1 in

−→
Θ a+,b−,1, we obtain a specific

orientation which we denote by
−→
Θ+

a,b,1 (in Figure 5,
−→
Θ+

3,2,1 is depicted). Obviously,
−→
Θ+

a,b,1 is not strongly
connected since z1 is its source. Nevertheless, for some values of a and b this orientation achieves the
maximum Wiener index.

u2u1

z1

Figure 5. An orientation of Θ3,2,1.

Theorem 4.6. Let
−→
Θ a,b,1 be a non-strongly-connected orientation of Θa,b,1 which is different from

−→
Θ+

a,b,1

and also from (
−→
Θ+

a,b,1)
−. Then W (

−→
Θ a,b,1) < W (

−→
Θ+

a,b,1) or W (
−→
Θ a,b,1) < W (

−→
Θ a+,b−,1).

Thus in several cases still strongly connected orientation has the maximum Wiener index. However,
if b ≥ a1/2+ε for fixed ε > 0, then for a big enough, non-strongly-connected orientation

−→
Θ+

a,b,1 attains
the maximum. More precisely, we obtained the following characterization.
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Corollary 4.1. The orientation of Θa,b,1 which results in the maximum Wiener index is not strongly

connected if and only if

(a) ab2 − a2 − ab− 2b2 − 5a− 10b− 10 > 0, or

(b) ab2−a2−ab−2b2−5a−10b−10 = 0 and the orientation of Θa,b,1 is not isomorphic to
−→
Θ a+,b−,1.

An interested reader is referred to [17] for more detailed description how orientations and parameters
a, b influence the value of the Wiener index of a directed graph whose underlying graph is Θa,b,1.

Similarly, it can be shown that if a is big comparing to c and b ≥ a1/2+ε, then the orientation of Θa,b,c

which achieves the maximum Wiener index is not strongly connected if c ≥ 2. The reason is that for
a and b satisfying these conditions the strongly connected orientation of Θa,b,c with maximum Wiener
index is

−→
Θ a+,b−,c (see Theorem 4.4) and 2W (

−→
Θ a+,b−,c) = a3 + 3a2b+ 2ab2 + b3 + (2c+ 5)a2 + (4c+

7)ab + (3c + 5)b2 + (2c2 + 8c + 6)a + (3c2 + 10c + 8)b + c3 + 5c2 + 8c + 4. However, if we orient
the u1u2-paths of lengths a + 1 and b + 1 to obtain a directed cycle and the u1u2-path of length c + 1

to obtain a subdigraph, not isomorphic to a directed path, then for the resulting digraph
−→
Θ+

a,b,c we have
2W (
−→
Θ+

a,b,c) ≥ 2(a + b + 2)
(
a+b+2

2

)
= a3 + 3a2b + 3ab2 + b3 + 5a2 + 10ab + 5b2 + 8a + 8b + 4. Now

comparing the coefficients at the highest powers of a and b gives the result. Thus the orientation of Θa,b,c

which achieves the maximum Wiener index is not strongly connected if c ≥ 2.

5. Some conjectures

In what follows we will state several conjectures about Wiener index of directed graphs. This research
area is rich with problems as even for a given graph one has many orientations and to find the one with the
maximum or minimum Wiener index can be a real challenge. All these problems bring us the following
metahypotheses:

• orientations with large Wiener index should have long cycles or/and paths,

• orientations with small Wiener index should not have cycles, and directed paths should be short.

5.1 Theta–graphs conjecture

As we pointed out before, the maximum Wiener index of theta-graphs is not necessarily obtained for a
strongly connected orientation. However, we believe it must contain the longest possible cycle.

Conjecture 5.1. Let a ≥ b ≥ c. Then Wmax(Θa,b,c) is attained by an orientation of Θa,b,c in which the

union of the u1u2-paths of lengths a+ 1 and b+ 1 forms a directed cycle.

Analogous statement possibly holds also for other graphs which are not very dense and which admit
an orientation with one huge directed cycle without “shortcuts”, that is without directed paths shortening
the cycle.
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5.2 No–zig–zag conjecture

A vertex v in a directed tree T is core if for every vertex u of T , there exists either a directed path from u

to v or a directed path from v to u. Notice that then in each component C of T − v all edges point in the
direction towards v or all edges point in the direction from v. See Figure 6 for an example of a directed
tree with two core vertices and a directed tree that does not contain any core vertex. A different view of
the very same notion can be described as follows. An orientation of a tree is called no-zig-zag if there is
no subpath in which edges change the orientation twice. Note that a directed tree has a core vertex if and
only if its orientation is no-zig-zag.

Figure 6. The graph on the left has two core vertices, while the right one has no core vertex.

In [19] we have the following conjecture.

Conjecture 5.2. Let T be a tree. Then every orientation of T achieving the maximum Wiener index is

no-zig-zag.

This conjecture is valid for

• trees on at most 10 vertices,

• subdivision of stars,

• Ta,b,c trees - obtained from two stars K1,a and K1,b, central vertices of which are connected by a
path of length c.

5.3 Chordal graphs conjecture

Theta-graphs have long induced cycles and low connectivity. Examples with higher connectivity can
easily be derived from theta-graphs, by the lexicographic product

L(a, k) = Θa,a,2[Kk]

with a >> k. The graph L(a, k) is 2k-connected, and in a similar way as for theta-graphs, one can show
that Wmax(L(a, k)) is attained for a non-strongly connected orientation. On the other hand, we were not
able to find examples without long induced cycles which makes us wonder if the following holds.
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Conjecture 5.3. Let G be a 2-connected chordal graph. Then Wmax(G) is attained by an orientation

which is strongly connected.

5.4 Ladder graphs conjecture

Our intuition about long cycles and paths tells us that the following conjecture may hold. Of course it
would be even more interesting to consider it for meshes of order m × n, and not only of order 2 × n

(i.e. so called ladder graphs).

v1 v2 v3 v4 v5 v6 v7

v14 v13 v12 v11 v10 v9 v8

Figure 7. An orientation of the ladder graph P2�P7 with large Wiener index.

Conjecture 5.4. Let G = P2�Pn be a ladder graph. Then Wmax(G) is attained by an orientation that

has a hamiltonian cycle v1v2 · · · v2n, and every other remaining edge viv2n+1−i, where 1 < i < n, is

oriented from v2n+1−i to vi.

In Figure 7 we have an orientation of P2�P7 described in the above conjecture.

5.5 Acyclic orientations conjecture

Another problem is to find an orientation of a graph that yields the minimum possible Wiener index.
As already mentioned in the introduction, Plesnı́k [24] proved that this problem is NP-hard for strongly
connected orientations of graphs. However, one might consider the following conjecture from [19].

Conjecture 5.5. For every graph G, the value Wmin(G) is achieved for some acyclic orientation of G.

This conjecture is valid for

• bipartite graphs,

• unicyclic graphs,

• the Petersen graph,

• prisms.
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5.6 Chromatic conjecture

Our next conjecture is motivated by the following well-known Gallai-Hasse-Roy-Vitaver theorem.

Theorem 5.1. Let G be a graph. A number k is the smallest number of colors admitting a proper

coloring of G if and only if k is the largest number for which every orientation of G contains a simple

directed path with k vertices. The orientations for which the longest path has the minimum length always

include at least one acyclic orientation.

In other words, the chromatic number χ(G) is one plus the length of a longest path in a special
orientation of the graph which minimizes the length of a longest path.

A graph orientation is called k-coloring-induced, if it is obtained from some proper k-coloring by
orienting every edge from the vertex with the bigger color to the vertex with the smaller color.

Conjecture 5.6. Wmin(G) is achieved for a χ(G)-coloring-induced orientation.

This conjecture is valid for the same graphs for which the acyclic Conjecture 5.5 is confirmed. In
fact, the chromatic conjecture implies the acyclic conjecture.
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[14] K. Hajdinová, Wiener index in directed trees, Master Thesis, Slovak Univ. Technology Bratislava,
Fac. Civil Engin., 2015, SvF-5342-56691 (in Slovak).

[15] F. Harary, Status and contrastatus, Sociometry 22 (1959) 23–43.
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Av. Angamos, 0610 Antofagasta, Chile
enide@ua.pt, maguieiras@im.ufrj.br, mrobbiano@ucn.cl

Abstract

The definition of Randić matrix comes from a molecular structure descriptor introduced by Milan
Randić in 1975, known as Randić index. The plethora of chemical and pharmacological applications
of the Randić index, as well as numerous mathematical investigations are well known and presented
in the literature. In spite of its connection with Randić index this matrix seems to have not been much
studied in mathematical chemistry however, some graph invariants related with this matrix such as
Randić energy (the sum of the absolute values of the eigenvalues of the Randić matrix), the concept
of Randić spread (that is, the maximum difference between two eigenvalues of the Randić matrix,
disregarding the spectral radius) were recently introduced and some of their properties were estab-
lished. We review some topics related with the graph invariant Randić spread, such as bounds that
were obtained from matrix and/or numerical inequalities establishing relations between this spectral
parameter and some structural parameters of the underlying graph. Moreover, some new bounds
for the Randić spread are obtained. Comparisons with some upper bounds for the Randić spread of
regular graphs are done. Finally, a possible relation between Randić spread and Randić energy is
established.
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1. Randić index and Randić matrix

The aim of this paper is to present an outline of previously established bounds for the Randić spread

known in literature as normalized Laplacian spread ( [27]). This concept is related with the so-called
graph matrix Randić matrix. We describe briefly how this matrix appeared but, firstly we recall the
concept of Randić index.

In Chemistry, some molecular properties depend on their shape and vary in a regular way within a
series of similar components. The degree of branching of a molecular skeleton is a critical factor. The
boiling points of the hydrocarbon molecules and the retention volumes or the retention times obtained
from the chromatographic studies are typical factors for this kind of correlation. Therefore, the degree
of branching and the molecular size are related with the magnitude of this correlation. The molecular
topology is important to characterize some of these chemical experimental quantities. Therefore, in order
to develop a procedure that can characterize in a quantitatively way the degree of a molecular branching
of a carbon-atom skeleton of saturated hydrocarbons, in 1975 Milan Randić [45] invented a molecular
structure descriptor (topological index) that the author called “branching index” (the name came from
the previous purpose), and which later became known under the name “connectivity index” or “Randić
index”. In many references in the contemporary mathematical and mathematical–chemical literature, the
Randić index is usually denoted by R (see [16, 21–23, 34, 35, 37]) however, we will use this symbol for
the Randić matrix and therefore we return here to Randić’s original notation χ [45]. For a (chemical)
graph G = (V (G), E(G)) the Randić index is defined as the sum over all edges ij ∈ E(G) of 1√

di dj
,

where di denotes the degree of a vertex i, that is:

χ = χ(G) =
∑

ij∈E(G)

1√
di dj

. (1)

For a regular graph G with n vertices, it is easily checked that

χ(G) =
n

2
. (2)

The chemical and pharmacology applications of this graph invariant are known and very well doc-
umented and the reader must be referred, for instance, to [22, 33–35, 37, 46] and the references cited
therein.

The Randić index happens to be the first in a long series of vertex–degree based structure descrip-
tors encountered and studied in contemporary mathematical chemistry; for details the readers must be
referred to [16, 21, 23].

It is worth to mention some applications to medicine of this topological index, see for instance, J.
Aguiló, A. Figueras, A. Freire, F. Martı́n, C. R. Munteanu, A. Pazos. Nuevas Fronteras Tecnológicas.
Redes Nanoroadmap e IBERO-NBIC 2010, in [42]. Nowadays, the cancer can be theoretical predictable
using the sequence of graphs obtained from the proteins and the studies of the mass protein spectrum. In
fact, the Randić index can be used in studies that predict the colorectal and breast cancer. This molecular
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descriptor was used in the statistical methods to find classification models that can predict if a new
protein is related with the two previous type of cancers.

Back to Eq. (1), a graph matrix R = R(G) = (rij), where rij = 1/
√
di dj if ij ∈ E(G), and zero

otherwise was conceived. The matrix R was called Randić matrix, terminology justified by the previous
relation. If D = D(G) is the diagonal matrix of the vertex degrees of a graph G without singletons, the
diagonal matrix D−1/2 is well defined and the Randić matrix (see e.g. [7, 8]) satisfies

R(G) = D−1/2A (G)D−1/2, (3)

where A (G) stands for the adjacency matrix of G. But this matrix (without any name and without any
mention to the Randić Index) was found already in the seminal book by Cvetković, Doob and Sachs [12]
(p. 26).

The matrix

L = L(G) = D−1/2 L(G)D−1/2,

where L(G) denotes the Laplacian matrix of G, is the “normalized Laplacian matrix” For comprehensive
literature of the mathematical properties of this matrix see the book F. Chung, Spectral Graph Theory,
Am. Math. Soc., Providence, 1997, [11].

It is easy to see that

L(G) = In −R(G), (4)

establishing a relation between the eigenvalues of the Randić matrix and those of the normalized Lapla-
cian matrix. We list here some known facts concerning these matrices.

Facts:

1. λ is a Randić eigenvalue of G if and only if 1− λ is a normalized Laplacian eigenvalue of G.

2. The normalized Laplacian matrix is positive semidefinite (see [11]). This implies that for graphs
with at least one edge, λ = 1 is the greatest Randić eigenvalue.

3. The vector w = D1/2 e, where e is the all ones vector, is an eigenvector of the Randić matrix for
the eigenvalue λ = 1 and also of the normalized Laplacian matrix for eigenvalue λ = 0.

4. For connected graphs G,R(G) is a nonnegative irreducible matrix.

5. For an arbitrary graph G, the multiplicity of 1 ∈ σ(R(G)), where σ(R(G)) denotes the set of
eigenvalues of R(G), corresponds to the number of connected components of G which are not
singletons.

6. For bipartite graphs, the Randić spectra is union of sets {λ,−λ} with λ being real.

In connection with the Randić index, the matrix R seems to be first time used in 2005 by Rodrı́guez,
who referred to it as the “weighted adjacency matrix” [47] and the “degree adjacency matrix” [48]. The
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matrix was regarded as an adjacency matrix where the weight of the edge ij is 1√
didj

, justifying then the
terminology used.

In 2010, the new concept of Randić energy [7, 8], equals to the sum of absolute values of the eigen-
values of R, appeared and was motivated from a systematic study of spectral properties of the Randić
matrix, [5–8,10,15,28–30,49]. Independently, based on the matrixL, the “normalized Laplacian energy”
appeared in [10], which is exactly the same as the Randić energy.

2. The Randić spread. Definition

We start this section recalling the definition of the spread, s (M) , of an n × n complex matrix M with
eigenvalues λ1, λ2, . . . , λn :

s(M) = max
i,j
|λi − λj| , (5)

where the maximum is taken over all pairs of eigenvalues of M.
This parameter appears in literature in many references, see for instance [3, 32, 39, 40, 44]. The

following upper bound for the spread of a square matrix M was given in [40]

s2 (M) ≤ 2 |M|2 − 2

n
|trace (M)|2 , (6)

with |M|2 = trace(M∗M), where M∗ is the transconjugate of M. In [18] it was introduced the concept
of Randić spread. Therefore, considering the definition in (5), the definition of the spread of a graph was
defined as the spread of its adjacency matrix [20]. However, in the particular case of the Randić matrix
and normalized Laplacian matrix, the Randić spread of the graph was not considered as the spread of the
Randić matrix (analogously, the concept of normalized Laplacian spread was modified) attending to the
following facts from [18].

Facts:

1. For the Laplacian and normalized Laplacian matrices, the smallest eigenvalue is always equal to
zero.

2. For the Randić matrix of a graph with at least one edge, the greatest eigenvalue is always equal to
unity.

3. Using the concept (5), s(L) and s(L) are equal to the spectral radii of the respective matrices and
in the literature there are many results on the greatest eigenvalues of L and L, i.e., on their spectral
radii, especially upper bounds (see for instance [50, 52]).

4. s(R) is equal to 1 minus the smallest Randić eigenvalue, and, in addition, is equal to s(L).

5. For all bipartite graphs, s(R) = 2.

Note that, using the definition of spread for these matrices, this concept becomes trivial and uninter-
esting. In order to address these difficulties, the concepts of s(L), s(L) and s(R), were modified.
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Taking into account that the smallest eigenvalue of the Laplacian matrix of a graph G is zero, and
that the second smallest eigenvalue is the algebraic connectivity of G (which is an important algebraic
measure of the connectivity of a graph [2, 14]), the “Laplacian spread” was defined in [13]

sprL(G) = max {|λi(L)− λj(L)| : λi(L), λj(L) ∈ σ(L(G)) \ {0}} . (7)

In an analogous manner, [27], the normalized Laplacian spread of G is

sprL(G) = max {|λi(L)− λj(L)| : λi(L), λj(L) ∈ σ(L(G)) \ {0}} . (8)

In parallel with definitions (7) and (8), the Randić spread was defined in [18] as

sprR(G) = max {|λi(R)− λj(R)| : λi(R), λj(R) ∈ σ(R(G)) \ {1}} . (9)

¿From (8) and (9) it follows that for graphs G having no singletons, sprR(G) coincides with sprL(G),
(see [18]). For instance, if G ∼= Kn , then

σ(R(Kn)) =

{
1,

(
− 1

n− 1

)(n−1)
}

and σ(L(Kn)) =

{(
n

n− 1

)(n−1)

, 0

}
.

Therefore, sprR(Kn) = sprL(Kn) = 0.
In 1998 Bollobás and Erdös, [4], introduced the graph parameter

Rα (G) =
∑

ij∈E(G)

(didj)
α

for a real number α 6= 0. Note that the Randić Index in (1) is a particular case of the previous one
considering α = −1/2. Most of the research concerned with bounds for Rα (G) focus on the case
|α| ≤ 1. In [38], the authors investigate bounds for Rα(G) considering |α| > 1. In [37] it was shown
that a graph G without singletons with minimum vertex degree δ and maximum vertex degree ∆,

n

2∆
≤ R−1 (G) ≤ n

2δ
, (10)

where the equality holds if and only if G is a regular graph.
In [10] some known results for the graph invariant R−1 (G) are highlighted and the authors provided

upper and lower bounds for the energy of a simple graph with respect to the normalized Laplacian
eigenvalues (defined as the sum of its absolute values), and called normalized Laplacian energy, EL (G).
An upper bound for R−1 (G) known for trees was also extended by these authors to connected graphs.
Also, in [10] for a graph G of order n without singletons it was proved that

2R−1 (G) ≤ EL (G) ≤
√

2nR−1 (G),

and this shows the relevant importance of R−1 (G) when related with EL (G) .

The next theorem is due to Brauer [9] and relates the eigenvalues of a matrix and the matrix resulting
from a rank-one additive perturbation.
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Theorem 2.1. [9] Let M be an arbitrary n × n matrix with eigenvalues λ1, λ2, . . . , λn . Let xk be an

eigenvector of M associated with the eigenvalue λk, and let q be any n-dimensional vector. Then the

matrix M+ xk q
t has eigenvalues

λ1, . . . , λk−1 , λk + xt
k q , λk+1, . . . , λn .

Using this theorem, in [18], a rank-one additive perturbation on Randić matrix was done in order to
obtain a matrix with spread equals to the Randić spread of the graph. The following facts can be found
in [18].

Facts:

1. Let suppose that the vertices p and q of a graph G are adjacent, then the Randić matrix associated
to this edge, Rpq, is a principal submatrix of order 2 of PR(G)Pt, where

Rpq =

(
0 (dp dq)

−1/2

(dp dq)
−1/2 0

)

and P is an appropriated permutation matrix of order n.

2. λpq = −1/
√
dp dq is the smallest eigenvalue of Rpq and, by the Cauchy Interlacing Theorem, we

have

λn(R(G)) ≤ −1√
dpdq
≤ λ2(R(G)).

3. In consequence, the average of these values 1
m

∑
p∼q

−1√
dpdq

= −χ(G)
m

also has the property

λn(R(G)) ≤ −χ(G)

m
≤ λ2(R(G))

or equivalently

−mλ2(R(G)) ≤ χ(G) ≤ −mλn(R(G)).

4. The vector w = D1/2e =
(√

d1, . . . ,
√
dn
)t, where e is the all ones vector, is an eigenvector

corresponding to the Randić eigenvalue 1.

5. Let βpq =
−1
2m

(
1 + 1√

dp dq

)
. By Brauer’s Theorem, Bpq = R(G) + βpq wwt has spectrum

σ(Bpq) = σ(R(G)) \ {1} ∪
{
−1√
dp dq

}
.

6. Furthermore, if B = R(G) + γwwt, where γ = −1
2m

(
χ(G)
m

+ 1
)

and w as before, by Brauer’s
Theorem, the matrix B has spectrum

σ(B) = σ(R(G)) \ {1} ∪
{
−χ (G)

m

}
.
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7. By 2. and 3. (first inequality) it is concluded that sprR(G) = s(B) = s (Bpq) .

8. Note that for an arbitrary γ the entries of B = R(G) + γwwt = (bij) are given by

bij =

{
γ
√

didj, if ij /∈ E(G)
1√
didj

+ γ
√
didj if ij ∈ E(G).

3. Lower bounds for the Randić spread

We start this section recalling that the normalized Laplacian eigenvalues and the Randić eigenvalues can
be related in the following way:

λi(L) = 1− λn+1−i(R), i ∈ {1, . . . , n}

In [11] it was proved the following result.

Theorem 3.1. [11, Lemma 1.7] Let 0 = λn(L) ≤ λn−1(L) ≤ . . . ≤ λ1(L) be the normalized Laplacian

eigenvalues of a graph G, then

λn−1(L) ≤ 1 +
1

n− 1

with equality holding if and only if G is the complete graph with n vertices. Also for a graph G without

isolated vertices we have

λ1(L) ≥ 1 +
1

n− 1
.

Remark 1. [18] By Theorem 2.1, and in a more general way, for any given value ς such that λn(R(G))

≤ ς ≤ λ2(R(G)), the equality

sprR(G) = s(Bς)

holds, where

Bς = R(G) + βwwt

with

β =
1

2m
(ς − 1).

In [31] it was proved:

Theorem 3.2. [31, Theorem 6] Let M = (mij) be an n× n Hermitian matrix. Then

s (M) ≥ max
Υ

2√
|Υ|

√√√√
∑

i∈Υ
j /∈Υ

|mij|2 , (11)

where ∅ 6= Υ ⊂ {1, 2, . . . , n} and |Υ| ≤ n
2
, where |·| stands the cardinality of sets.

In [18] the following definition was given.
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Definition 1. [18] Let G be an arbitrary (n,m)-graph with list of vertex degrees d1, . . . , dn such that

di 6= 0 for all 1 ≤ i ≤ n. For the i-th vertex of G, define

Γ(i) =
∑

s∼i

1

ds
. (12)

Clearly, if G is a k-regular graph then Γ (i) = 1, for all 1 ≤ i ≤ n.

The next lower bound, presented in [18], depends on the degrees of the vertices and the number of
edges.

Theorem 3.3. [18] Let G be an arbitrary graph with n vertices and m edges. Then

sprR(G)2 ≥ max
i≤j

{
4β (dj + di)(1 + βm)− β2 (dj + di)

2 +
2

dj
Γ(j) +

2

di
Γ(i)

}
(13)

where β is either

β1 =
−1
2m

(
1 +

1√
dp dq

)
, (14)

or

β2 =
−1
2m

(
1 +

χ (G)

m

)
. (15)

Remark 2. Using Lemma 3.1, the parameter

β3 =
−1
2m

(
n

n− 1

)
. (16)

can be included in the above list also. This parameter β3 was not considered in the previous works.

The next lemma was proved in [18].

Lemma 3.4. [18] Let G be a connected graph of order n. Then λ2(R(G)) < 0 if and only if G ∼= Kn .

Remark 3. If G 6∼= Kn is a connected graph, by Lemma 3.4, λn(R(G)) ≤ 0 ≤ λ2(R(G)) which implies

that

β0 = −
1

2m
(17)

satisfies the condition in Remark 1 and can be chosen as a different parameter rather than β in Theorem

3.5 and Remark 2.

Remark 4. Note that, for an arbitrary graph G with m edges, it is easily checked

∑

j∈V (G)�{i}
dj = 2m− di.

Now we apply the Theorem 3.2 to the next result.
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Theorem 3.5. Let G be an arbitrary graph with n vertices and m edges. Let Υ be a subset of vertices

of G, where |Υ| ≤ n
2
.

sprR(G) ≥ 2√
|Υ|

√√√√√
∑

i∈Υ


Γ (i)

di
+ 2βdi +

∑

j∈V (G)�{i}
β2didj




=
2√
|Υ|

√∑

i∈Υ

(
Γ (i)

di
+ 2βdi + β2di (2m− di)

)
.

where β is defined either as in (14) or (15) or (16) and, in the case of G � Kn as in (17).

Proof. Let Υ be a subset of vertices of G. We apply the lower bound (11) to a matrix Bζ in Remark 1
and we use Item 8 in latter Facts to obtain:

s (Bζ) = sprR(G) ≥ 2√
|Υ|

√√√√√
∑

i∈Υ


 ∑

ij∈E(G)

(
1

didj
+ 2β + β2didj

)
+

∑

ij /∈E(G)

β2didj


.

=
2√
|Υ|

√√√√√
∑

i∈Υ


 1

di
Γ (i) + 2βdi + β2di

∑

ij∈E(G)

dj +
∑

ij /∈E(G)

β2didj




=
2√
|Υ|

√√√√√
∑

i∈Υ


 1

di
Γ (i) + 2βdi + β2di

∑

j∈V (G)�{i}
dj


.

Taking |Υ| = 1 in the lower bound given in Theorem 3.5 we obtain

Theorem 3.6. Let G be an arbitrary graph with n vertices and m edges, then

sprR(G) ≥ max
i∈V (G)

2

√
Γ (i)

di
+ 2βdi + β2di (2m− di), (18)

where β is defined either as in (14) or (15) or (16) and, in the case of G � Kn as in (17).

If G is a k-regular graph then

β0 = − 1
nk
, β1 = β2 =

−(k+1)
nk2

, β3 =
−1

(n−1)k (19)

Γ(j) = 1, for all, j = 1, 2 . . . , n.

For a k regular graph G, replacing the parameter β in (18), by β0, β1 and β3, in (19), respectively we
obtain the next corollaries.

Corollary 3.1. [1] Let G � Kn be a k-regular graph of order n. Then

sprR(G) ≥ 2

√
1

k
− 1

n
− 1

n2
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Corollary 3.2. [18, Remark 3] Let G be a k-regular graph of order n. Then

sprR(G) ≥ 2

nk

√
(n− 1− k)(kn+ k + 1).

Corollary 3.3. Let G be a k-regular graph of order n. Then

sprR(G) ≥ 2

√
1

k
− 1

n− 1
.

Remark 5. The lower bound in Corollary 3.3 is new and improves the lower bound in [18] given by

sprR(G) ≥ 1

k
− 1

n− 1
.

Now we introduce the following notation that will be used in the next results. For a square matrix

H , tr (H) stands for the trace of H . The sum
n∑

i1=1

n∑
i2=1

. . .
n∑

is=1

f (i1, i2, . . . , is) will be denoted by

n∑
i1,i2,...,is=1

f (i1, i2, . . . , is) .

The following lemma was proved in [1].

Lemma 3.7. [1]Let γ1 ≥ γ2 ≥ · · · ≥ γn−1 ≥ γn = 0 be the normalized Laplacian eigenvalues of a

graph G. Let A = (aij) be the adjacency matrix of G whose degrees sequence is d1, d2, . . . , dn. Then,

1.
n−1∑
i=1

γ2
i = n+ 2R−1;

2.
n−1∑
i=1

γ4
i = n+ 6

n∑
i1,i2=1

ai1i2ai2i1
di1di2

− 4
n∑

i1,i2,i3=1

ai1i2ai2i3ai3i1
di1di2di3

+
n∑

i1,i2,i3,i4=1

ai1i2ai2i3ai3i4ai4i1
di1di2di3di4

.

On the same way, using a numerical inequality, see [41, Complementary Inequalities (12.3)] together
with the previous lemma were obtained the following results.

Theorem 3.8. [1] Let A = (aij) be the adjacency matrix of a graph G whose degrees sequence is

d1, d2, . . . , dn. Then,

sL (G) = sR (G) ≥



n+6
n∑

i1,i2=1

ai1i2
ai2i1

di1
di2

−4
n∑

i1,i2,i3=1

ai1i2
ai2i3

ai3i1
di1

di2
di3

+
n∑

i1,i2,i3,i4=1

ai1i2
ai2i3

ai3i4
ai4i1

di1
di2

di3
di4

.

n+2R−1
−n+2R−1

n−1




1/2

.

Applying Theorem 3.8, for a k-regular graph G it was obtained.

Corollary 3.4. [1] . Let A = (aij) be the adjacency matrix of a k regular graph G. Then

sL (G) = sR (G) ≥
(
nk + (1/k3) tr (6k2A2 − 4kA3 + A4)

n (k + 1)
− n (k + 1)

k (n− 1)

)1/2

. (20)

Using another numerical inequality in [41, Complementary Inequalities (12.4)] the following result
was presented.
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Theorem 3.9. [1] Let G be a connected graph with n ≥ 2 vertices. Then

sR (G) = sL (G) ≥ 2
n−1

√
2 (n− 1)R−1 − n. (21)

Corollary 3.5. [1] Let G be a connected graph with n ≥ 2 vertices and maximum vertex degree ∆.

Then

sR (G) = sL (G) ≥ 2
n−1

√
n (n− 1)

∆
− n.

Moreover, if G is k-regular (k ≥ 2), then

sR (G) = sL (G) ≥ 2
(n−1)k

√
nk (n− 1− k). (22)

Remark 6. For circulant graphs, see [17], we present results obtained with MATLAB comparing the

lower bound in (20) with the lower bound in (22). For short we present only the first row of the adjacency

matrix of our graphs. As shows the following table both lower bounds (22) and (20) are efficient to

approximate the sR (G). The following table gives the first row of the adjacency matrix of a circulant

graph G, the Randić spread of G and the lower bounds in (22) and (20), respectively.

G sR (G) (22) (20)(
0 0 0 1 1 1 1 1 0 0

)
0.8944 0.6285 0.6733(

0 0 1 1 0 0 0 1 1 0
)

1.1180 0.7857 0.8724(
0 0 1 0 0 0 0 0 1 0

)
1.8090 1.3147 1.1180(

0 0 0 1 1 1 1 0 0
)

0.9698 0.7500 0.7945(
0 1 1 1 0 0 1 1 1

)
0.5686 0.4330 0.4315(

0 1 0 0 1 0 1 0 1 0 0 1
)

0.9464 0.6900 0.7644(
0 1 1 0 1 1 1 1 1 0 1 1

)
0.4444 0.2969 0.2971(

0 1 0 1 1 1 1 1 1 1 0 1
)

0.4444 0.2969 0.2967(
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

)
1.500 1.3553 0.8018(

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1
)

0.6250 0.4792 0.5012

4. Upper bounds for the Randić spread

In what follows we present upper bounds for the Randić spread and discuss the equality cases. The first
one uses a known upper bound for the spread of a matrix due to D. Scott [51], which can be proven by
Gershgorin circle theorem (see the proof of Theorem 3.1 in [3]). Let M = (mij) be a square matrix.
Then

s (M) ≤ max
i 6=j

{
|mii −mjj|+

∑

k 6=i

|mik|+
∑

k 6=j

|mjk|
}

. (23)

Using (23) it was established the next theorem.

Theorem 4.1. [18] Let G be a graph on n vertices and m edges whose degrees sequence is d1, d2, . . . ,

dn and Bς be the matrix defined in Remark 1, with λn(R(G)) ≤ ς ≤ λ2(R(G)). Then

s(Bς)≤max
i<j

{
(
1−ς
2m

)
|di−dj |+

∑
l∼i

∣∣∣∣ 1√
didl

−
(
1−ς
2m

)√
didl

∣∣∣∣+
(1−ς)
2m

∑
l 6∼i

√
didl+

∑
l∼j

∣∣∣∣∣
1√
djdl

−
(
1−ς
2m

)√
djdl

∣∣∣∣∣+
(1−ς)
2m

∑
l 6∼i

√
djdl

}
.

(24)
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On the other hand, if G 6∼= Kn is a connected graph, by Lemma 3.4, λn(R(G)) ≤ 0 ≤ λ2(R(G)),
which implies that ς = 0 satisfies the condition in Remark 1. Thus the next upper bound follows from
(24) .

Corollary 4.1. Let G 6∼= Kn be a connected graph with n vertices and m edges whose degrees sequence

is d1, d2, . . . , dn. Then

sprL(G)=sprR(G)≤maxi<j

{ ∣∣∣di−dj

∣∣∣
2m

+
∑

l∼i

∣∣∣∣ 1√
didl

−
√

didl
2m

∣∣∣∣+
∑

l∼j

∣∣∣∣∣
1√
djdl

−
√

djdl

2m

∣∣∣∣∣+
∑

l6∼j

√
djdl

2m
+

∑
l 6∼i

√
didl
2m

}
.

(25)

Moreover, if G is k-regular with k 6= n− 1, then

sprL (G) = sprR (G) ≤ 4− 2 (2k + 1)

n
.

More recently, the authors in [27] obtained the following upper bound for sprL (G).

Theorem 4.2. [27, Theorem 4] Let G be an undirected simple connected graph with n ≥ 3 vertices.

Then

sprL (G) = sprR (G) ≤
√

2

n− 1

√
2 (n− 1)R−1 − n. (26)

Equality holds if and only if G ∼= Kn.

By the above result together with the upper bound in (10) the following result is obtained.

Corollary 4.2. Let G be an undirected simple connected graph with n ≥ 3 vertices. with ordered list of

vertex degrees, d1 ≥ d2 ≥ · · · ≥ dn = δ. Then

sprL (G) = sprR (G) ≤
√

2n (n− 1− δ)

(n− 1) δ
.

Equality holds if and only if G ∼= Kn.

The next corollary, presented in [27], is a particular case of Theorem 4.2.

Corollary 4.3. [27, Corollary 7] Let G be a k-regular connected graph with n vertices (n ≥ 3). Then

sprL (G) = sprR (G) ≤
√
2n

(
1

k
− 1

n− 1

)
. (27)

Equality holds if and only if G ∼= Kn.

In what follows, using the suggestion in Remark 1, we deduce some upper bounds for the Randić
spread (and for the spread of a rank one perturbed Randić matrix). By using inequality in (6) the follow-
ing results were obtained.

Theorem 4.3. [19] Let G be a graph on n vertices and m edges and Bς be the matrix defined in Remark

1. Then

s (Bς) ≤
√
4R−1 (G) +

2(ς − 1)

n
(1 + n+ ς (n− 1)). (28)
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Corollary 4.4. [19] Let G 6∼= Kn be a connected graph with n vertices Then

sprR (G) ≤
√
4R−1 (G)− 2 (1 + n)

n
. (29)

Moreover, if G is k-regular k 6= n− 1, then

sprR (G) ≤
√

2n2 − 2k (1 + n)

nk
=

√
2n

(
1

k
− 1

n
− 1

n2

)
. (30)

The following result is obtained by setting ς = −χ(G)
m

in (28).

Corollary 4.5. [19] Let G be a graph with n vertices and m edges. Then

sprR (G) ≤
√
4R−1 (G)− 2 (χ(G) +m) (m (1 + n)− χ(G) (n− 1))

nm2
. (31)

Moreover, if G is a k-regular graph,

sprR (G) ≤

√
2n2k − 2 (k2 − 1)n− 2 (k + 1)2

nk2
. (32)

5. Some conclusions

In this section, for a connected k-regular graph G, we compare the lower bound given in (27) with its
counterparts in (30) and (32).

Proposition 5.1. Let G 6∼= Kn be a connected k-regular graph. Then the upper bound given in (30) is

an improvement of the upper bound given in (27).

Proof. This proof is based on the equivalence

2n (n− 1− k)

k (n− 1)
≥ 2n2 − 2k (1 + n)

nk

if and only if

n (n− 1− k)

n− 1
≥ n2 − k (1 + n)

n
⇔

n3 − n2 − n2k ≥ (n− 1)
(
n2 − k − kn

)

= n3 − nk − n2k − n2 + k + kn

if and only if

0 ≥ k,

which is false.
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Proposition 5.2. Let G 6∼= Kn be a connected k-regular graph. Then, the upper bound given in (30) is

an improvement of the upper bound given in (32) if and only if

n ≥ 2k + 1.

Proof. This proof is based on the equivalence

2n2k − 2 (k2 − 1)n− 2 (k + 1)2

nk2
≥ 2n2 − 2k (1 + n)

nk
⇔

n2k − k2n+ n− k2 − 2k − 1 ≥ n2k − k2 − k2n⇔
n− 2k − 1 ≥ 0

if and only if
n ≥ 2k + 1.

6. Relations between the Randić spread and the Randić energy

The concept of matrix energy was conceived by analogy with graph energy [43]. For details on graph
energy see for instance the papers [24, 25] and the book [36]. According to Nikiforov, for an arbitrary
(not necessarily square) matrix M with singular values s1(M), s2(M), . . ., its energy E(M) is equal to
s1(M) + s2(M) + · · · . In the special case when M is symmetric with eigenvalues λ1(M), λ2(M), . . . ,

λn(M), then its energy is given by

E(M) =
n∑

i=1

|λi (M) | .

In addition to the ordinary graph energy, namely the energy of the adjacency matrix, a variety of
other energies based on other graph matrices have been introduced [26, 36]. Recently, the concept of
Randić energy, ER, was introduced in [7], equal to the sum of absolute values of the eigenvalues of the
Randić matrix:

ER(G) =
n∑

i=1

|ρi| .

For further study on this graph invariant the reader is referred to [5–8, 29, 30, 49]. Independently, for
graphs without isolated vertices, and based on the matrix L, the normalized Laplacian energy was de-
fined in [10]

EL(G) =
n∑

i=1

|γi − 1|

which is exactly same as the Randić energy, that is, EL(G) = ER(G).
In [10] it was shown that EL(G) can be bounded in terms of the graph invariant R−1(G).

Lemma 6.1. [10] Let G be a graph of order n with no isolated vertices. Then

2R−1(G) ≤ EL(G) ≤
√
2nR−1(G) .
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Moreover, it was shown that
2 ≤ EL(G) ≤

⌊n
2

⌋

and the graphs attaining these bounds were characterized [10]. If G is connected, then the upper bound can be

improved to EL(G) <
√

15
28 (n + 1). The authors in [10] also provide a class of connected graphs for which

EL(G) = n√
2
+O(1) and the question if this class has maximal EL(G) was considered.

The next result was proven in [27].

Theorem 6.2. [27]Let G be a graph with n ≥ 2 vertices. Then

(n− 1) (n+ 2R−1)− n2 ≤
(
n− 1

2

)
sprR (G)ER(G). (33)

By combining the upper bound in (26) with the inequality in (33) the authors propose the following
lower bound.

Theorem 6.3. [27, Theorem 5] Let G be an undirected simple and connected graph with n ≥ 3, vertices

and m edges. Then

EL(G) = ER(G) ≥
√

2

n− 1

√
2 (n− 1)R−1 − n.

As a corollary and by using the right hand inequality in (10) we derive.

Corollary 6.1. Let G be an undirected simple and connected graph with n ≥ 3 vertices and largest

vertex degree ∆. Then

EL(G) = ER(G) ≥
√

2n

(n− 1)∆

√
n− 1−∆.

Moreover, if G is a k-regular graph,

EL(G) = ER(G) ≥
√

2n

k

√
n− 1− k

n− 1
. (34)

On the other hand a classical lower bound for the energy of a n-vertex graph G with m edges,
see [36], is given by the inequality

E (G) ≥ 2
√
m.

For a k-regular graph G with n vertices, from the above lower bound we obtain

E (G) ≥ 2

√
nk

2
.

¿From the equality (3), for a k-regular graph G with n vertices it is derived

ER(G) ≥ 2

k

√
nk

2
=

√
2n

k
. (35)

It is clear that the lower bound (34) is worse than the one presented in (35).
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mun. Math. Comput. Chem. 64 (2010) 321–334.

[9] A. Brauer, Limits for the characteristic roots of a matrix. IV. Applications to stochastics matrices,
Duke Math. J. 19 (1952) 75–91.

[10] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index
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in: J. Aguiló, A. Figueras, A. Freire, F. Martı́n, C. R. Munteanu, A. Pazos (Eds.), Nuevas Fronteras
Tecnológicas, Redes Nanoroadmap e IBERO-NBIC 2010, Ciencia y Tecnologia para el Desarrollo
(CYTED), Madrid, 2010.

[43] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472–1475.

[44] P. Nylen, T. Y. Tam, On the spread of a Hermitian matrix and a conjecture of Thompson, Lin.
Multilin. Algebra 37 (1994) 3–11.
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1. Introduction

Let G be a finite, connected, simple graph with n = |V | vertices and m = |E| edges. For vertices
u, v ∈ V , the distance d(u, v) is defined as the length of the shortest path between u and v in G . The
diameter diam(G) is the greatest distance between two vertices of G. The degree degG(v) of a vertex v

is the number of edges incident with it in G . The maximum degree of a graph of G is denoted by dmax .
Let e = uv be an edge connecting vertices u and v ∈ G . Define the sets:

Nu (e) = {z ∈ V |dG (z, u) < dG (z, v)}
Nv (e) = {z ∈ V |dG (z, v) < dG (z, u)}

which are sets consisting of vertices lying closer to u than to v and those lying closer to v than to u ,
respectively. The number of such vertices are denoted by

nu = nu (e) = |Nu (e)| and nv = nv (e) = |Nv (e)| .

Other terminology and notations needed will be introduced as it naturally occurs in the following and we
use [1, 3, 4, 16] for those not defined here.

A topological index is a number related to graph which is invariant under graph isomorphism. In
theoretical chemistry, molecular structure descriptors (also called topological indices) are used for mod-
eling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical com-
pounds [9]. There exist several types of such indices, especially those based on vertex and edge dis-
tances. One of the most intensively studied topological indices is the Wiener index W , defined as the

173
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sum of distances between all pairs of vertices of the molecular graph [30]. In a molecular graph, each
vertex represented an atom of the molecule and bond between atoms are represented by edges between
corresponding edges.

The vertex PI index [22], Szeged index [10] and the first Zagreb index [7], defined as follows:

PIv =
∑

e=uv∈E(G)

nu(e) + nv(e)

Sz(G) =
∑

e=uv∈E(G)

nu(e)nv(e)

M1(G) =
∑

v∈V (G)

deg2 (v) .

Recently, Hassani et al. introduced a new topological index similar to the vertex version of PI index
[14]. This index is called the Co− PIv index of G and defined as:

Co− PIv(G) =
∑

e=uv∈E(G)

|nu(e)− nv(e)| .

Here the summation goes over all edges of G.
Hassani et al. computed Co-PI index for TUC4C8(R) nanotubes in [15]. Su et al. presented an equiv-

alent definition of Co− PIv index and established further mathematical properties of the Co− PIv

index [29]. They computed the Co− PIv index of Cartesian product graphs as in the following.

Theorem 1.1. [29] Let G = G1�G2 be the Cartesian product of two graphs G1 and G2. Then

Co− PIv(G1�G2) = |V1|2Co− PIv(G2) + |V2|2Co− PIv(G1).

Theorem 1.2. [29] Let G1,G2, ...,Gn be n graphs on at least two vertices. Then

Co− PIv

(
n⊗

i=1

Gi

)
=

n∑

i=1

(
Co− PIv(Gi)

n∏

j 6=i

|Vj|2
)
.

Kaya et al. established the following results for the Co− PIv index of graphs [19].

Theorem 1.3. [19] Let G be a connected graph with n ≥ 2 vertices and m edges. Then,

Co− PIv(G) ≤ m(n− 2)

with equality if and only if G is isomorphic to Sn.

The following two upper bounds over Co− PIv index are in terms of n,m and Szeged index.

Theorem 1.4. [19] Let G be a connected graph with n ≥ 2 vertices and m edges. Then,

Co− PIv(G) ≤ √m
√
m(n2 − 2n+ 2)− 2Sz(G)

with equality if and only if G is isomorphic to Sn.
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Theorem 1.5. [19] Let G be a connected graph with n ≥ 2 vertices and m edges. Then,

Co− PIv(G) ≤
√

m(n2 − 2n+ 2)− 2Sz(G) +m(m− 1)(n− 2)2

with equality if and only if G is isomorphic to Sn.

Now we present a lower bound on Co− PIv index of graphs.

Theorem 1.6. [19] Let G be a connected graph with n ≥ 2 . Then,

Co− PIv(G) ≥
√
|(n2 − 2n+ 2)− 2Sz(G)|.

Equality holds if and only if G is isomorphic to K2.

Using the Ozeki inequality [18] in the following theorem, it was obtained an upper bound for the
Co− PIv index.

Theorem 1.7. [19] Let G be a connected graph with n ≥ 2. Then,

Co− PIv(G) ≤
√

m2

3
(n− 2)2 + PI2v (G)− 4mSz(G).

Equality holds if and only if G is isomorphic to the K2 .

Now we give an upper bound on Co− PIv index in terms of m, first Zagreb index and maximum
degree.

Theorem 1.8. [19] Let G be a connected graph with diameter 2. Then,

Co− PIv(G) ≤
√
mM1(dmax − 2)

inequality holds.

Corollary 1.1. [19] Let T be a tree with n vertices. Then,

2 (n− 2) ≤ Co− PIv(T ) ≤ (n− 1) (n− 2) .

Lower bound holds if and only if T is isomorphic to K2 and upper bound holds if and only if T is

isomorphic to Sn.

Su et al. [29] introduced the Co-PI matrix and the Laplacian Co-PI matrix of a graph in this way:

The adjacent matrix A(G) = [aij]n×n of G is the integer matrix with rows and columns indexed by
its vertices, such that the ij−th-entry is equal to the number of edges connecting i and j. Let the weight
of the edge e = uv be a non-negative integer |nu(e)− nv(e)| , we can define a weight function: w : E →
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R+ ∪ {0} on E, which is said to be the Co− PI weighting of G. The adjacency matrix of G weighted
by the Co-PI weighting is said to be its Co− PI matrix and denoted by MCPI(G) = [cij]n×n .That is,

cij =

{ ∣∣nvi(e)− nvj(e)
∣∣ , e = vivj

0 , otherwise
.

The eigenvalues of MCPI are said to be the Co-PI eigenvalues of G and denoted by λ∗
k(G) for k =

1, 2, ..., |V | .
The Laplacian matrix of G is defined as L(G) = D(G)T − A(G), where D(G) is the vector of

degrees of its vertices. Such matrix weighted by the Co-PI weighting is said to be the Laplacian Co-PI
matrix and denoted by LMCPI(G). Its eigenvalues are the Laplacian Co-PI eigenvalues and we denote
them by µ∗

k(G) for k = 1, 2, ..., |V | . Easy verification shows that the Co-PI index of G can be expressed
as one half of the sum of all entries of MCPI(G), i.e.,

Co− PIv(G) =
1

2

n∑

i=1

MCPIi(G)

where MCPIi is the sum of i-th row of the matrix MCPI .

Since Co-PI matrix is symmetric, all its eigenvalues λ∗
i , k = 1, 2, ..., |V | , are real and can be labeled

so that λ∗
1 ≥ λ∗

2... ≥ λ∗
n . The greatest eigenvalue λ∗

1 will be called the Co-PI spectral radius of G.
Research on spectral radius of graphs is nowadays very active, as seen from recent papers [5, 6, 17, 19,
20, 26, 27, 32].

In the following two theorems Su et al. [29] characterized the Co-PI spectra of Cartesian product
graphs as in the following.

Theorem 1.9. [29] Let G = G1�G2 be the Cartesian product of two graphs G1 and G2. Then

(i) λ∗
kl(G1�G2) = |V1|λ∗

l (G2) + |V2|λ∗
k(G1) for k = 1, 2, ..., |V1| and l = 1, 2, ..., |V2| .

(ii) µ∗
kl(G1�G2) = |V1|µ′

l(G2) + |V2|µ∗
k(G1) for k = 1, 2, ..., |V1| and l = 1, 2, ..., |V2| .

Theorem 1.10. [29] Let G1,G2, ...,Gn be n graphs on at least two vertices. Then

(i) λ∗
i1i2...in

(
n⊗

i=1

Gi

)
=

n∏
i=1

|Vi|
(

n∑
j=1

λ∗
kj

(Gi)

|Vj |

)
for 1 ≤ ij ≤ |Vj| .

(ii) µ∗
i1i2...in

(
n⊗

i=1

Gi

)
=

n∏
i=1

|Vi|
(

n∑
j=1

µ∗
kj

(Gi)

|Vj |

)
for 1 ≤ ij ≤ |Vj| .

Let P (G;x) = xn + c1x
n−1 + ... + cn−1x + cn be the characteristic polynomial of G. N. Biggs

proved that all coefficents of P (G;x) can be expressed in terms of the principle minors of A(G), where
a principle minor is the determinant of a submatrix obtained by taking a subset of the rows and that of
columns. This leads to the following result.

Theorem 1.11. [1] The coefficents of the characteristic polynomial P (G;x) of a connected graph G

satisfy: c1 = 0, −c2 is the number of edges and −c3 is twice the number of triangles of G.
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Let A be the adjacency matrix of a graph G. It is well known that the (i, j)−th element a(k)ij of the
power matrix Ak, k ≥ 1, represents the number of walks of length k from the vertex ui to the vertex uj.

Therefore, Su et al. [29] deduced bounds on the second and third Co-PI spectral moment of a graph G

as in the following.

Theorem 1.12. [29] Let G be a connected graph with order n ≥ 3, size m and t triangles. Then,

2m ≤ λ∗2
1 + λ∗2

2 + ...+ λ∗2
n ≤ 2m(n− 2)2 (1)

and

6t ≤ λ∗3
1 + λ∗3

2 + ...+ λ∗3
n ≤ 6t(n− 2)3.

Kaya et al. [19] obtained following bounds for Co-PI spectral radius.

Theorem 1.13. [19] Let G be a connected graph with n ≥ 2. Then,
√√√√

n∑
i=1

M2
CPIi

n
≤ λ∗

1 ≤ max
1≤j≤n

n∑

i=1

MCPIij

√
MCPIj

MCPIi

where MCPIi is the sum of i-th row of the matrix MCPI . Equality holds if and only if MCPI1 = MCPI2 =

... = MCPIn .

Note that trace [MCPI ] = 0 and denote by S the trace of M2
CPI . Therefore, the eigenvalues λ∗

i for
i = 1, 2, ..., n of MCPI satisfy the relations

n∑

i=1

λ∗
i = 0 (2)

,
n∑

i=1

λ∗2
i = 2

n∑

i<j

(cij)
2 = S (3)

Let Γ be the class of connected graphs whose Co-PI matrices have exactly one positive eigenvalue.
In the following, Kaya et al. [19] presented upper and lower bounds for λ∗

1 of graphs in the class Γ in
terms of n and S.

Theorem 1.14. [19] Let G ∈ Γ with n ≥ 2 vertices. Then,

λ∗
1 ≤

√
n− 1

n
S (4)

inequality holds.

Theorem 1.15. [19] Let G ∈ Γ with n ≥ 2 vertices. Then,

λ∗
1 ≥

√
S

2
(5)

inequality holds.
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From the (1),(4) and (5), we arrive at the Nordhous-Gaddum type inequalities for the largest Co-PI
eigenvalue of G.

Theorem 1.16. [19] Let G be a connected graph on n > 2 vertices, m edges. Further, assume that

G ∈ Γ has a connected complement G with m edges. Then,

λ∗
1(G) + λ∗

1(G) ≤
√

n− 1

n

[√
2m(n− 2)2 +

√
(n(n− 1)− 2m) (n− 2)2

]

and

λ∗
1(G) + λ∗

1(G) ≥ √m+

√
(n(n− 1)− 2m)

2

inequalities hold.

Let G be a graph with vertex set V (G) = {v1, v2, ..., vn} and Co-PI matrix MCPI . Then, the Co-

PI degree of vi, MCPIi , is given by MCPIi =
n∑

j=1

cij. Let {MCPI1 ,MCPI2 , ..,MCPIn} be the Co-PI

degree sequence. Then, the second Co-PI degree of vi, denoted by MTCPIi , is given by MTCPIi =
n∑

j=1

cijMCPIj . If {MCPI1 ,MCPI2 , ..,MCPIn} is the Co-PI degree sequence, then G is a k-Co-PI regu-

lar graph if MCPIi = k, for all i. If G has the Co-PI degree sequence and second Co-PI degree se-
quence {MCPI1 ,MCPI2 , ..,MCPIn} and {MTCPI1 ,MTCPI2 , ...,MTCPIn} respectively, then G is pseudo
k-Co-PI regular graph if MTCPIi

MCPIi
= k, for all i.

Using the Co-PI degree sequence, following results are obtained by Kaya et al. in [19, 20].

Theorem 1.17. [19] Let G be a connected graph with n ≥ 2. Then,

λ∗
1 ≥

2Co− PIv(G)

n

with equality holding if and only if MCPI1 = MCPI2 = ... = MCPIn .

In order to obtain a different lower bound for the Co-PI energy of graphs, for each i = 1, 2, ..., n, we
define the sequence C

(1)
i , C

(2)
i , ..., C

(t)
i , ... as follows: For a fixed α ∈ R, let C(1)

i = Mα
CPIi

and, for each

t ≥ 2, let C(t)
i =

n∑
i=1

cijC
(t−1)
j .

Theorem 1.18. [20] Let G be a connected graph, α ∈ R and t ∈ Z. Thus,

λ∗
1 ≥

√√√√√√√

n∑
i=1

(
C

(t+1)
i

)2

n∑
i=1

(
C

(t)
i

)2 .

For a special case, if we take α = 1 and t = 1, we obtained the following result.
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Corollary 1.2. [20] Let G be a graph with first and second Co-PI degree sequences

{MCPI1 ,MCPI2 , ..,MCPIn} and {MTCPI1 ,MTCPI2 , ...,MTCPIn} ,

respectively. Then,

λ∗
1 ≥

√√√√√√√

n∑
i=1

(MTCPIi)
2

n∑
i=1

(MCPIi)
2
.

Equality holds if and only if, for a constant k, G is a pseudo k-Co-PI regular.

Theorem 1.19. [20] Let G be a graph with Co-PI degree sequence {MCPI1 ,MCPI2 , ..,MCPIn}. Then,

λ∗
1 ≥

√
M2

CPI1
+M2

CPI2
+ ...+M2

CPIn

n

with equality holding if and only if G is Co-PI regular.

The following bounds are related to the second Co-PI spectral moment.

Theorem 1.20. [21] Let G be a graph with n vertices and m edges. Then,

2

m
Co− PI2v (G) ≤

n∑

i=1

λ∗2
i ≤ min{2(n− 2)Co− PIv(G), (6)

2m(n2 − 2n+ 2)− 4Sz(G)}.

The left equaliy (6) holds if and only if G ∼= K2 and the right one if and only if G ∼= Sn.

The next theorem is related to upper bound for λ∗
1.

Theorem 1.21. [21] Let G be a graph with n vertices and m edges. Then,

λ∗
1 ≤ min





√
2(n−1)(n−2)Co−PIv(G)

n
,√

(n−1)
n

√
2m(n2 − 2n+ 2)− 4Sz(G)



 .

On one of the most remarkable chemical applications of spectral graph theory is based on the close
correspondence between the graph eigenvalues and the molecular orbital energy levels of π−electrons in
conjugated hydrocarbons. For the Hüchkel molecular orbital approximation, the total π−electron energy
in conjugated hydrocarbons is given by the sum of absolute values of the eigenvalues corresponding to
the molecular graph G in which the maximum degree is not more than four in general. The notation of
the energy of a graph was introduced by Ivan Gutman in [8] as

E(G) =
n∑

i=1

|λi|
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λi, i = 1, ..., n are the eigenvalues of adjacency matrix of G. Details and more information on graph
energy can be found in the recent papers [11–13, 23–25, 28, 31].

In a similar way, the Co-PI energy of a graph G,

Co− PIE(G) =
n∑

i=1

|λ∗
i | (7)

was defined by Kaya et al. in [21].
The paper is organized as follows. In Section 2, we give a list of some previously known results. In

Section 3, we present some lower and upper bounds on Co-PI energy for graphs.

2. Known results

In this section, we shall list previously known results that will be related with Co-PI energy of graphs.

Theorem 2.1. [21] Let G be a connected graph. Then,

Co− PIE(G) ≤
√
2n
∑

e=vivj

∣∣nvi − nvj

∣∣2 (8)

Equality holds (8) if and only if G is empty. Moreover,

Co− PIE(G) ≤ √nα

in which

α = min
{√

n
√
2(n− 2)Co− PIv(G),

√
n
√

2m(n2 − 2n+ 2)− 4Sz(G)
}
.

Theorem 2.2. [21] Let G be a connected graph, α ∈ R and t ∈ Z. Thus,

Co− PIE(G) ≤

√√√√√√√

n∑
i=1

(
C

(t+1)
i

)2

n∑
i=1

(
C

(t)
i

)2 +

√√√√√√√(n− 1)


S −

n∑
i=1

(
C

(t+1)
i

)2

n∑
i=1

(
C

(t)
i

)2


 (9)

where S is the sum of the squares of entries in the Co-PI matrix. Equality holds in (9) if and only if G is

a connected graph satisfying

C
(t+1)
1

C
(t)
1

=
C

(t+1)
2

C
(t)
2

= ... =
C

(t+1)
n

C
(t)
n

= k ≥
√

S

n

with three distinct eigenvalues
(
k,
√

S−k2

n−1
,−
√

S−k2

n−1

)
.

For a special case, if we take α = 1 and t = 1, we get the following result.
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Corollary 2.1. [21] Let G be a graph with first and second Co-PI degree sequences {MCPI1 ,MCPI2 ,

. . . ,MCPIn} and {MTCPI1 ,MTCPI2 , ...,MTCPIn} , respectively. Then,

Co− PIE(G) ≤

√√√√√√√

n∑
i=1

(MTCPIi)
2

n∑
i=1

(MCPIi)
2

+

√√√√√√√(n− 1)


S −

n∑
i=1

(MTCPIi)
2

n∑
i=1

(MCPIi)
2


 (10)

where S is the sum of the squares of entries in the Co-PI matrix. Equality holds in (10) if and only if for

a constant k, G is a pseudo k- Co-PI regular with three distinct eigenvalues
(
k,
√

S−k2

n−1
,−
√

S−k2

n−1

)
.

3. New bounds for Co-PI energy

In this section, we present some new lower and upper bounds on Co-PI energy.
Let a1, a2, ..., ar be positive real numbers. For a positive number k among the values 1 ≤ k ≤ r, let

us suppose that each Pk is defined as in the following:

P1 =
a1 + a2 + ...+ ar

r
,

P2 =
a1a2 + a1a3 + ...+ a1ar + a2a3 + ...+ ar−1ar

1
2
r(r − 1)

,

...

Pr−1 =
a1a2...ar−1 + a1a2...ar−2ar + ...+ a2a3...ar−1ar

r
Pr = a1a2...ar

Hence the arithmetic mean is simply P1 while the geometric mean is P
1/r
r . In fact the following

lemma gives a relationship among them.

Lemma 3.1. [2, Maclaurin’s symmetric mean inequality] For a1, a2, ..., ar ∈ R+, it is true that

P1 ≥ P
1/2
2 ≥ P

1/3
3 ≥ ... ≥ P 1/r

r . (11)

Equality among them holds if and only if a1 = a2 = ... = ar.

After all above material, we are ready to present our main results.

Theorem 3.2. Let G be a connected graph with n vertices and let ∆ be the absolute value of the de-

terminant of the Co-PI matrix and S be the sum of the squares of entries in the Co-PI matrix of G.

Then,

Co− PIE(G) ≥
√
S + n(n− 1)∆

2
n .

Equality holds if and only if |λ∗
1| = |λ∗

2| = ... = |λ∗
n| .
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Proof. Taking r = n, ai = |λ∗
i | , i = 1, 2, ..., n, by Lemma 3.1, we have

P
1/2
2 ≥ P

1/n−1
n−1 (12)

where

P2 =
1

n(n− 1)

n∑

i=1

n∑

j=1

j 6=i

|λ∗
i |
∣∣λ∗

j

∣∣ (13)

=
1

n(n− 1)



(

n∑

i=1

|λ∗
i |
)2

−
n∑

i=1

|λ∗
i |2



=
1

n(n− 1)

[
Co− PIE(G)2 − S

]
, as

n∑

i=1

|λ∗
i |2 = S

and

Pn−1 =

n∑
i=1

n∏
j=1

j 6=n−i+1

|λ∗
i |

n
(14)

=

n∏
i=1

|λ∗
i |

n

n∑

i=1

1

|λ∗
i |

≥
n∏

i=1

|λ∗
i |
(

n∏

i=1

1

|λ∗
i |

)1/n

by the arithmetic-geometric mean inequality. Therefore, by (12), (13), (14) and Lemma 3.1 , we get

1

n(n− 1)

[
Co− PIE(G)2 − S

]
≥ ∆2/n

i.e.,

Co− PIE(G) ≥
√
S + n(n− 1)∆

2
n .

From Lemma 3.1, the equality holds if and only if |λ∗
1| = |λ∗

2| = ... = |λ∗
n| .

Theorem 3.3. Let G be a connected graph with n vertices and let S be the sum of the squares of entries

in the Co-PI matrix of G. Then,

Co− PIE(G) ≤
√
nS (15)

Equality holds if and only if |λ∗
1| = |λ∗

2| = ... = |λ∗
n| .

Proof. If we take r = n and ai = |λ∗
i | for i = 1, 2, ..., n by Lemma 3.1, then we have

P1 ≥ P
1/2
2 (16)

P1 =

n∑
i=1

|λ∗
i |

n
=

Co− PIE(G)

n
(17)
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and

P2 =
1

n(n− 1)

n∑

i=1

n∑

j=1

i 6=j

|λ∗
i |
∣∣λ∗

j

∣∣ (18)

=
1

n(n− 1)



(

n∑

i=1

|λ∗
i |
)2

−
n∑

i=1

|λ∗
i |2



=
1

n(n− 1)

(
(Co− PIE(G))2 − S

)
.

Therefore, by (16), (17), (18) and Lemma 3.1 we get the result. From Lemma 3.1, the equality holds
if and only if |λ∗

1| = |λ∗
2| = ... = |λ∗

n| .

Remark 3.4. Note that in Theorem 3.3, we recover the same result in Theorem 2.1 in the paper [21],

through a different approach and equality condition.

Theorem 3.5. Let G be a connected graph with n vertices and let S be the sum of the squares of entries

in the Co-PI matrix of G. Then,

Co− PIE(G) ≤ S

n
+

√√√√(n− 1)

[
S −

(
S

n

)2
]
. (19)

Proof. Our proof follows the ideas of Koolen and Moulton [23, 24], who obtained an analogous upper
bound for ordinary graph energy E(G).

By applying the Cauchy-Schwartz inequality to the two (n − 1) vectors (1, 1, ..., 1) and (|λ∗
2| , |λ∗

3|
, . . . , |λ∗

n|), we get
(

n∑

i=2

|λ∗
i |
)2

≤ (n− 1)

(
n∑

i=2

λ∗2
i

)

(Co− PIE(G)− λ∗
1)

2 ≤ (n− 1)
(
S − λ∗2

1

)

Co− PIE(G) ≤ λ∗
1 +

√
(n− 1) (S − λ∗2

1 ).

Now consider the following function

f(x) = x+
√
(n− 1) (S − x2).

From
n∑

i=1

λ∗2
i = S

we get
x2 = λ∗2

1 ≤ S.

Therefore,
x ≤
√
S.

Now, f ′(x) = 0 implies x =
√

S
n
. Therefore f(x) is a decreasing function in the interval

√
S
n
≤ x ≤

2
√

S
2

and
√

S
n
≤ S

n
≤ λ∗

1. Hence f(λ∗
1) ≤ f

(
S
n

)
and inequality (19) holds.
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Example 3.6. Let us consider Kp,q complete bipartite graph. Since MCPI(Kp,q) = |p− q|A(Kp,q) and

Kp,q has eigenvalues
√
pq,−√pq, 0 with respective multiplicities 1, 1, p+ q − 2 ,

Co− PIE(G) = |p− q|E(G) = 2 |p− q|√pq.
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[7] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant
hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.

[8] I. Gutman, The energy of a graph, Graz. Forschungsz. Math. Stat. Sekt. Berichte 103 (1978) 1–22.

[9] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer–Verlag, Berlin,
1986.

[10] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles,
Graph Theory Notes New York 27 (1994) 9–15.

[11] I. Gutman,The energy of a graph: old and new results, in: A. Kohnert, R. Laue, A. Betten (Eds.),
Algebraic Combinatorics and Applications, Springer, Berlin, 2001, pp. 196–211.

[12] I. Gutman, X. Li, J. Zhang, Graph energy, in: M.Dehmer and F.Emmert–Streib (Eds.) Analysis of
Complex Networks. From Biology to Linguistics, Wiley–VCH, Weinheim, 2009, pp. 145–174.

[13] I. Gutman, X. Li, Energies of Graphs – Theory and Applications, Univ. Kragujevac, Kragujevac,
2016.

[14] F. Hasani, O. Khormali, A. Iranmanesh, Computation of the first vertex of Co-PI index of
TUC4CS(S) nanotubes, Optoel. Adv. Mater. Rapid Commun. 4 (2010) 544–547.

[15] F. Hasani, O. Khormali, A. Iranmanesh, Computation of the first vertex of Co-PI index of
TUC4CS(R) nanotubes, Iran. J. Math. Chem. 1 (2010) 119–123.

[16] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, New York, 1985.

[17] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, Lin.
Algebra Appl. 430 (2009) 106–113.



185

[18] S. Izumino, H. Mori, Y. Seo, On Ozeki’s inequality, J. Ineq. Appl. 2 (1998) 235–253.

[19] E. Kaya, A. D. Maden, Bounds for the Co-PI index of a graph, Iran. J. Math. Chem. 6 (2015) 1–13.

[20] E. Kaya, A. D. Maden, Some bounds on the Co-PI spectral radius of graphs, Hacettepe J. Math.
Stat., submitted.

[21] E. Kaya, A. D. Maden, On the Co-PI spectral radius and the Co-PI energy of graphs, MATCH
Commun. Math. Comput. Chem. 77 (2017) 691–700.

[22] P. V. Khadikar, S. Karmarkar, V. K. Agrawal, Relationships and relative correlation potential of the
Wiener, Szeged and PI indices, Natl. Acad. Sci. Lett. 23 (2000) 165–170.

[23] J. Koolen, V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001) 47–52.

[24] J. Koolen, V. Moulton, Maximal energy bipartite graphs, Graph. Comb. 19 (2003) 131–135.

[25] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
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Abstract

In this chapter, we review our recent results on computing bounds for the first and second multi-
plicative Zagreb indices and multiplicative sum Zagreb index of the most important graph operations
and subdivision operators.
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1. Introduction

Chemical graphs, particularly molecular graphs, are models of molecules in which atoms are repre-
sented by vertices and chemical bonds by edges of a graph. Physico-chemical or biological properties
of molecules can be predicted by using the information encoded in the molecular graphs, eventually
translated in the adjacency or connectivity matrix associated to these graphs. This paradigm is achieved
by considering various graph theoretical invariants of molecular graphs (also known as topological in-

dices or structural descriptors/measures) and evaluating how strongly are they correlated with various
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molecular properties. A topological index is any function calculated on a chemical/molecular graph ir-
respective of the labeling of its vertices. Several hundreds of different invariants have been employed
to date with various degrees of success in QSAR/QSPR studies [9, 18, 27]. Topological indices based
on end-vertex-degrees of edges have been used over 40 years. Among them, several indices are recog-
nized to be useful tools in QSPR/QSAR studies. Two of the oldest and most thoroughly investigated are
Zagreb indices introduced by Gutman and Trinajstić [19] in 1972. These indices have since been used
to study molecular complexity, chirality, ZE-isomerism, and hetero-systems. For details on their theory
and applications see [2, 3, 6, 7, 10, 20, 23, 24, 32, 33]. Let G be a simple graph with the vertex set V (G)

and the edge set E(G). The first and second Zagreb indices of G are denoted by M1(G) and M2(G),
respectively, and defined as

M1(G) =
∑

u∈V (G)

dG(u)
2 and M2(G) =

∑

uv∈E(G)

dG(u)dG(v),

where dG(u) denotes the degree of the vertex u in G. The first Zagreb index can also be expressed as a
sum over edges of G,

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)].

Multiplicative versions of Zagreb indices were introduced by Todeschini and Consonni [26] in 2010.
The first and second multiplicative Zagreb indices of G are denoted by Π1(G) and Π2(G), respectively,
and defined as

Π1(G) =
∏

u∈V (G)

dG(u)
2 and Π2(G) =

∏

uv∈E(G)

dG(u)dG(v).

The second multiplicative Zagreb index can also be expressed as a product over vertices of G [17],

Π2(G) =
∏

u∈V (G)

dG(u)
dG(u).

In 2012, Eliasi et al. [13] introduced another multiplicative version of the first Zagreb index called
multiplicative sum Zagreb index. The multiplicative sum Zagreb index of G is denoted by Π∗

1(G) and
defined as

Π∗
1(G) =

∏

uv∈E(G)

[
dG(u) + dG(v)

]
.

We refer the reader to [8,11,12,15,16,21,22,25,28–31] for mathematical properties and applications of
the multiplicative Zagreb indices and multiplicative sum Zagreb index.

In this chapter, we review our recent results on computing bounds for the first and second multiplica-
tive Zagreb indices and multiplicative sum Zagreb index of the most important graph operations and
subdivision operators. The chapter is organized as follows. In Sect. 2, we present lower bounds on the
first and second multiplicative Zagreb indices and multiplicative sum Zagreb index of several graph op-
erations such as union, join, corona product, composition, direct product, Cartesian product, and strong
product in terms of the order, size, multiplicative Zagreb indices, and multiplicative sum Zagreb index
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of their components. In Sect. 3, we give some upper and/or lower bounds on the first and second mul-
tiplicative Zagreb indices and multiplicative sum Zagreb index of subdivision operators in terms of the
order, size, first Zagreb index, multiplicative Zagreb indices, and multiplicative sum Zagreb index of the
primary graph.

2. Lower bounds on multiplicative versions of Zagreb indices of
graph operations

In this section, we present lower bounds for the first and second multiplicative Zagreb indices and multi-
plicative sum Zagreb index of several graph operations such as union, join, corona product, composition,
direct product, Cartesian product, and strong product in terms of the order, size, multiplicative Zagreb
indices, and multiplicative sum Zagreb index of their components. All considered operations are binary.
Hence, we will usually deal with two finite and simple graphs G1 and G2. For a given graph Gi, its vertex
and edge sets will be denoted by V (Gi) and E(Gi), and its order and size by ni and mi, respectively,
where i ∈ {1, 2}. Throughout the section, we assume that G1 and G2 have no isolated vertices. Most of
the results of this section, have been taken from [1, 4, 14].

At first, we recall two well-known inequalities.

Lemma 2.1. (AM-GM inequality) Let x1, x2 . . . , xn be nonnegative numbers. Then

x1 + x2 + · · ·+ xn

n
≥ n
√
x1x2 . . . xn,

with equality if and only if x1 = x2 = . . .= xn.

Lemma 2.2. Let x1, x2 . . . , xn, y1, y2, . . . , yn be positive numbers and for every 1 ≤ i ≤ n, xi ≥ yi.

Then

x1x2 . . . xn ≥ y1y2 . . . yn,

with equality if and only if for every 1 ≤ i ≤ n, xi = yi.

2.1 Union

The union G1 ∪G2 of graphs G1 and G2 with disjoint vertex sets V (G1) and V (G2) is a graph with the
vertex set V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2). The degree of a vertex u of G1 ∪ G2 is
equal to the degree of u in the component Gi, i ∈ {1, 2} that contains it.

In the following theorems, exact formulae for the first and second multiplicative Zagreb indices and
multiplicative sum Zagreb index of the union of G1 and G2 are presented. The proofs follow easily from
the definition of the union of graphs, so are omitted.

Theorem 2.3. The first multiplicative Zagreb index of G1 ∪G2 is given by

Π1(G1 ∪G2) = Π1(G1)Π1(G2).
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Theorem 2.4. The second multiplicative Zagreb index of G1 ∪G2 is given by

Π2(G1 ∪G2) = Π2(G1)Π2(G2).

Theorem 2.5. The multiplicative sum Zagreb index of G1 ∪G2 is given by

Π∗
1(G1 ∪G2) = Π∗

1(G1)Π
∗
1(G2).

It is clear from Theorems 2.3, 2.4, and 2.5 that we can restrict our attention to connected graphs.
Since for a graph with several connected components its first and second multiplicative Zagreb indices
and multiplicative sum Zagreb index are equal to the product of the indices of its components.

2.2 Join

The join G1 + G2 of graphs G1 and G2 with disjoint vertex sets V (G1) and V (G2) is a graph union
G1 ∪G2 together with all the edges joining V (G1) and V (G2). The join of two graphs is also known as
their sum. The degree of a vertex u of G1 +G2 is given by

dG1+G2(u) =

{
dG1(u) + n2 u ∈ V (G1),
dG2(u) + n1 u ∈ V (G2).

In the following theorems, lower bounds for the first and second multiplicative Zagreb indices and
multiplicative sum Zagreb index of the join of G1 and G2 are presented.

Theorem 2.6. The first multiplicative Zagreb index of G1 +G2 satisfies the following inequality:

Π1(G1 +G2) > 4n1+n2n1
n2n2

n1
√
Π1(G1)Π1(G2).

Proof. Let G = G1+G2. By definition of the first multiplicative Zagreb index and Lemmas 2.1 and 2.2,
we have

Π1(G) =
∏

u∈V (G)

dG(u)
2 =

∏

u∈V (G1)

(
dG1(u) + n2

)2 ×
∏

u∈V (G2)

(
dG2(u) + n1

)2

>
∏

u∈V (G1)

(
2
√
dG1(u)× n2

)2 ×
∏

u∈V (G2)

(
2
√
dG2(u)× n1

)2

=4n1+n2n1
n2n2

n1
√
Π1(G1)Π1(G2).

The above inequality is strict. Since if the equality holds then by Lemma 2.2, for every u ∈ V (G1),
dG1(u) + n2 = 2

√
dG1(u)× n2 and for every u ∈ V (G2), dG2(u) + n1 = 2

√
dG2(u)× n1. By Lemma

2.1, this implies that for every u ∈ V (G1), dG1(u) = n2 and for every u ∈ V (G2), dG2(u) = n1, which
is a contradiction.

Theorem 2.7. The second multiplicative Zagreb index of G1 +G2 satisfies the following inequality:

Π2(G1 +G2) > 4m1+m2+n1n2n1
m2n2

m1(
√
n1n2)

n1n2 4

√
Π1(G1)

n2Π1(G2)
n1

×
√
Π2(G1)Π2(G2).
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Proof. Let G = G1 +G2. By definition of the second multiplicative Zagreb index and Lemmas 2.1 and
2.2, we have

Π2(G) =
∏

uv∈E(G)

dG(u)dG(v)

=
∏

uv∈E(G1)

(
dG1(u) + n2

)(
dG1(v) + n2

)

×
∏

uv∈E(G2)

(
dG2(u) + n1

)(
dG2(v) + n1

)

×
∏

u∈V (G1)

∏

v∈V (G2)

(
dG1(u) + n2

)(
dG2(v) + n1

)

>
∏

uv∈E(G1)

(
2
√
dG1(u)× n2

)(
2
√

dG1(v)× n2

)

×
∏

uv∈E(G2)

(
2
√
dG2(u)× n1

)(
2
√

dG2(v)× n1

)

×
∏

u∈V (G1)

∏

v∈V (G2)

(
2
√

dG1(u)× n2

)(
2
√
dG2(v)× n1

)

=4m1+m2+n1n2n1
m2n2

m1(
√
n1n2)

n1n2 4

√
Π1(G1)

n2Π1(G2)
n1

√
Π2(G1)Π2(G2).

The above inequality is strict. Since if the equality holds then by Lemma 2.2, for every u ∈ V (G1)

and v ∈ V (G2), dG1(u) + n2 = 2
√

dG1(u)× n2 and dG2(v) + n1 = 2
√
dG2(v)× n1. By Lemma 2.1,

this implies that for every u ∈ V (G1) and v ∈ V (G2), dG1(u) = n2 and dG2(v) = n1, which is a
contradiction.

Theorem 2.8. The multiplicative sum Zagreb index of G1 +G2 satisfies the following inequality:

Π∗
1(G1 +G2) >(2

√
2)m1+m2

√
n2

m1n1
m2(3 3
√
n1 + n2)

n1n2 6

√
Π1(G1)

n2Π1(G2)
n1

×
√
Π∗

1(G1)Π∗
1(G2).

Proof. Let G = G1 +G2. By definition of the multiplicative sum Zagreb index, we have

Π∗
1(G) =

∏

uv∈E(G)

[
dG(u) + dG(v)

]
=

∏

uv∈E(G1)

[(
dG1(u) + n2

)
+
(
dG1(v) + n2

)]

×
∏

uv∈E(G2)

[(
dG2(u) + n1

)
+
(
dG2(v) + n1

)]

×
∏

u∈V (G1)

∏

v∈V (G2)

[(
dG1(u) + n2

)
+
(
dG2(v) + n1

)]

=
∏

uv∈E(G1)

[(
dG1(u) + dG1(v)

)
+ 2n2

]

×
∏

uv∈E(G2)

[(
dG2(u) + dG2(v)

)
+ 2n1

]

×
∏

u∈V (G1)

∏

v∈V (G2)

[
dG1(u) + dG2(v) + (n1 + n2)

]
.
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Now by Lemmas 2.1 and 2.2, we have

Π∗
1(G) >

∏

uv∈E(G1)

2
√(

dG1(u) + dG1(v)
)
× 2n2

×
∏

uv∈E(G2)

2
√(

dG2(u) + dG2(v)
)
× 2n1

×
∏

u∈V (G1)

∏

v∈V (G2)

3 3
√

dG1(u)× dG2(v)× (n1 + n2)

=(2
√
2)

m1+m2√
n2

m1n1
m2 (3 3

√
n1 + n2)

n1n2 6

√
Π1(G1)

n2Π1(G2)
n1
√
Π∗

1(G1)Π∗
1(G2).

The above inequality is strict. Since if the equality holds then by Lemma 2.2, for every u ∈ V (G1) and
v ∈ V (G2), dG1(u) + dG2(v) + (n1 + n2) = 3 3

√
dG1(u)× dG2(v)× (n1 + n2). By Lemma 2.1, this

implies that for every u ∈ V (G1) and v ∈ V (G2), dG1(u) = dG2(v) = n1+n2, which is a contradiction.

2.3 Corona product

The corona product G1 ◦ G2 of graphs G1 and G2 is a graph obtained by taking one copy of G1 and n1

copies of G2 and joining the i−th vertex of G1 to every vertex in i−th copy of G2 for 1 ≤ i ≤ n1. We
denote the i−th copy of G2 by G2,i, 1 ≤ i ≤ n1. The degree of a vertex u of G1 ◦G2 is given by

dG1◦G2(u) =

{
dG1(u) + n2 u ∈ V (G1),
dG2(u) + 1 u ∈ V (G2,i).

In the following theorems, lower bounds for the first and second multiplicative Zagreb indices and
multiplicative sum Zagreb index of the corona product G1 ◦G2 are presented.

Theorem 2.9. The first multiplicative Zagreb index of G1 ◦G2 satisfies the following inequality:

Π1(G1 ◦G2) ≥ 4n1(n2+1)(n2)
n1

√
Π1(G1)Π1(G2)

n1 ,

with equality if and only if G1 is an n2−regular graph and G2 is a 1−regular graph.

Proof. Let G = G1 ◦G2. By definition of the first multiplicative Zagreb index and Lemmas 2.1 and 2.2,
we have

Π1(G) =
∏

u∈V (G)

dG(u)
2 =

∏

u∈V (G1)

(
dG1(u) + n2

)2 ×
[ ∏

u∈V (G2)

(
dG2(u) + 1

)2]n1

≥
∏

u∈V (G1)

(
2
√
dG1(u)× n2

)2 ×
[ ∏

u∈V (G2)

(
2
√
dG2(u)

)2]n1

=4n1(n2+1)(n2)
n1

√
Π1(G1)Π1(G2)

n1 .

By Lemma 2.2, the above equality holds if and only if for every u ∈ V (G1), dG1(u) + n2 =

2
√
dG1(u)× n2 and for every u ∈ V (G2), dG2(u) + 1 = 2

√
dG2(u). By Lemma 2.1, this implies

that for every u ∈ V (G1), dG1(u) = n2 and for every u ∈ V (G2), dG2(u) = 1. So, the equality holds if
and only if G1 is an n2−regular graph and G2 is a 1−regular graph.
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Theorem 2.10. The second multiplicative Zagreb index of G1 ◦G2 satisfies the following inequality:

Π2(G1 ◦G2) ≥4m1+n1m2+n1n2(
√
n2)

n1n2+2m1 4

√
Π1(G1)

n2 Π1(G2)
n1

√
Π2(G1)Π2(G2)

n1 ,

with equality if and only if G1 is an n2−regular graph and G2 is a 1−regular graph.

Proof. Let G = G1 ◦ G2. By definition of the second multiplicative Zagreb index and Lemmas 2.1 and
2.2, we have

Π2(G) =
∏

uv∈E(G)

dG(u)dG(v) =
∏

uv∈E(G1)

(
dG1(u) + n2

)(
dG1(v) + n2

)

×
[ ∏

uv∈E(G2)

(
dG2(u) + 1

)(
dG2(v) + 1

)]n1

×
∏

u∈V (G1)

∏

v∈V (G2)

(
dG1(u) + n2

)(
dG2(v) + 1

)

≥
∏

uv∈E(G1)

(
2
√
dG1(u)× n2

)(
2
√
dG1(v)× n2

)

×
[ ∏

uv∈E(G2)

(
2
√
dG2(u)

)(
2
√
dG2(v)

)]n1

×
∏

u∈V (G1)

∏

v∈V (G2)

(
2
√
dG1(u)× n2

)(
2
√

dG2(v)
)

=4m1+n1m2+n1n2(
√
n2)

n1n2+2m1 4

√
Π1(G1)

n2Π1(G2)
n1

×
√
Π2(G1)Π2(G2)

n1 .

By Lemma 2.2, the above equality holds if and only if for every uv ∈ E(G1), dG1(u) + n2 =

2
√
dG1(u)× n2, dG1(v) + n2 = 2

√
dG1(v)× n2, for every uv ∈ E(G2), dG2(u) + 1 = 2

√
dG2(u),

dG2(v) + 1 = 2
√
dG2(v), and for every u ∈ V (G1), v ∈ V (G2), dG1(u) + n2 = 2

√
dG1(u)× n2,

dG2(v) + 1 = 2
√
dG2(v). By Lemma 2.1, this implies that for every u ∈ V (G1), dG1(u) = n2 and for

every v ∈ V (G2), dG2(v) = 1. So, the equality holds if and only if G1 is an n2−regular graph and G2 is
a 1−regular graph.

Theorem 2.11. The multiplicative sum Zagreb index of G1 ◦G2 satisfies the following inequality:

Π∗
1(G1 ◦G2) >(2

√
2)m1+n1m2(

√
n2)

m1(3 3
√
n2 + 1)n1n2 6

√
Π1(G1)

n2Π1(G2)
n1

×
√
Π∗

1(G1)Π∗
1(G2)

n1 .

Proof. Let G = G1 ◦G2. By definition of the multiplicative sum Zagreb index, we have

Π∗
1(G) =

∏

uv∈E(G)

[
dG(u) + dG(v)

]

=
∏

uv∈E(G1)

[(
dG1(u) + n2

)
+
(
dG1(v) + n2

)]
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×
[ ∏

uv∈E(G2)

[(
dG2(u) + 1

)
+
(
dG2(v) + 1

)]]n1

×
∏

u∈V (G1)

∏

v∈V (G2)

[(
dG1(u) + n2

)
+
(
dG2(v) + 1

)]

=
∏

uv∈E(G1)

[(
dG1(u) + dG1(v)

)
+ 2n2

]

×
[ ∏

uv∈E(G2)

[(
dG2(u) + dG2(v)

)
+ 2
]]n1

×
∏

u∈V (G1)

∏

v∈V (G2)

[
dG1(u) + dG2(v) + (n2 + 1)

]
.

Now by Lemmas 2.1 and 2.2, we have

Π∗
1(G) >

∏

uv∈E(G1)

2
√(

dG1(u) + dG1(v)
)
× 2n2

×
[ ∏

uv∈E(G2)

2
√(

dG2(u) + dG2(v)
)
× 2
]n1

×
∏

u∈V (G1)

∏

v∈V (G2)

3 3
√
dG1(u)× dG2(v)× (n2 + 1)

=(2
√
2)

m1+n1m2
(
√
n2 )

m1(3 3
√
n2 + 1)

n1n2 6

√
Π1(G1)

n2Π1(G2)
n1

√
Π∗

1(G1)Π∗
1(G2)

n1 .

The above inequality is strict. Since if the equality holds then by Lemma 2.2, for every u ∈ V (G1) and
v ∈ V (G2), dG1(u)+dG2(v)+(n2+1) = 3 3

√
dG1(u)× dG2(v)× (n2 + 1). By Lemma 2.1, this implies

that for every u ∈ V (G1) and v ∈ V (G2), dG1(u) = dG2(v) = n2 + 1, which is a contradiction.

2.4 Composition

The composition G1[G2] of graphs G1 and G2 is a graph with the vertex set V (G1) × V (G2) and two
vertices (u1, u2) and (v1, v2) are adjacent if and only if u1v1 ∈ E(G1) or [u1 = v1 and u2v2 ∈ E(G2)].
The composition of two graphs is also known as their lexicographic product. The degree of a vertex
u = (u1, u2) of G1[G2] is given by

dG1[G2](u) = n2dG1(u1) + dG2(u2).

In the following theorems, lower bounds for the first and second multiplicative Zagreb indices and
multiplicative sum Zagreb index of the composition G1[G2] are presented.

Theorem 2.12. The first multiplicative Zagreb index of G1[G2] satisfies the following inequality:

Π1(G1[G2]) > (4n2)
n1n2

√
Π1(G1)

n2Π1(G2)
n1 .

Proof. Let G = G1[G2]. By definition of the first multiplicative Zagreb index and Lemmas 2.1 and 2.2,
we have

Π1(G) =
∏

(u1,u2)∈V (G)

dG((u1, u2))
2 =

∏

u1∈V (G1)

∏

u2∈V (G2)

(
n2dG1(u1) + dG2(u2)

)2
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>
∏

u1∈V (G1)

∏

u2∈V (G2)

(
2
√

n2dG1(u1)× dG2(u2)
)2

=(4n2)
n1n2

√
Π1(G1)

n2Π1(G2)
n1 .

The above inequality is strict. Since if the equality holds then by Lemma 2.2, for every u1 ∈ V (G1)

and u2 ∈ V (G2), n2dG1(u1)+ dG2(u2) = 2
√
n2dG1(u1)× dG2(u2). By Lemma 2.1, this implies that for

every u1 ∈ V (G1) and u2 ∈ V (G2), n2dG1(u1) = dG2(u2), which is a contradiction.

Theorem 2.13. The second multiplicative Zagreb index of G1[G2] satisfies the following inequality:

Π2(G1[G2]) > (4n2)
n1m2+n2

2m1

√
Π1(G1)

m2Π1(G2)
m1n2

√
Π2(G1)

n2
2Π2(G2)

n1 .

Proof. Let G = G1[G2]. By definition of the second multiplicative Zagreb index and Lemmas 2.1 and
2.2, we have

Π2(G) =
∏

(u1,u2)(v1,v2)∈E(G)

dG((u1, u2))dG((v1, v2))

=
∏

u1∈V (G1)

∏

u2v2∈E(G2)

(
n2dG1(u1) + dG2(u2)

)(
n2dG1(u1) + dG2(v2)

)

×
∏

u1v1∈E(G1)

∏

u2∈V (G2)

∏

v2∈V (G2)

(
n2dG1(u1) + dG2(u2)

)(
n2dG1(v1) + dG2(v2)

)

>
∏

u1∈V (G1)

∏

u2v2∈E(G2)

(
2
√
n2dG1(u1)× dG2(u2)

)(
2
√
n2dG1(u1)× dG2(v2)

)

×
∏

u1v1∈E(G1)

∏

u2∈V (G2)

∏

v2∈V (G2)

(
2
√
n2dG1(u1)× dG2(u2)

)(
2
√
n2dG1(v1)× dG2(v2)

)

=(4n2)
n1m2+n2

2m1

√
Π1(G1)

m2Π1(G2)
m1n2

√
Π2(G1)

n2
2Π2(G2)

n1 .

The above inequality is strict. Since if the equality holds then by Lemma 2.2, for every u1 ∈ V (G1)

and u2v2 ∈ E(G2), n2dG1(u1) + dG2(u2) = 2
√

n2dG1(u1)× dG2(u2) and n2dG1(u1) + dG2(v2) =

2
√
n2dG1(u1)× dG2(v2). By Lemma 2.1, this implies that for every u1 ∈ V (G1) and u2v2 ∈ E(G2),

n2dG1(u1) = dG2(u2) = dG2(v2), which is a contradiction.

Theorem 2.14. The multiplicative sum Zagreb index of G1[G2] satisfies the following inequality:

Π∗
1(G1[G2]) >(2

√
2)

n1m2
3n

2
2m1( 6
√
n2)

3n1m2+2n2
2m1 12

√
Π1(G1)

3m2Π1(G2)
4m1n2

× 6

√
Π∗

1(G1)
2n2

2Π∗
1(G2)

3n1 .

Proof. Let G = G1[G2]. By definition of the multiplicative sum Zagreb index, we have

Π∗
1(G) =

∏

(u1,u2)(v1,v2)∈E(G)

[
dG((u1, u2)) + dG((v1, v2))

]

=
∏

u1∈V (G1)

∏

u2v2∈E(G2)

[(
n2dG1(u1) + dG2(u2)

)
+
(
n2dG1(u1) + dG2(v2)

)]
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×
∏

u1v1∈E(G1)

∏

u2∈V (G2)

∏

v2∈V (G2)

[(
n2dG1(u1) + dG2(u2)

)
+
(
n2dG1(v1) + dG2(v2)

)]

=
∏

u1∈V (G1)

∏

u2v2∈E(G2)

[
2n2dG1(u1) +

(
dG2(u2) + dG2(v2)

)]

×
∏

u1v1∈E(G1)

∏

u2∈V (G2)

∏

v2∈V (G2)

[
n2

(
dG1(u1) + dG1(v1)

)
+ dG2(u2) + dG2(v2)

]
.

Now by Lemmas 2.1 and 2.2, we have

Π∗
1(G) >

∏

u1∈V (G1)

∏

u2v2∈E(G2)

2
√
2n2dG1(u1)×

(
dG2(u2) + dG2(v2)

)

×
∏

u1v1∈E(G1)

∏

u2∈V (G2)

∏

v2∈V (G2)

3 3

√
n2

(
dG1(u1) + dG1(v1)

)
× dG2(u2)× dG2(v2)

=(2
√
2)n1m23n

2
2m1( 6
√
n2)

3n1m2+2n2
2m1 12

√
Π1(G1)

3m2Π1(G2)
4m1n2

× 6

√
Π∗

1(G1)
2n2

2Π∗
1(G2)

3n1 .

The above inequality is strict. Since if the equality holds then by Lemma 2.2, for every u1 ∈ V (G1) and
u2v2 ∈ E(G2),

2n2dG1(u1) +
(
dG2(u2) + dG2(v2)

)
= 2
√

2n2dG1(u1)×
(
dG2(u2) + dG2(v2)

)
.

By Lemma 2.1, this implies that for every u1 ∈ V (G1) and u2v2 ∈ E(G2), dG2(u2) + dG2(v2) =

2n2dG1(u1), which is a contradiction.

2.5 Direct product

The direct product G1 × G2 of graphs G1 and G2 has the vertex set V (G1) × V (G2) and two vertices
(u1, u2) and (v1, v2) are adjacent if and only if u1v1 ∈ E(G1) and u2v2 ∈ E(G2). The direct product
of two graphs is also known as their tensor product, Kronecker product, categorical product, cardinal

product, relational product or conjunction. The degree of a vertex u = (u1, u2) of G1 ×G2 is given by

dG1×G2(u) = dG1(u1)dG2(u2).

In the following theorems, exact formulae for the first and second multiplicative Zagreb indices of
the direct product G1 ×G2 and a lower bound for its multiplicative sum Zagreb index are presented.

Theorem 2.15. The first multiplicative Zagreb index of G1 ×G2 satisfies the following inequality:

Π1(G1 ×G2) = Π1(G1)
n2Π1(G2)

n1 .

Proof. Let G = G1 ×G2. By definition of the first multiplicative Zagreb index, we have

Π1(G) =
∏

(u1,u2)∈V (G)

dG((u1, u2))
2 =

∏

u1∈V (G1)

∏

u2∈V (G2)

(
dG1(u1)dG2(u2)

)2

=Π1(G1)
n2Π1(G2)

n1 .
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Theorem 2.16. The second multiplicative Zagreb index of G1 ×G2 satisfies the following inequality:

Π2(G1 ×G2) = Π2(G1)
2m2Π2(G2)

2m1 .

Proof. Let G = G1 ×G2. By definition of the second multiplicative Zagreb index, we have

Π2(G) =
∏

(u1,u2)(v1,v2)∈E(G)

dG((u1, u2))dG((v1, v2))

=
∏

u1v1∈E(G1)

∏

u2v2∈E(G2)

[(
dG1(u1)dG2(u2)dG1(v1)dG2(v2)

)

×
(
dG1(u1)dG2(v2)dG1(v1)dG2(u2)

)]

=
∏

u1v1∈E(G1)

∏

u2v2∈E(G2)

(
dG1(u1)dG1(v1)

)2(
dG2(u2)dG2(v2)

)2

=Π2(G1)
2m2Π2(G2)

2m1 .

Theorem 2.17. The multiplicative sum Zagreb index of G1 ×G2 satisfies the following inequality:

Π∗
1(G1 ×G2) ≥ 4m1m2Π2(G1)

m2Π2(G2)
m1 ,

with equality if and only if G1 and G2 are regular graphs.

Proof. Let G = G1 ×G2. By definition of the multiplicative sum Zagreb index, we have

Π∗
1(G) =

∏

(u1,u2)(v1,v2)∈E(G)

[
dG((u1, u2)) + dG((v1, v2))

]

=
∏

u1v1∈E(G1)

∏

u2v2∈E(G2)

[(
dG1(u1)dG2(u2) + dG1(v1)dG2(v2)

)

×
(
dG1(u1)dG2(v2) + dG1(v1)dG2(u2)

)]
.

Now by Lemmas 2.1 and 2.2, we have

Π∗
1(G) ≥

∏

u1v1∈E(G1)

∏

u2v2∈E(G2)

[
2
√
dG1(u1)dG2(u2)× dG1(v1)dG2(v2)

× 2
√
dG1(u1)dG2(v2)× dG1(v1)dG2(u2)

]

=
∏

u1v1∈E(G1)

∏

u2v2∈E(G2)

4
[
dG1(u1)dG1(v1)× dG2(u2)dG2(v2)

]

=4m1m2Π2(G1)
m2Π2(G2)

m1 .

By Lemma 2.2, the above equality holds if and only if for every u1v1 ∈ E(G1) and u2v2 ∈ E(G2),

dG1(u1)dG2(u2) + dG1(v1)dG2(v2) = 2
√
dG1(u1)dG2(u2)× dG1(v1)dG2(v2)

and
dG1(u1)dG2(v2) + dG1(v1)dG2(u2) = 2

√
dG1(u1)dG2(v2)× dG1(v1)dG2(u2).



198

By Lemma 2.1, this implies that for every u1v1 ∈ E(G1) and u2v2 ∈ E(G2),

dG1(u1)dG2(u2) = dG1(v1)dG2(v2)

and
dG1(u1)dG2(v2) = dG1(v1)dG2(u2),

which clearly implies that G1 and G2 must be regular graphs.

2.6 Cartesian product

The Cartesian product G1�G2 of graphs G1 and G2 has the vertex set V (G1)× V (G2) and two vertices
(u1, u2) and (v1, v2) are adjacent if and only if [u1 = v1 and u2v2 ∈ E(G2)] or [u2 = v2 and u1v1 ∈
E(G1)]. The degree of a vertex u = (u1, u2) of G1�G2 is given by

dG1�G2(u) = dG1(u1) + dG2(u2).

In the following theorems, lower bounds for the first and second multiplicative Zagreb indices and
multiplicative sum Zagreb index of the Cartesian product G1�G2 are presented.

Theorem 2.18. The first multiplicative Zagreb index of G1�G2 satisfies the following inequality:

Π1(G1�G2) ≥ 4n1n2

√
Π1(G1)

n2Π1(G2)
n1 ,

with equality if and only if G1 and G2 are regular graphs with the same regularities.

Proof. Let G = G1�G2. By definition of the first multiplicative Zagreb index and Lemmas 2.1 and 2.2,
we have

Π1(G) =
∏

(u1,u2)∈V (G)

dG((u1, u2))
2 =

∏

u1∈V (G1)

∏

u2∈V (G2)

(
dG1(u1) + dG2(u2)

)2

≥
∏

u1∈V (G1)

∏

u2∈V (G2)

(
2
√
dG1(u1)× dG2(u2)

)2

=4n1n2

√
Π1(G1)

n2Π1(G2)
n1 .

By Lemma 2.2, the above equality holds if and only if for every u1 ∈ V (G1) and u2 ∈ V (G2),

dG1(u1) + dG2(u2) = 2
√

dG1(u1)dG2(u2).

By Lemma 2.1, this implies that for every u1 ∈ V (G1) and u2 ∈ V (G2), dG1(u1) = dG2(u2). This
clearly implies that G1 and G2 must be regular graphs with the same regularities.

Theorem 2.19. The second multiplicative Zagreb index of G1�G2 satisfies the following inequality:

Π2(G1�G2) ≥4n1m2+n2m1

√
Π1(G1)

m2Π1(G2)
m1Π2(G1)

n2Π2(G2)
n1 ,

with equality if and only if G1 and G2 are regular graphs with the same regularities.



199

Proof. Let G = G1�G2. By definition of the second multiplicative Zagreb index and Lemmas 2.1 and
2.2, we have

Π2(G) =
∏

(u1,u2)(v1,v2)∈E(G)

dG((u1, u2))dG((v1, v2))

=
∏

u1∈V (G1)

∏

u2v2∈E(G2)

(
dG1(u1) + dG2(u2)

)(
dG1(u1) + dG2(v2)

)

×
∏

u2∈V (G2)

∏

u1v1∈E(G1)

(
dG1(u1) + dG2(u2)

)(
dG1(v1) + dG2(u2)

)

≥
∏

u1∈V (G1)

∏

u2v2∈E(G2)

(
2
√
dG1(u1)× dG2(u2)

)(
2
√
dG1(u1)× dG2(v2)

)

×
∏

u2∈V (G2)

∏

u1v1∈E(G1)

(
2
√
dG1(u1)× dG2(u2)

)(
2
√
dG1(v1)× dG2(u2)

)

=4n1m2+n2m1

√
Π1(G1)

m2Π1(G2)
m1Π2(G1)

n2Π2(G2)
n1 .

By Lemma 2.2, the above equality holds if and only if for every u1 ∈ V (G1) and u2v2 ∈ E(G2),
dG1(u1)+dG2(u2) = 2

√
dG1(u1)× dG2(u2), dG1(u1)+dG2(v2) = 2

√
dG1(u1)× dG2(v2), and for every

u2 ∈ V (G2) and u1v1 ∈ E(G1), dG1(u1) + dG2(u2) = 2
√
dG1(u1)× dG2(u2), dG1(v1) + dG2(u2) =

2
√
dG1(v1)× dG2(u2). By Lemma 2.1, this implies that for every u1 ∈ V (G1) and u2v2 ∈ E(G2),

dG1(u1) = dG2(u2) = dG2(v2), and for every u2 ∈ V (G2) and u1v1 ∈ E(G1), dG2(u2) = dG1(u1) =

dG1(v1). This clearly implies that G1 and G2 must be regular graphs with the same regularities.

Theorem 2.20. The multiplicative sum Zagreb index of G1�G2 satisfies the following inequality:

Π∗
1(G1�G2)≥ (2

√
2)

n1m2+n2m1 4

√
Π1(G1)

m2Π1(G2)
m1

√
Π∗

1(G1)
n2Π∗

1(G2)
n1 ,

with equality if and only if G1 and G2 are regular graphs with the same regularities.

Proof. Let G = G1�G2. By definition of the multiplicative sum Zagreb index, we have

Π∗
1(G) =

∏

(u1,u2)(v1,v2)∈E(G)

[
dG((u1, u2)) + dG((v1, v2))

]

=
∏

u1∈V (G1)

∏

u2v2∈E(G2)

[(
dG1(u1) + dG2(u2)

)
+
(
dG1(u1) + dG2(v2)

)]

×
∏

u2∈V (G2)

∏

u1v1∈E(G1)

[(
dG1(u1) + dG2(u2)

)
+
(
dG1(v1) + dG2(u2)

)]

=
∏

u1∈V (G1)

∏

u2v2∈E(G2)

[
2dG1(u1) +

(
dG2(u2) + dG2(v2)

)]

×
∏

u2∈V (G2)

∏

u1v1∈E(G1)

[
2dG2(u2) +

(
dG1(u1) + dG1(v1)

)]
.

Now by Lemmas 2.1 and 2.2, we have

Π∗
1(G) ≥

∏

u1∈V (G1)

∏

u2v2∈E(G2)

2
√
2dG1(u1)×

(
dG2(u2) + dG2(v2)

)
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×
∏

u2∈V (G2)

∏

u1v1∈E(G1)

2
√
2dG2(u2)×

(
dG1(u1) + dG1(v1)

)

=(2
√
2)

n1m2 4

√
Π1(G1)

m2

√
Π∗

1(G2)
n1 × (2

√
2)

n2m1 4

√
Π1(G2)

m1

√
Π∗

1(G1)
n2

=(2
√
2)

n1m2+n2m1 4

√
Π1(G1)

m2Π1(G2)
m1

√
Π∗

1(G1)
n2Π∗

1(G2)
n1 .

By Lemma 2.2, the above equality holds if and only if for every u1 ∈ V (G1) and u2v2 ∈ E(G2),

2dG1(u1) +
(
dG2(u2) + dG2(v2)

)
= 2
√

2dG1(u1)×
(
dG2(u2) + dG2(v2)

)
,

and for every u2 ∈ V (G2) and u1v1 ∈ E(G1),

2dG2(u2) +
(
dG1(u1) + dG1(v1)

)
= 2
√

2dG2(u2)×
(
dG1(u1) + dG1(v1)

)
.

By Lemma 2.1, this implies that for every u1 ∈ V (G1) and u2v2 ∈ E(G2), 2dG1(u1) = dG2(u2) +

dG2(v2), and for every u2 ∈ V (G2) and u1v1 ∈ E(G1), 2dG2(u2) = dG1(u1) + dG1(v1). This clearly
implies that G1 and G2 must be regular graphs with the same regularities.

2.7 Strong product

The strong product G1 � G2 of graphs G1 and G2 has the vertex set V (G1) × V (G2) and two vertices
(u1, u2) and (v1, v2) are adjacent if and only if [u1 = v1 and u2v2 ∈ E(G2)] or [u2 = v2 and u1v1 ∈
E(G1)] or [u1v1 ∈ E(G1) and u2v2 ∈ E(G2)]. The degree of a vertex u = (u1, u2) of G1 �G2 is given
by

dG1�G2(u) = dG1(u1) + dG2(u2) + dG1(u1)dG2(u2).

In the following theorems, lower bounds for the first and second multiplicative Zagreb indices and
multiplicative sum Zagreb index of the strong product G1 �G2 are presented.

Theorem 2.21. The first multiplicative Zagreb index of G1 �G2 satisfies the following inequality:

Π1(G1 �G2) ≥ 9n1n2 3

√
Π1(G1)

n2Π1(G2)
n1 ,

with equality if and only if G1 and G2 are 1−regular graphs.

Proof. Let G = G1�G2. By definition of the first multiplicative Zagreb index and Lemmas 2.1 and 2.2,
we have

Π1(G) =
∏

(u1, u2)∈V (G)

dG((u1, u2))
2

=
∏

u1∈V (G1)

∏

u2∈V (G2)

(
dG1(u1) + dG2(u2) + dG1(u1)dG2(u2)

)2

≥
∏

u1∈V (G1)

∏

u2∈V (G2)

(
3 3
√
dG1(u1)× dG2(u2)× dG1(u1)dG2(u2)

)2
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=
∏

u1∈V (G1)

∏

u2∈V (G2)

9
3

√
dG1(u1)

2 × dG2(u2)
2

=9n1n2 3

√
Π1(G1)

n2Π1(G2)
n1 .

By Lemma 2.2, the above equality holds if and only if for every u1 ∈ V (G1) and u2 ∈ V (G2),

dG1(u1) + dG2(u2) + dG1(u1)dG2(u2) = 3 3
√
dG1(u1)× dG2(u2)× dG1(u1)dG2(u2).

By Lemma 2.1, this implies that for every u1 ∈ V (G1) and u2 ∈ V (G2), dG1(u1) = dG2(u2) =

dG1(u1)dG2(u2). So, the equality holds if and only if G1 and G2 are 1−regular graphs.

Theorem 2.22. The second multiplicative Zagreb index of G1 �G2 satisfies the following inequality:

Π2(G1 �G2) ≥ 9n1m2+n2m1+2m1m2 3

√
Π1(G1)

2m2Π1(G2)
2m1Π2(G1)

2n2+4m2Π2(G2)
2n1+4m1 ,

with equality if and only if G1 and G2 are 1−regular graphs.

Proof. Let G = G1 �G2. By definition of the second multiplicative Zagreb index, we have

Π2(G) =
∏

(u1,u2)(v1,v2)∈E(G)

dG((u1, u2))dG((v1, v2)).

By definition of the strong product, we can partition the above product into three products as follows.
The first product P1 is taken over all edges (u1, u2)(v1, v2) ∈ E(G) such that u1 = v1 and u2v2 ∈

E(G2). By Lemmas 2.1 and 2.2, we have

P1 =
∏

u1∈V (G1)

∏

u2v2∈E(G2)

(
dG1(u1) + dG2(u2) + dG1(u1)dG2(u2)

)

×
(
dG1(u1) + dG2(v2) + dG1(u1)dG2(v2)

)

≥
∏

u1∈V (G1)

∏

u2v2∈E(G2)

[
3 3
√
dG1(u1)× dG2(u2)× dG1(u1)dG2(u2)

× 3 3
√
dG1(u1)× dG2(v2)× dG1(u1)dG2(v2)

]

=
∏

u1∈V (G1)

∏

u2v2∈E(G2)

9
3

√
dG1(u1)4 ×

(
dG2(u2)dG2(v2)

)2

=9n1m2 3

√
Π1(G1)

2m2Π2(G2)
2n1 .

By Lemma 2.2, the above equality holds if and only if for every u1 ∈ V (G1) and u2v2 ∈ E(G2),

dG1(u1) + dG2(u2) + dG1(u1)dG2(u2) = 3 3
√
dG1(u1)× dG2(u2)× dG1(u1)dG2(u2)

and
dG1(u1) + dG2(v2) + dG1(u1)dG2(v2) = 3 3

√
dG1(u1)× dG2(v2)× dG1(u1)dG2(v2).

By Lemma 2.1, this implies that for every u1 ∈ V (G1) and u2v2 ∈ E(G2),

dG1(u1) = dG2(u2) = dG2(v2) = dG1(u1)dG2(u2) = dG1(u1)dG2(v2).
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So, the equality holds if and only if G1 and G2 are 1−regular graphs.

The second product P2 is taken over all edges (u1, u2)(v1, v2) ∈ E(G) such that u1v1 ∈ E(G1) and
u2 = v2. So,

P2 =
∏

u1v1∈E(G1)

∏

u2∈V (G2)

(
dG1(u1) + dG2(u2) + dG1(u1)dG2(u2)

)

×
(
dG1(v1) + dG2(u2) + dG1(v1)dG2(u2)

)
.

By symmetry,

P2 ≥ 9n2m1 3

√
Π1(G2)

2m1Π2(G1)
2n2 ,

with equality if and only if G1 and G2 are 1−regular graphs.

The third product P3 is taken over all edges (u1, u2)(v1, v2) ∈ E(G) such that u1v1 ∈ E(G1) and
u2v2 ∈ E(G2). By Lemmas 2.1 and 2.2, we have

P3 =
∏

u1v1∈E(G1)

∏

u2v2∈E(G2)

[(
dG1(u1) + dG2(u2) + dG1(u1)dG2(u2)

)

×
(
dG1(v1) + dG2(v2) + dG1(v1)dG2(v2)

)]

×
[(
dG1(u1) + dG2(v2) + dG1(u1)dG2(v2)

)

×
(
dG1(v1) + dG2(u2) + dG1(v1)dG2(u2)

)]

≥
∏

u1v1∈E(G1)

∏

u2v2∈E(G2)

[
3 3
√
dG1(u1)× dG2(u2)× dG1(u1)dG2(u2)

× 3 3
√
dG1(v1)× dG2(v2)× dG1(v1)dG2(v2)

]

×
[
3 3
√

dG1(u1)× dG2(v2)× dG1(u1)dG2(v2)

× 3 3
√
dG1(v1)× dG2(u2)× dG1(v1)dG2(u2)

]

=
∏

u1v1∈E(G1)

∏

u2v2∈E(G2)

81
3

√(
dG1(u1)dG1(v1)

)4 ×
(
dG2(u2)dG2(v2)

)4

=81m1m2 3

√
Π2(G1)

4m2Π2(G2)
4m1 .

By Lemma 2.2, the above equality holds if and only if for every u1v1 ∈ E(G1) and u2v2 ∈ E(G2),

dG1(u1) + dG2(u2) + dG1(u1)dG2(u2) = 3 3
√
dG1(u1)× dG2(u2)× dG1(u1)dG2(u2),

dG1(v1) + dG2(v2) + dG1(v1)dG2(v2) = 3 3
√
dG1(v1)× dG2(v2)× dG1(v1)dG2(v2),

dG1(u1) + dG2(v2) + dG1(u1)dG2(v2) = 3 3
√
dG1(u1)× dG2(v2)× dG1(u1)dG2(v2),

and

dG1(v1) + dG2(u2) + dG1(v1)dG2(u2) = 3 3
√
dG1(v1)× dG2(u2)× dG1(v1)dG2(u2).

By Lemma 2.1, this implies that for every u1v1 ∈ E(G1) and u2v2 ∈ E(G2),

dG1(u1) = dG2(u2) = dG1(u1)dG2(u2),
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dG1(v1) = dG1(v2) = dG1(v1)dG2(v2),

dG1(u1) = dG1(v2) = dG1(u1)dG2(v2),

and
dG1(v1) = dG1(u2) = dG1(v1)dG2(u2).

So, the equality holds if and only if G1 and G2 are 1−regular graphs.
Hence,

Π2(G) =P1P2P3

≥9n1m2+n2m1+2m1m2 3

√
Π1(G1)

2m2Π1(G2)
2m1Π2(G1)

2n2+4m2Π2(G2)
2n1+4m1 ,

with equality if and only if G1 and G2 are 1−regular graphs.

Theorem 2.23. The multiplicative sum Zagreb index of G1 �G2 satisfies the following inequality:

Π∗
1(G1 �G2) >16m1m2 (3

3
√
2)

n1m2+n2m1 3

√
Π1(G1)

m2Π1(G2)
m1

√
Π2(G1)

m2Π2(G2)
m1

× 6

√
Π∗

1(G1)
4n2+3m2Π∗

1(G2)
4n1+3m1 .

Proof. Let G = G1 �G2. By definition of the multiplicative sum Zagreb index, we have

Π∗
1(G) =

∏

(u1,u2)(v1,v2)∈E(G)

[
dG((u1, u2)) + dG((v1, v2))

]
.

By definition of the strong product, we can partition the above product into three products as follows.
The first product P1 is taken over all edges (u1, u2)(v1, v2) ∈ E(G) such that u1 = v1 and u2v2 ∈

E(G2). By Lemmas 2.1 and 2.2, we have

P1 =
∏

u1∈V (G1)

∏

u2v2∈E(G2)

[(
dG1(u1) + dG2(u2) + dG1(u1)dG2(u2)

)

+
(
dG1(u1) + dG2(v2) + dG1(u1)dG2(v2)

)]

=
∏

u1∈V (G1)

∏

u2v2∈E(G2)

[
2dG1(u1) +

(
dG2(u2) + dG2(v2)

)
+ dG1(u1)

(
dG2(u2) + dG2(v2)

)]

≥
∏

u1∈V (G1)

∏

u2v2∈E(G2)

3 3

√
2dG1(u1)×

(
dG2(u2) + dG2(v2)

)
× dG1(u1)

(
dG2(u2) + dG2(v2)

)

=(3
3
√
2)

n1m2 3

√
Π1(G1)

m2Π∗
1(G2)

2n1 .

By Lemma 2.2, the above equality holds if and only if for every u1 ∈ V (G1) and u2v2 ∈ E(G2),

2dG1(u1) +
(
dG2(u2) + dG2(v2)

)
+ dG1(u1)

(
dG2(u2) + dG2(v2)

)

=3 3

√
2dG1(u1)×

(
dG2(u2) + dG2(v2)

)
× dG1(u1)

(
dG2(u2) + dG2(v2)

)
.

By Lemma 2.1, this implies that for every u1 ∈ V (G1) and u2v2 ∈ E(G2),

2dG1(u1) = dG2(u2) + dG2(v2) = dG1(u1)
(
dG2(u2) + dG2(v2)

)
.
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So, the equality holds if and only if for every u1 ∈ V (G1), dG1(u1) = 1 and for every u2v2 ∈ E(G2),
dG2(u2) + dG2(v2) = 2. That is G1 and G2 are 1−regular graphs.

The second product P2 is taken over all edges (u1, u2)(v1, v2) ∈ E(G) such that u1v1 ∈ E(G1) and
u2 = v2. So,

P2 =
∏

u1v1∈E(G1)

∏

u2∈V (G2)

[(
dG1(u1) + dG2(u2) + dG1(u1)dG2(u2)

)

+
(
dG1(v1) + dG2(u2) + dG1(v1)dG2(u2)

)]
.

By symmetry,

P2 ≥ (3
3
√
2)

n2m1 3

√
Π1(G2)

m1Π∗
1(G1)

2n2 ,

with equality if and only if G1 and G2 are 1−regular graphs.

The third product P3 is taken over all edges (u1, u2)(v1, v2) ∈ E(G) such that u1v1 ∈ E(G1) and
u2v2 ∈ E(G2). By Lemmas 2.1 and 2.2, we have

P3 =
∏

u1v1∈E(G1)

∏

u2v2∈E(G2)

[(
dG1(u1) + dG2(u2) + dG1(u1)dG2(u2)

)

+
(
dG1(v1) + dG2(v2) + dG1(v1)dG2(v2)

)]

×
[(
dG1(u1) + dG2(v2) + dG1(u1)dG2(v2)

)

+
(
dG1(v1) + dG2(u2) + dG1(v1)dG2(u2)

)]

=
∏

u1v1∈E(G1)

∏

u2v2∈E(G2)

[(
dG1(u1) + dG1(v1)

)
+
(
dG2(u2) + dG2(v2)

)

+ dG1(u1)dG2(u2) + dG1(v1)dG2(v2)
]

×
[(
dG1(u1) + dG1(v1)

)
+
(
dG2(u2) + dG2(v2)

)

+ dG1(u1)dG2(v2) + dG1(v1)dG2(u2)
]

≥
∏

u1v1∈E(G1)

∏

u2v2∈E(G2)

16
√(

dG1(u1) + dG1(v1)
)
×
(
dG2(u2) + dG2(v2)

)

×
√

dG1(u1)dG1(v1)× dG2(u2)dG2(v2)

=16m1m2

√(
Π∗

1(G1)Π2(G1)
)m2
(
Π∗

1(G2)Π2(G2)
)m1 .

By Lemma 2.2, the above equality holds if and only if for every u1v1 ∈ E(G1) and u2v2 ∈ E(G2),

(
dG1(u1) + dG1(v1)

)
+
(
dG2(u2) + dG2(v2)

)
+ dG1(u1)dG2(u2) + dG1(v1)dG2(v2)

=4 4

√(
dG1(u1) + dG1(v1)

)
×
(
dG2(u2) + dG2(v2)

)
× dG1(u1)dG2(u2)× dG1(v1)dG2(v2),

and

(
dG1(u1) + dG1(v1)

)
+
(
dG2(u2) + dG2(v2)

)
+ dG1(u1)dG2(v2) + dG1(v1)dG2(u2)

=4 4

√(
dG1(u1) + dG1(v1)

)
×
(
dG2(u2) + dG2(v2)

)
× dG1(u1)dG2(v2)× dG1(v1)dG2(u2).
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By Lemma 2.1, this implies that for every u1v1 ∈ E(G1) and u2v2 ∈ E(G2),

dG1(u1) + dG1(v1) = dG2(u2) + dG2(v2) = dG1(u1)dG2(u2) = dG1(v1)dG2(v2)

= dG1(u1)dG2(v2) = dG1(v1)dG2(u2).

So, G1 and G2 must be 2-regular graphs.
Hence,

Π∗
1(G) = P1P2P3 >16m1m2 (3

3
√
2)

n1m2+n2m1 3

√
Π1(G1)

m2Π1(G2)
m1

√
Π2(G1)

m2Π2(G2)
m1

× 6

√
Π∗

1(G1)
4n2+3m2Π∗

1(G2)
4n1+3m1 .

3. Bounds on multiplicative versions of Zagreb indices of subdivi-
sion operators

In this section, we compare the multiplicative versions of Zagreb indices under the subdivision operators
L, S, R, Q, and T . Results are applied to obtain some upper and/or lower bounds for the first and
second multiplicative Zagreb indices and multiplicative sum Zagreb index of these operators in terms of
the order, size, first Zagreb index, first and second multiplicative Zagreb indices and multiplicative sum
Zagreb index of the primary graph. The results of this section have been taken from [5].

At first, we recall the definitions of subdivision-related graphs and state some preliminary results
about them.

Let G = (V (G), E(G)) be a nontrivial simple connected graph with vertex set V (G) and edge set
E(G) and let |V (G)| = n and |E(G)| = m. Related to the graph G, the line graph L(G), the subdivision

graph S(G), and the total graph T (G) are defined as follows.
The line graph L(G) is the graph whose vertices correspond to the edges of G with two vertices being

adjacent if and only if the corresponding edges in G have a vertex in common.
The subdivision graph S(G) is the graph obtained from G by replacing each of its edges by a path of

length two, or equivalently, by inserting an additional vertex into each edge of G.
The total graph T (G) is the graph whose vertex set is V (G)∪E(G), with two vertices of T (G) being

adjacent if and only if the corresponding elements of G are adjacent or incident.
Two extra subdivision operators named R(G) and Q(G) are defined as follows.

R(G) is the graph obtained from G by adding a new vertex corresponding to each edge of G and by
joining each new vertex to the end vertices of the edge corresponding to it.

Q(G) is the graph obtained from G by inserting a new vertex into each edge of G and by joining with
edges those pairs of these new vertices which lie on adjacent edges of G.

Now consider the sets EE(G) and EV (G) for the graph G = (V (G), E(G)) as follows.

EE(G) ={ee′|e, e′ ∈ E(G), |V (e) ∩ V (e′)| = 1}, EV (G) = {ev|e ∈ E(G), v ∈ V (e)}.
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It is easy to see that,

|EE(G)| =
∑

u∈V (G)

(
d(u)

2

)
=

1

2
M1(G)−m, |EV (G)| = 2m.

Based on the definitions of these sets, we may write the subdivision-related graphs as follows.

L(G) = (E(G), EE(G)),

S(G) = (V (G) ∪ E(G), EV (G)),

R(G) = (V (G) ∪ E(G), E(G) ∪ EV (G)),

Q(G) = (V (G) ∪ E(G), EE(G) ∪ EV (G)),

T (G) = (V (G) ∪ E(G), E(G) ∪ EE(G) ∪ EV (G)).

Obviously,

|V (L(G))| = m, |V (S(G))| = |V (R(G))| = |V (Q(G))| = |V (T (G))| = n+m,

and

|E(S(G))| =2m, |E(R(G))| = 3m,

|E(L(G))| =1

2
M1(G)−m, |E(Q(G))| = 1

2
M1(G) +m, |E(T (G))| = 1

2
M1(G) + 2m.

In the following lemma, we find the relationship among the degree of vertices in subdivision-related
graphs.

Lemma 3.1. For any vertex v ∈ V (G),

dR(G)(v) = dT (G)(v) = 2dS(G)(v) = 2dQ(G)(v) = 2dG(v),

and for any edge e = uv ∈ E(G),

dS(G)(e) = dR(G)(e) = 2, dQ(G)(e) = dT (G)(e) = dL(G)(e) + 2 = dG(u) + dG(v).

Proof. By definition of the subdivision-related graphs, the proof is obvious.

In the following theorem, the first multiplicative Zagreb index of the subdivision operators S, R,
Q and T are computed.

Theorem 3.2. Let G be a graph of order n and size m. Then

(i) Π1(S(G)) = 4mΠ1(G),

(ii) Π1(R(G)) = 4n+mΠ1(G),

(iii) Π1(Q(G)) = Π1(G)Π∗
1(G)2,

(iv) Π1(T (G)) = 4nΠ1(G)Π∗
1(G)2.
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Proof. (i) By definition of S(G) and Lemma 3.1,

Π1(S(G)) =
∏

u∈V (G)

dG(u)
2 ×

∏

e∈E(G)

22 = 4mΠ1(G).

(ii) By definition of R(G) and Lemma 3.1,

Π1(R(G)) =
∏

u∈V (G)

(2dG(u))
2 ×

∏

e∈E(G)

22 = 4nΠ1(G)× 4m = 4n+mΠ1(G).

(iii) By definition of Q(G) and Lemma 3.1,

Π1(Q(G)) =
∏

u∈V (G)

dG(u)
2 ×

∏

uv∈E(G)

[dG(u) + dG(v)]
2 = Π1(G)Π∗

1(G)2.

(iv) By definition of T (G) and Lemma 3.1,

Π1(T (G)) =
∏

u∈V (G)

(2dG(u))
2 ×

∏

uv∈E(G)

[dG(u) + dG(v)]
2 = 4nΠ1(G)Π∗

1(G)2.

As a direct consequence of Theorem 3.2, we get the following corollary.

Corollary 3.3. Let G be a graph of order n. Then

Π1(R(G))

Π1(S(G))
=

Π1(T (G))

Π1(Q(G))
= 4n.

Using Lemmas 2.1 and 3.1, we obtain a sharp upper bound for the first multiplicative Zagreb index
of the line graph L(G) in terms of the multiplicative sum Zagreb index and the size of the graph G.

Theorem 3.4. Let G be a graph of size m. Then

Π1(L(G)) ≤ Π∗
1(G)4

64m
,

with equality if and only if G is a cycle or the star graph on 4 vertices.

Proof. By definition of the multiplicative sum Zagreb index and Lemma 3.1,

Π∗
1(G)4 =

∏

uv∈E(G)

[dG(u) + dG(v)]
4 =

∏

uv∈V (L(G))

[dL(G)(uv) + 2]4.

Now by Lemma 2.1,

Π∗
1(G)4 ≥

∏

uv∈V (L(G))

[
2
√
dL(G)(uv)× 2

]4
=

∏

uv∈V (L(G))

64 dL(G)(uv)
2 = 64mΠ1(L(G)).

So,

Π1(L(G)) ≤ Π∗
1(G)4

64m
.

By Lemma 2.1, the above equality holds if and only if for every uv ∈ E(G), dL(G)(uv) = 2. This by
Lemma 3.1 implies that, for every uv ∈ E(G), dG(u) + dG(v) = 4. So, G is a cycle or the star graph on
4 vertices.
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Now, we introduce the quantity Γ(G) related to a simple connected graph G as follows.

Γ(G) =
∏

uv∈E(G)

[dG(u) + dG(v)]
dG(u)+dG(v).

In the following theorem, we determine the second multiplicative Zagreb index of subdivision oper-
ators.

Theorem 3.5. Let G be a graph of size m. Then

(i) Π2(S(G)) = 4mΠ2(G),

(ii) Π2(R(G)) = 64mΠ2(G)2,

(iii) Π2(Q(G)) = Π2(G)Γ(G),

(iv) Π2(T (G)) = 16mΠ2(G)2Γ(G).

Proof. (i) By definition of S(G) and Lemma 3.1,

Π2(S(G)) =
∏

u∈V (G)

dG(u)
dG(u) ×

∏

e∈E(G)

22 = 4mΠ2(G).

(ii) By definition of R(G) and Lemma 3.1,

Π2(R(G)) =
∏

u∈V (G)

(2dG(u))
2dG(u) ×

∏

e∈E(G)

22

=
∏

u∈V (G)

4dG(u) ×
∏

u∈V (G)

(
dG(u)

dG(u)
)2 × 4m

=42m × Π2(G)2 × 4m = 64mΠ2(G)2.

(iii) By definition of Q(G) and Lemma 3.1,

Π2(Q(G)) =
∏

u∈V (G)

dG(u)
dG(u) ×

∏

uv∈E(G)

[dG(u) + dG(v)]
dG(u)+dG(v) = Π2(G)Γ(G).

(iv) By definition of T (G) and Lemma 3.1,

Π2(T (G)) =
∏

u∈V (G)

(2dG(u))
2dG(u) ×

∏

uv∈E(G)

[dG(u) + dG(v)]
dG(u)+dG(v)

=16mΠ2(G)2Γ(G).

As a direct consequence of Theorem 3.5, we get the following corollary.

Corollary 3.6. Let G be a graph of size m. Then

Π2(R(G))

Π2(S(G))
=

Π2(T (G))

Π2(Q(G))
= 16mΠ2(G).
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In the following theorem, we obtain a sharp upper bound for the second multiplicative Zagreb index
of L(G) in terms of the quantity Γ(G), the first Zagreb index, the multiplicative sum Zagreb index and
size of the graph G.

Theorem 3.7. Let G be a graph of size m. Then

Π2(L(G)) ≤ Γ(G)2

8M1(G)−2m Π∗
1(G)4

,

with equality if and only if G is a cycle or the star graph on 4 vertices.

Proof. By definition of Γ(G), we have

Γ(G)2 =
∏

uv∈E(G)

[dG(u) + dG(v)]
2(dL(G)(uv)+2)

=Π∗
1(G)4 ×

∏

uv∈V (L(G))

[dL(G)(uv) + 2]2dL(G)(uv).

Now by Lemma 2.1,

Γ(G)2 ≥Π∗
1(G)4 ×

∏

uv∈V (L(G))

[
2
√

dL(G)(uv)× 2
]2dL(G)(uv)

=Π∗
1(G)4 ×

∏

uv∈V (L(G))

8dL(G)(uv) ×
∏

uv∈V (L(G))

dL(G)(uv)
dL(G)(uv)

=Π∗
1(G)4 × 8

∑
uv∈V (L(G)) dL(G)(uv) × Π2(L(G))

=8M1(G)−2m Π∗
1(G)4 Π2(L(G)).

So,

Π2(L(G)) ≤ Γ(G)2

8M1(G)−2m Π∗
1(G)4

.

By Lemma 2.1, the above equality holds if and only if for every uv ∈ E(G), dL(G)(uv) = 2, that is,
dG(u) + dG(v) = 4. So, G is a cycle or the star graph on 4 vertices.

Using parts (iii) and (iv) of Theorem 3.5 and then Theorem 3.7, we can obtain sharp inequalities for
the second multiplicative Zagreb index of Q(G) and T (G).

Corollary 3.8. Let G be a graph of size m. Then

Π2(Q(G)) ≥ (2
√
2)M1(G)−2m Π∗

1(G)2 Π2(G)
√
Π2(L(G)),

with equality if and only if G is a cycle or the star graph on 4 vertices.

Corollary 3.9. Let G be a graph of size m. Then

Π2(T (G)) ≥ 2m(2
√
2)M1(G) (Π∗

1(G)Π2(G))2
√

Π2(L(G)),

with equality if and only if G is a cycle or the star graph on 4 vertices.
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Now, we turn our attention toward multiplicative sum Zagreb index of subdivision operators. In the
following theorem, we find a formula for the multiplicative sum Zagreb index of the subdivision graph
S(G).

Theorem 3.10. Let G be a graph. Then

Π∗
1(S(G)) =

∏

u∈V (G)

(dG(u) + 2)dG(u).

Proof. By definition of S(G) and Lemma 3.1,

Π∗
1(S(G)) =

∏

ev∈EV (G)

[dS(G)(e) + dS(G)(v)] =
∏

uv∈E(G)

(dG(u) + 2)(dG(v) + 2).

The vertex u ∈ V (G) is the endpoint of dG(u) edges of G. Therefore in the above product, the factor
dG(u) + 2 occurs dG(u) times. So,

Π∗
1(S(G)) =

∏

u∈V (G)

(dG(u) + 2)dG(u).

Using Theorem 3.10 and Lemma 2.1, we can obtain a sharp lower bound for the multiplicative sum
Zagreb index of S(G) in terms of the second multiplicative Zagreb index and the size of the graph G.

Corollary 3.11. Let G be a graph of size m. Then

Π∗
1(S(G)) ≥ 8m

√
Π2(G),

with equality if and only if G is a cycle.

Proof. Using Theorem 3.10 and then Lemma 2.1, we have

Π∗
1(S(G)) =

∏

u∈V (G)

(dG(u) + 2)dG(u)

≥
∏

u∈V (G)

(2
√
dG(u)× 2)dG(u)

=(2
√
2)

∑
u∈V (G) dG(u) ×

√ ∏

u∈V (G)

dG(u)
dG(u) = 8m

√
Π2(G).

By Lemma 2.1, the above equality holds if and only if for every u ∈ V (G), dG(u) = 2. This implies that
G is a cycle.

In the following theorem, we find a formula for the multiplicative sum Zagreb index of R(G).

Theorem 3.12. Let G be a graph of size m. Then

Π∗
1(R(G)) = 8m Π∗

1(G)
∏

u∈V (G)

(dG(u) + 1)dG(u).
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Proof. By definition of R(G) and Lemma 3.1,

Π∗
1(R(G)) =

∏

uv∈E(G)

[dR(G)(u) + dR(G)(v)]×
∏

ev∈EV (G)

[dR(G)(e) + dR(G)(v)]

=
∏

uv∈E(G)

[2dG(u) + 2dG(v)]×
∏

uv∈E(G)

(2dG(u) + 2)(2dG(v) + 2)

=2m
∏

uv∈E(G)

[dG(u) + dG(v)]× 4m
∏

uv∈E(G)

(dG(u) + 1)(dG(v) + 1)

=8mΠ∗
1(G)

∏

u∈V (G)

(dG(u) + 1)dG(u).

Using Theorem 3.12 and Lemma 2.1, we can obtain a sharp lower bound for the multiplicative sum
Zagreb index of R(G) in terms of the multiplicative sum Zagreb index, second multiplicative Zagreb
index and size of the graph G.

Corollary 3.13. Let G be a graph of size m. Then

Π∗
1(R(G)) ≥ 32m Π∗

1(G)
√

Π2(G),

with equality if and only if G is the 2−vertex path P2.

Proof. Using Theorem 3.12 and Lemma 2.1, we have

Π∗
1(R(G)) =8m Π∗

1(G)
∏

u∈V (G)

(dG(u) + 1)dG(u)

≥8m Π∗
1(G)

∏

u∈V (G)

(2
√
dG(u)× 1)dG(u)

=8m Π∗
1(G)× 2

∑
u∈V (G) dG(u) ×

√ ∏

u∈V (G)

dG(u)
dG(u)

=32m Π∗
1(G)

√
Π2(G).

By Lemma 2.1, the above equality holds if and only if for every u ∈ V (G), dG(u) = 1. So, G is the
2−vertex path P2.

In order to obtain some lower bounds on the multiplicative sum Zagreb index of Q(G) and T (G), we
need to prove two following lemmas.

Lemma 3.14. Let G be a graph of size m. Then
∏

ee′∈EE(G)

[dQ(G)(e) + dQ(G)(e
′)] =

∏

ee′∈EE(G)

[dT (G)(e) + dT (G)(e
′)]

≥2M1(G)−2m
√
Π∗

1(L(G)),

with equality if and only if G is a cycle or the star graph on 4 vertices.
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Proof. Using Lemma 3.1, we have
∏

ee′∈EE(G)

[dQ(G)(e) + dQ(G)(e
′)] =

∏

ee′∈EE(G)

[dT (G)(e) + dT (G)(e
′)]

=
∏

ee′∈E(L(G))

[dL(G)(e) + dL(G)(e
′) + 4].

Now by Lemma 2.1,
∏

ee′∈E(L(G))

[dL(G)(e) + dL(G)(e
′) + 4] ≥

∏

ee′∈E(L(G))

2
√(

dL(G)(e) + dL(G)(e′)
)
× 4

=4|E(L(G))|
√ ∏

ee′∈E(L(G))

(
dL(G)(e) + dL(G)(e′)

)

=2M1(G)−2m
√
Π∗

1(L(G)).

By Lemma 2.1, the above equality holds if and only if for every ee′ ∈ E(L(G)), dL(G)(e)+dL(G)(e
′) = 4.

So, for every uv, zv ∈ E(G),

(dG(u) + dG(v)− 2) + (dG(z) + dG(v)− 2) = 4,

that is 2dG(v) + dG(u) + dG(z) = 8. This implies that, for every uv, zv ∈ E(G), dG(u) = dG(v) =

dG(z) = 2 or dG(v) = 3, dG(u) = dG(z) = 1. So, G is a cycle or the star graph on 4 vertices.

Lemma 3.15. Let G be a graph of size m. Then

(i)
∏

ev∈EV (G)

[dQ(G)(e) + dQ(G)(v)] > (2
√
2)

m
Π∗

1(G)
√
Π2(G),

(ii)
∏

ev∈EV (G)

[dT (G)(e) + dT (G)(v)] > (4
√
3)

m
Π∗

1(G)
√
Π2(G).

Proof. (i) Using Lemma 3.1, we have
∏

ev∈EV (G)

[dQ(G)(e) + dQ(G)(v)]

=
∏

uv∈E(G)

[
dG(u) +

(
dG(u) + dG(v)

)][
dG(v) +

(
dG(u) + dG(v)

)]

=
∏

uv∈E(G)

(
2dG(u) + dG(v)

)(
2dG(v) + dG(u)

)

=
∏

uv∈E(G)

[
2
(
dG(u) + dG(v)

)2
+ dG(u)dG(v)

]
.

Now by Lemma 2.1,

∏

ev∈EV (G)

[dQ(G)(e) + dQ(G)(v)] >
∏

uv∈E(G)

2

√
2
(
dG(u) + dG(v)

)2 × dG(u)dG(v)

=(2
√
2)m Π∗

1(G)
√
Π2(G).
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The above inequality is strict. Since by Lemma 2.1, the equality holds if and only if for every uv ∈ E(G),
2
(
dG(u) + dG(v)

)2
= dG(u)dG(v), which is a contradiction.

(ii) Using the same argument as in the proof of part (i), we can get the desired result.

Now, we apply Lemmas 3.14 and 3.15 to obtain lower bounds on the multiplicative sum Zagreb index
of Q(G) and T (G).

Lemma 3.16. Let G be a graph of size m. Then

(i) Π∗
1(Q(G)) > (

√
2)

2M1(G)−m
Π∗

1(G)
√
Π2(G) Π∗

1(L(G)) ,

(ii) Π∗
1(T (G)) > 2M1(G)+m(

√
3)

m
Π∗

1(G)2
√
Π2(G) Π∗

1(L(G)) .

Proof. (i) By definition of the multiplicative sum Zagreb index, we have

Π∗
1(Q(G)) =

∏

ee′∈EE(G)

[dQ(G)(e) + dQ(G)(e
′)]×

∏

ev∈EV (G)

[dQ(G)(e) + dQ(G)(v)].

Now using Lemmas 3.14 and 3.15, we have

Π∗
1(Q(G)) >2M1(G)−2m

√
Π∗

1(L(G))× (2
√
2)

m
Π∗

1(G)
√
Π2(G)

=(
√
2)

2M1(G)−m
Π∗

1(G)
√
Π2(G) Π∗

1(L(G)).

(ii) By definition of the multiplicative sum Zagreb index, we have

Π∗
1(T (G)) =

∏

uv∈E(G)

[dT (G)(u) + dT (G)(v)]×
∏

ee′∈EE(G)

[dT (G)(e) + dT (G)(e
′)]

×
∏

ev∈EV (G)

[dT (G)(e) + dT (G)(v)].

By Lemma 3.1,

∏

uv∈E(G)

[dT (G)(u) + dT (G)(v)] =
∏

uv∈E(G)

[2dG(u) + 2dG(v)] = 2mΠ∗
1(G).

Now using Lemmas 3.14 and 3.15, we have

Π∗
1(T (G)) >2mΠ∗

1(G)× 2M1(G)−2m
√
Π∗

1(L(G))× (4
√
3)

m
Π∗

1(G)
√

Π2(G)

=2M1(G)+m(
√
3)

m
Π∗

1(G)2
√
Π2(G) Π∗

1(L(G)).
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1. Introduction

Many problems in natural, technical and social sciences can be successfully formulated in terms of
matchings in graphs. Today the matching theory is a well-developed branch of graph theory, studying
both structural and enumerative aspects of matchings. Its development has been strongly stimulated
by chemical applications, in particular by the study of perfect matchings in benzenoid graphs [15].
Additional impetus came with the discovery of fullerenes, again mostly dealing with perfect matchings
[9, 10, 24, 39], but including also some structural results [3, 11].

For a general background on matching theory and terminology, we refer the reader to the classical
monograph by Lovasz and Plummer [31]. For graph theory terms not defined here, we also recommend
[37].

Let G = (V,E) be a simple graph. A subset M of E is called a matching if no two edges in M are
adjacent. The cardinality of M is called the size of the matching. As the matchings of small size are
not interesting (each edge is a matching of size one, and the empty set is the unique matching of size
0), we will be mostly interested in matchings that are, in a sense, large. Most often, we are interested in
matchings that are as large as possible. A matching M is maximum if there is no matching in G with
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more edges than M . The cardinality of any maximum matching in G is called the matching number of
G and denoted by ν(G). Since each vertex can be incident to at most one edge of a matching, it follows
that the matching number of a graph on n vertices cannot exceed bn/2c. A vertex v∈V is said to be
saturated by the matching M if some edge of M is incident with v. A vertex which is not saturated by
a matching is called exposed. A matching M is said to be perfect if all the vertices of G are saturated
by M . Perfect matchings are obviously also maximum matchings. The perfect matchings, also known
as Kekulé structures in the chemical literature, have played a central role in the study of matchings
for several decades. There is, however, an alternative way to quantify the idea of large matchings. A
matching M is said to be maximal if for any e∈E/M , M∪{e} is not a matching.

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

(a) (b) (c)

Matching Maximal Matching Perfect Matching

Figure 1. Matching examples.

In Figure 1, the thick edges of the graph in (a) form a matching that is neither perfect nor maximal.
The thick edges in (b) form a maximal matching that is not perfect. The thick edges in (c) on the
other hand form a maximal matching that is also perfect. Obviously, every maximum matching is also
maximal, but the opposite is generally not true.

Maximal matchings are much less researched that their maximum counterparts. That goes both for
their structural and their enumerative aspects. While there is vast literature on perfect and maximum
matchings (see, for example, monographs [31] and [6]), the results about maximal matchings are few
and scattered through the literature. We mention here two papers that treat, among other topics, maximal
matchings in trees [27, 36], one concerned with the structure of equimatchable graphs [20], and recent
two paper by the present authors about saturation numbers of benzenoid graphs [1, 8].

Maximal matchings can serve as models of several physical and technical problems such as the block
allocation of a sequential resource or adsorption of dimers on a structured substrate or a molecule.

In a chemical context, maximal matchings appear, for example, when one considers adsorption of
dimers (diatomic molecules) on a larger molecule, where each dimer binds to a pair of adjacent atoms in
the large molecule. Obviously, any adsorption pattern corresponds to a matching in the graph represent-
ing the large molecule, and the situation when no further adsorption is possible since there are no free
pairs of adjacent atoms in the large molecule is represented by a maximal matching in the corresponding
graph. When that process is random, it is clear that the substrate can become saturated by a number of
dimers much smaller than the theoretical maximum. The cardinality of any smallest maximal matching
in G is called the saturation number of G. We denote by S(G), the saturation number of a graph G.
(The same term, saturation number, is also used in the literature with a different meaning; we refer the
reader to [18] for more information.)
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It is easy to see that the saturation number of a graph G is at least one-half of the matching number
of G, i.e., S(G)≥ν(G)/2. Hence, the saturation number provides information on the worst possible case
of clogging; it is a measure of how inefficient the adsorption process can be. However, to fully assess its
efficiency, we also need to know how likely it is that the substrate gets saturated by a given number of
dimers.

Finding the saturation number of a graph is an NP-hard problem in general. In [38], Yannakakis and
Gavril show that saturation number problem is NP-hard in several classes of graphs including bipartite
(or planar) graphs with maximum degree 3. In [22], Horton and Kilakos extended these results by
showing the NP-hardness of the saturation number problem in planar bipartite graphs and planar cubic
graphs. In [40], Zito shows that the problem remains NP-hard in the so-called almost regular bipartite
graphs, that are bipartite graphs for which the ratio between the maximum degree ∆ and the minimum
degree δ is bounded. Another strengthening of the result of Yannakakis and Gavril in [38] is given
in [7] by showing that saturation number problem is NP-hard in k-regular bipartite graphs for any fixed
k≥3. On the other hand, polynomial time algorithms for the saturation number problem are designed
for trees [32], for block graphs [23], for series-parallel graphs [34], for bipartite permutation graphs and
cotrianglated graphs [35], and for clique-width bounded graphs [16].

The saturation number and its associated structure of a fullerene and benzenoid play a key role in
molecular energy and stability. In the following, we express improved lower and upper bounds on this
quantity in the class of fullerene and benzenoid graphs.

In section 2, we review the literature dealing with the fullerene and its saturation number.

2. Fullerene graph

The first fullerene molecule, with a structure like a football, was discovered experimentally in 1985
by Kroto et al. [30]. The discovered molecule C60, is comprised only of 60 carbon atoms, and it re-
sembles the Richard Buckminster Fullers geodetic dome, therefore it was named buckminsterfullerene.
Until that moment the only all-carbon structures, the modern science was aware of were graphite and
diamond. In 1991, the Science magazine pronounced the buckminsterfullerene for the Molecule of the
year, and later in 1996 the discovery of C60 was rewarded with the Nobel price for chemistry. Soon af-
ter the experimental discovery of the buckminsterfullerene, its existence in nature was confirmed along
with similar structures having 70, 76, 78, 82, 84, 90, 94, or 96 carbon atoms. Each of these all-carbon
molecules has polyhedral structure, and all faces of the polyhedron are either pentagons or hexagons. All
polyhedral molecules made entirely of carbon atoms are called fullerenes. The discovery of the Buck-
minsterfullerene marked the birth of fullerene chemistry and nanotechnology, but at the same time, the
fullerenes were studied from different perspectives. The experimental work was paralleled by theoretical
investigations, applying the methods of graph theory to the mathematical models of fullerene molecules
called fullerene graphs.

The study from graph-theoretical point of view has been motivated by a search for invariants that will
correlate with their stability as a chemical compound. Later graph invariant was used in order to predict
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the physical and chemical properties of a fullerene compound. A number of graph-theoretical invariants
were examined as potential stability predictors with various degrees of success [13, 17]. Graph theory
invariants that have been considered as possible stability predictors are the bipartite edge frustration, the
independence number, the saturation number, the number of perfect matchings, etc.

Fullerenes can also be seen as graphs, vertices represent atoms, and edges represent bonds between
atoms. A fullerene graph is a 3-connected 3-regular planar graph with only pentagonal and hexagonal
faces. In what follows fullerene graphs will be also called fullerenes. Due to Whitneys Theorem (1933),
simple planar 3-connected graphs have a unique planar embedding, and therefore the same holds for
fullerene graphs. By Eulers formula follows the next property of fullerene graphs.

Proposition 2.1. The number of pentagonal faces in a fullerene graph is 12 [4].
The previous result gives no restriction on the number of hexagons. Grunbaum and Motzkin [21]

showed that fullerene graphs exist for any number of hexagonal faces except for 1, i.e., they proved the
following.

Theorem 2.2. Fullerene graphs with n vertices exist for all even n≥24 and for n = 20.

Usually, in chemistry, the fullerene molecule on n vertices is denoted by Cn. Although the number of
pentagonal faces is negligible compared to the number of hexagonal faces, their layout is crucial for the
shape of the corresponding fullerene molecule. Notice that as the number of vertices (hexagons) grows,
the number of fullerenes increases as well. For example, the fullerenes on 20, 24 and 26 vertices have the
unique layout, but the fullerene C40 has 40 isomers, while the buckminsterfullerene has 1812 different
isomers. There is a believe that a number of fullerenes on n vertices is of order Θ(n9), see Fowler and
Manolopoulos in [19] and Cioslowski [5] for more details.

Carbon atoms form four chemical bonds. Three of these are strong bonds, and one is weak. In the
graphical representation of a fullerene, we represent the three strong bonds by the edges in the graph.
The fourth bond is represented chemically as a double bond. A perfect matching of a graph is a set of
edges of G such that each vertex is incident with exactly one edge. Over a fullerene, the edges of a
perfect matching correspond to double bonds, and chemists call this matching a Kekulé structure. We
refer to edges in a given Kekulé structure as Kekulé edges. Petersens Theorem states that in a bridgeless
3-regular graph, there is always a perfect matching [33]. We, therefore, know that a fullerene always has
at least one Kekulé structure.

Proposition 2.3. Let K be a Kekulé structure on a fullerene G. Let P be the set of pentagons and H be
the set of hexagons in G. Then

1. |K| = |V |
2

2. |E| = 3|V |
2

3. |P | = 12

4. |H| = |V |
2
− 10
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Regarding the position of the pentagons, we distinguish several types of fullerene graphs. The fullerene
graphs where no two pentagons are adjacent, i.e., each pentagon is surrounded by five hexagons, satisfy
the isolated pentagon rule or shortly IPR, and they are considered as stable fullerene compounds [29].
Cioslowski [5] stated the following conjecture concerning the number of IPR fullerenes on n vertices.

Conjecture 2.4. For all n > 106, the number of the IPR fullerene isomers with n carbon atoms is
bracketed by the total numbers of isomers of the Cn−50 and Cn−48 fullerenes.

If all pentagonal faces are equally distributed, we obtain fullerene graphs of icosahedral symmetry,
whose smallest representative is the dodecahedron. The dodecahedron is the only icosahedral fullerene
that does not satisfy the IPR. On the other hand, if the pentagonal faces are grouped in two clusters by
six, we obtain nanotubical fullerene graphs.

The common feature of all icosahedral fullerenes is their geometrical shape. The simplest icosahedral
fullerene graph is the dodecahedron, C20; the next one is the famous buckminsterfullerene C60.

It is well known (see, e.g. [19], pp. 1021) that an icosahedral fullerene on p vertices can be con-
structed using the Coxeter construction for each p satisfying p = 20(i2 + ij + j2), where i and j are
integers, i≥j≥0 and i > 0. Here each distinct pair of Coxeter parameters (i, j) gives rise to a dis-
tinct isomer, and the geometric meaning of the parameters i and j is given by the distances between the
pentagons in two directions on a hexagonal lattice. When i = j or j = 0, the fullerene has the full
icosahedral symmetry group Ih, while for 0 < j < i its symmetry group is the rotational subgroup I . All
icosahedral fullerenes except the smallest one ( C20, generated by i = 1, j = 0) have isolated pentagons.

While the icosahedral fullerenes have spherical shape, there is a class of fullerene graphs of tubular
shapes, called nanotubical graphs or simply nanotubes. From the aspect of mathematics, they are not well
defined. However, they are cylindrical in shape, with the two ends capped with a subgraph containing
six pentagons and possibly some hexagons. The cylindrical part of a nanotube can be obtained by rolling
a planar hexagonal grid. The way the grid is wrapped is represented by a Coxeter vector (i,j), called also
the type of the nanotube.

The distance between two vertices u, v∈V (G) in a connected graph G is the length of any shortest
path between these vertices, and it is denoted by d(u, v). A diameter of connected graph G, diam (G), is
the maximum distance between two vertices of G, i.e., diam (G) = max{d(u, v) ∨ u, v∈V (G)}. While
the diameter of fullerene graphs having icosahedral symmetry is small, the diameter of nanotubes is
linear in the number of vertices.

2.1 Saturation number of fullerene graphs

Every fullerene graph admits a perfect matching [28], and the lower bounds on the number of perfect
matchings have been presented in a number of recent papers [9, 14, 39].

Maximal matchings in fullerenes have been for the first in [12], where the following bounds were
established.
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Proposition 2.5. [12]. Let G be a fullerene graph on p vertices. Then

⌈p
4
+ 1
⌉
≤S (G)≤p

2
− 2

The only property of fullerene graphs used to establish the bounds of proposition 2.5 was their 2-
extendibility. (A graph G on p≥2(n + 1) vertices is n-extendable if it contains a set of n-independent
edges and if any such set can be extended to a perfect matching in G.)

Došlić in [11] by using another property of fullerene graphs, their 3-regularity and the following
result, yields a better lower bound on S(G).

Proposition 2.6. [40]. Let G be a d-regular graph. Then the size of any maximal matching in G is at
most

(
2− 1

d

)
S (G) .

Theorem 2.7. [11] Let G be a fullerene graph on p vertices. Then S(G) ≥ 0.3p.

Proof. Every fullerene graph contains a perfect matching, i.e., a matching of size p/2. As any perfect
matching is also maximal, from proposition 2.6 one has p

2
≤5

3
S(G), and the claim follows.

Došlić in [11] proved that the lower bound of proposition 2.5 is sharp for only two icosahedral
fullerenes and stated and proved an upper bound on the saturation number valid for all fullerene graphs.

Theorem 2.8. [11] Let G be an icosahedral fullerene on p vertices such that S(G) = 0.3p. Then G is
either the dodecahedron C20 or buckminsterfullerene C60.

Theorem 2.9. [11] There exists an absolute constant c > 0 such that S (G)≤p
2
− c log2 p, for any

fullerene graph G on p vertices.

Proof. Let G be a fullerene graph on p vertices. Then for its diameter D we have the following lower
bound:

D≥D0 = dlog2(p+ 1)− 1e = blog2 pc .

Let us take two vertices, u and v, such that the distance between them is equal to D0. On a path P of
length D0 connecting u and v we can take an independent set I0 of cardinality (D0 +2)/2 in the manner
shown in figure 2. Let M0 be a maximal matching in G − I0 that covers all vertices adjacent to the
vertices of I0 . It is obvious that such a maximal matching always exists, due to the defining properties
of fullerene graphs. The cardinality of such a matching cannot exceed (p − ∨I0∨?/2. This quantity is
roughly of the order of p

4
− 1

4
log2 p. Since M0 is also a maximal matching in G, the claim of the theorem

follows.
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Figure 2. An independent set with c log2 p vertices.

Theorem 2.10. Let G be an icosahedral fullerene on p vertices with Coxeter parameters (3m, 0) for
some m≥1. Then

S (G)≤p

3
+

√
5

10

√
p− 36 =

p

3
+O (

√
p) .

Using the lower bound on the diameter the bounds on the saturation number were improved in [2]:

Theorem 2.11. Let G be a fullerene graph with p vertices. Then,

S (G)≤p

2
− 1

4
(diam (G)− 2) .

In particular,

S (G)≤p

2
−
√
24n− 15− 15

24
.

In [3], V. Andova et al. proved that the saturation number for fullerenes on p vertices is essentially
n/3.

Theorem 2.12. Let G be a fullerene graph on p vertices. Then

p

3
− 2≤S (G)≤p

3
+O (

√
p) .

In order to prove the lower bound of this theorem, they used the discharging method. For the upper
bound, they first used Theorem following and obtained a bipartite graph F0. Later, they established that
F0 is an induced subgraph of a hexagonal lattice or an induced subgraph of a hexagonal tube (defined as
on Figure 3). Then they defined a maximal matching on F0 such that from each hexagon precisely four
vertices are covered by the matching.
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Figure 3. Example of a (2,4) nanotube. The hexagons denoted equally overlap.

The question to determine the exact value of the saturation number remains still open. In [3] V.
Andova et al. posed a conjecture concerning the problem.

Conjecture 2.13. There is a constant c such that

S (G)≤p

3
+ c

for any fullerene graph G on p vertices.

The problem of finding of minimal independent dominating set is NP-complete [41]. This problem
is NP-complete even when restricted to planar or bipartite graphs of maximal degree three [41], and
remains NP-complete for planar cubic graphs [22]. These results imply the next question.

Problem 2.14. Is the problem to determine the saturation number for the class of fullerene graphs NP-
complete?

In the next section, we review the literature dealing with the benzenoid and its saturation number.

3. Benzenoid graphs

Matchings in graphs serve as successful models of many phenomena in engineering, natural and social
sciences. A strong initial impetus to their study came from the chemistry of benzenoid compounds after
it was observed that the stability of benzenoid compounds is related to the existence and the number of
perfect matchings in the corresponding graphs. That observation gave rise to a number of enumerative
results that were accumulated over the course of several decades; we refer the reader to monograph [6]
for a survey. Further motivation came from the statistical mechanics via the Kasteleyns solution of the
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dimer problem [25, 26] and its applications to evaluations of partition functions for a given value of
temperature. In both cases, the matchings under consideration are perfect.

3.1 Benzenoid hydrocarbons

Chemists have been faced with benzenoid hydrocarbons and their derivatives from the earliest days of
organic chemistry. These chemical compounds are usually insensitive, stable over long periods of time,
available in large amounts and cheap. They can be easily purified and characterized and undergo well
understood chemical reactions.

Benzenoid hydrocarbons are ubiquitous substances, produced by incomplete oxidation of wood, coal
or petroleum, by frying food etc. They are contained in soot and smoke. There are strong indications for
their existence even in the interstellar clouds.

Kekulé structures play (more or less) significant roles in numerous chemical theories, of which reso-
nance theory and valence bond theory are the best-known examples (see, e.g. Pauling 1939).

A benzenoid system is a combinatorial (or if one prefers: geometrical) object obtained by arranging
congruent regular hexagons in a plane so that two hexagons are either disjoint or have a common edge.
What is meant under this awkward definition should be immediately clear after a glance at Figure 4 (and
subsequent figures).

Benzenoid hydrocarbon Benzenoid system

Figure 4. Benzenoid system examples.

A more precise definition of benzenoid systems is a subset (with 1-connected interior) of a regular
tiling of the plane by hexagonal tiles. To each benzenoid system, we can assign a graph, taking the
vertices of hexagons as the vertices, and the sides of hexagons as the edges of the graph. The resulting
simple, plane and bipartite graph is called a benzenoid graph.

Let B be a benzenoid systems with n vertices; m edges and h hexagons. These three quantities are
mutually related as h+ n = m+ 1.

A perfect matching of a benzenoid system is a selection of mutually independent edges of a ben-
zenoid system which cover all vertices of a benzenoid system. Hence if a benzenoid system has n

vertices, then its perfect matching contains n/2 vertices and n must be even.
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The general one-to-one correspondence between the (mathematical) notion of a perfect matching of
a benzenoid system and the (chemical) notion of a Kekulé structural formula of a benzenoid hydrocarbon
becomes evident. It is clear in particular that the number of perfect matchings of a benzenoid system is
equal to the number of Kekulé structures of the corresponding benzenoid hydrocarbon.

3.2 Benzenoid chains

All faces of a benzenoid graph except the unbounded one are hexagons. The vertices which lie on the
perimeter of benzenoid system are called external. Those vertices (if any) which lie in the interior of
the perimeter are internal. Their number is denoted by ne and ni , respectively. Then ne + ni = n. The
following relations hold:

n+ ni = 4h+ 2

m+ ni = 5h+ 1

A benzenoid system without internal vertices is said to be catacondensed. Otherwise, it is pericon-
densed. Hence, for catacondensed benzenoids ni= 0 whereas for pericondensed ni > O. A benzenoid is
pericondensed if and only if it contains a vertex which simultaneously belongs to three hexagons. If no
hexagon in a catacondensed benzenoid is adjacent to three other hexagons, we say that the benzenoid is a
chain. In each benzenoid chain, there are exactly two hexagons adjacent to one other hexagon; those two
hexagons are called terminal, while any other hexagons are called interior. The number of hexagons in
a benzenoid chain is called its length. An interior hexagon is called straight if the two edges it shares
with other hexagons are parallel, i.e., opposite to each other. If the shared edges are not parallel, the
hexagon is called kinky. (Note that the shared edges cannot be adjacent, since this would result in an
internal vertex. Hence the above definitions cover all possible cases.)

If all h − 2 interior hexagons of a benzenoid chain with h hexagons are straight, we call the chain a
polyacene and denote it by Ah. If all interior hexagons are kinky, the chain is called a polyphenacene
and denoted by Zh. Since the number of perfect matchings in Zh is equal to the ( h + 2)-nd Fibonacci
number Fh+2, polyphenacenes are also known as fibonacenes [6].

A benzenoid in a parallelogram-like shape called the benzenoid parallelogram and denoted by Pp,q,
consists of p × q benzene rings, arranged in p rows, each row containing q benzene rings, shifted by a
half benzene ring to the right from the row immediately below. Clearly, Pp,q is the same as Pq,p.

3.3 Saturation number of benzenoid graphs

The saturation number of the benzenoid graph was studied by Došlić and Zubac [8], and Ahmadi et al.
in [1], where the following bounds were established.

Proposition 3.1. [8] Let Bh be a benzenoid chain with h hexagons. Then S(Bh)≥h+ 1.

Proof. The chain Bh has 4h+2 vertices. Since Bh has a perfect matching, its matching number is equal
to 2h+ 1. Hence, S(G)≥(2h+ 1)/2, and since it must be an integer, S(G)≥h+ 1.
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Proposition 3.2. [8] S(Bh) + 1≤S(Bh+1)≤S(Bh) + 2.

Proposition 3.3. [8] S(Bh) = h+ 1 if and only if Bh = Ah.

Proof. All vertical edges of Ah make a maximal matching; hence, S(Ah)≤h + 1. Together with Propo-
sition 3.1, this yields S(Ah) = h+ 1.

Let S(Bh) = h+1. There are 4h+2 vertices in Bh and 2h+2 are saturated by a maximal matching
M of cardinality h + 1. Then the remaining 2h vertices must be incident by 4h edges not in M . Since
there are no vertices of degree one, each unsaturated vertex must be incident with exactly two edges not
in M . Further, no hexagon can contain three unsaturated vertices. Hence each hexagon contains two
unsaturated vertices of degree 2 which are not adjacent. That is possible only in Ah.

Proposition 3.4. [8] Let Bk,m be a benzenoid chain of length h with k kinky hexagons such that no two
kinky hexagons are adjacent. Then S(Bk,m) = k +m+ 1.

Figure 5. A chain with one kinky hexagon.

Proposition 3.5. [8] Let Sk,m be a benzenoid chain shown in Figure 5. Then S(Sk,m) = k +m+ 2.

Proof. Matching M shown by bold lines in Figure 6 is obviously maximal, hence S(Sk,m)≤k +m + 2.
On the other hand, by Proposition 3.3, we have S(Sk,m) > k +m+ 1, and the claim follows.

Figure 6. A chain with adjacent kinky hexagons.

Proposition 3.6. [8] Let Zh be a fibonacene of length h. Then S(Zh) = b4h3 c+ 1.

Theorem 3.7. [8] Let CBh be a catacondensed benzenoid with h hexagons. Then

S (CBh)≥h+ 2 .

Theorem 3.8. [8] Let Pp,q be a benzenoid parallelogram. Then

S (Pp,q)≤
⌈
2p+ 1

3

⌉
q + p .
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In what follows Ahmadi et al. in [1] proved an upper bound of Theorem 3.8 is sharp for benzenoid
parallelograms.

Theorem 3.9. Let Pp,q be a benzenoid parallelogram and k, k′∈N . Then

S (Pp,q)≤





(2k − 1) (q + 1) p = 3k − 2, q = 3k′ − 2, p≥q;
(2k − 1) (q + 1) p = 3k − 2, q 6=3k′ − 2;

2k (q + 1) p = 3k − 1, q 6=3k′ − 2;

2k (q + 1) + q p = 3k, q = 3k′, p≥q .

Proof . If (p = 3k − 2, q = 3k′ − 2, p≥q) or (p = 3k − 2, q 6=3k′ − 2), Since the matching M shown
in bold in Figure 7.a is maximal, then S (Pp,q)≤ (2k − 1) (q + 1). If ( p = 3k − 1, q 6=3k′ − 2), then
S (Pp,q)≤2k (q + 1) (Figure 7.b). Similarly, if ( p = 3k, q = 3k′), then S (Pp,q)≤2k (q + 1)+ q (Figure
7.c).

a. (p=3k-2, q=3k'-2, p≥q) 
    or (p=3k-2, q≠3k'-2)

b. (p=3k-1, q=3k'-2) c. (p=3k, q=3k', p≥q) 

Figure 7. The upper bound on the saturation number and corresponding structure of Pp, q.

Conjecture 3.10. The upper bound presented in theorem 3.9, for Pp,q with (p = 3k−2, q = 3k′−2, p≥q)
or (p = 3k − 2, q 6=3k′ − 2) that k, k′∈N , is the saturation number of Pp,q, i.e.,

S (Pp,q) = (2k − 1) (q + 1) .

4. Mathematical programming formulation for finding
the saturation number

Due to the hardness of solving the saturation number problem even in very restricted classes of graphs,
many recent works on the saturation number problem concentrate on two aspects: the approximation
point of view and the exact resolution of the saturation number problem in general graphs via mathemat-
ical programming techniques [1].

In [1] Ahmadi et al. introduced an integer programming model for saturation number of a graph and
later they apply it on fullerene and benzenoid graphs.
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Let An×n be the adjacency matrix describing graph G. Let di degree of vertex i and for each edge
(i, j), joining the vertices i and j, a binary variable xij is associated. Given a maximal matching as a set
of edges, the xij in which participated take the value 1 and otherwise 0.

With respect to the above parameters and variables definition, the mathematical binary integer linear
programming problem (BILP) for finding the saturation number of a graph would be as follows:

Minimize
∑

(i,j)∈E
xij (1)

Subject to
∑

(i,j)∈E
xij≤1 ∀i∈V (2)

di
∑

(i,j)∈E
xij +

∑

(i,j)∈E,(k,j)∈E
xjk≥di ∀i∈V (3)

xij∈{0, 1} ∀(i, j)∈E (4)

Having in mind the definition of xij , constraints (2) ensures that no two edges of M have a vertex in
common. Therefore, it is easy to see that edges of G satisfying the first group of constraints forms a
matching of G. Constraints (3) guarantees that node i will not be covered by matching obtained by
the constraints (2) if and only if each vertex adjacent to node i are covered by matching M . It is clear
that constraints (2), (3) ensure that matching obtained by the constraints (2) is a maximal matching.
The feasible solution space of the above mathematical programming problem, determined by inequality
constraints (2) and (3), is a set of all possible maximal matching of graph G.

The saturation number and their corresponding structure for two classes of benzenoid graphs and
some isomers of fullerenes computed by solving model are illustrated in Figure 8 and 9.

By relaxation the mathematical model, we obtain a linear programming model, that is a polynomial
problem to find an upper bound for the saturation number of general graphs.
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a. S(B57) = 70 b. S(CB56) = 71

Figure 8. The saturation number and corresponding structures of B57, CB56 .

a. S(C60) = 18 b. S(C180) = 58 c. S(C192) = 62

Figure 9. The saturation number and corresponding structures of C60, C180 and C192.
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Abstract

In this chapter, we consider a generalisation of the subdivision graphs which is called as r-
subdivision graphs in connection with double graphs and some topological indices. We mainly
concentrate on the first and second Zagreb indices together with multiplicative versions of them
and obtain relations between several types of Zagreb indices of r-subdivision graphs and subdivision
graphs.

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
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3 Topological indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
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1. Introduction

Let G = (V,E) be a simple graph with V (G) = n vertices and E(G) = m edges. That is, we do not
allow loops or multiple edges. For a vertex v ∈ V (G), we denote the degree of v by dG(v). A vertex
with degree one is called a pendant vertex. Similarly, we shall use the term ”pendant edge” for an edge
having a pendant vertex. As usual, we denote by Pn, Cn, Sn, Kn, Kr,s and Tr,s the path, cycle, star,
complete, complete bipartite and tadpole graphs, respectively.

A molecular graph is a graph showing critical points and bonds of some function related to the
required properties of the molecule. In such a molecular graph, atoms are represented by the vertices,
and bonds are represented by the edges of the corresponding graph. In that way, it is possible to model
a purely chemical molecule or compound mathematically, and by studying this mathematical model, we
can determine chemical properties of the given molecule or compound. In Figure 2, the molecular graph
corresponding to the ethane molecule given in Figure 1 is shown.
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Figure 1. The ethane molecule

Figure 2. Molecular graph corresponding to the ethane molecule

In this chapter, we shall be concentrating on some vertex degree based topological indices with a
special emphasis on Zagreb indices. In recent years, there is quite a long list of papers on these indices,
see references. Subdivision graphs will be recalled and as a generalisation of a subdivision graph, the
r-subdivision graph will be defined and some formulae and inequalities will be given for the topological
indices of subdivision and r-subdivision graphs. In the final part, the double graphs will be recalled and
Zagreb indices of double graphs, subdivision and r-subdivision graphs of them will be calculated.

To make the topic more visualised, we shall often make use of the path, cycle, star, complete, com-
plete bipartite and tadpole graphs.

2. Subdivision and r-subdivision

The subdivision graph (or sometimes called as subgraph) S(G) of a simple graph G is defined as
the new graph obtained by adding an extra vertex into each edge of G. Equivalently, S(G) is obtained
by replacing each edge of the graph by a path of length 2. See e.g. Figure 3. The subdivision graphs
have been studied in literature, see e.g. [13, 14, 21, 22, 26, 28].

The main reason to study the subdivision graphs is that, by means of topological indices, this makes
combinatorically possible to calculate several properties of large graphs having some symmetry as r-
subdivision graphs certainly have symmetrical shapes, in terms of smaller graphs G. Another reason
is that we can obtain classified information about a series of graphs from a parent graph and calculate
several properties which are usually in terms of topological indices.

In Molecular Chemistry, several chemical operations result in molecular graphs which are subdivi-
sion graphs of some other molecular graphs of some chemical compounds. In Figures 4 and 5, two
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examples to this situation are given:

Figure 3. The subdivision graph S(S4)

Figure 4 shows the molecular graph of the transition state of the first step of the nucleophilically unas-
sisted solvolysis of protonated 2-endo- and 2-exo-norbornanol. There are three critical points: nuclear
attractor critical point, bond critical point and ring critical point.

Similarly, Figure 5 shows the molecular graphs of the 2-norbornyl and oxabicycloheptanyl cations.
It also shows atomic charges.

Figure 4. Molecular graphs of the transition state of solvolysis of 2-endo- and 2-exo-norbornanols

Figure 5. Molecular graphs of the 2-norbornyl and oxabicycloheptanyl cations
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Figure 6. The r-subdivision graph Sr(S8)

Figure 7. Molecular graphs of (a) C2−
5 , (b) CM−

5 , and (c) CM
5

In [27], the r-subdivision graph of a graph G, which is denoted with Sr(G) was defined as the new
graph obtained from G by replacing each of its edges by a path of length r+1; or equivalently by inserting
r additional vertices into each edge of G. Clearly, in the case of r = 1, the obtained 1-subdivision graph
is the subgraph. For example, r-subgraph of the star graph is shown in Figure 6.

Again, the molecular graphs of (a) C2−
5 , (b) CM−

5 , and (c) CM
5 , where M is the metal cation indicated

at the bottom of the corresponding graph are shown in Figure 7. The smaller red vertices correspond to
bond critical points.

3. Topological indices

Measuring complexity in chemical systems or biological organisms requires the counting of things.
Topological indices are widely used in Mathematics and Chemistry in calculating complexity by means
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of bonds of atoms and molecules. Most of the topological indices are used to study molecules and
complexity of selected classes of molecules.

Several topological graph indices have been defined and studied by many mathematicians and chemists
as most graphs are generated from molecules by replacing atoms with vertices and bonds with edges.
Two of the most important topological graph indices are called first and second Zagreb indices denoted
by M1(G) and M2(G), respectively:

M1(G) =
∑

u∈V (G)

d2G(u) and M2(G) =
∑

(u,v)∈E(G)

dG(u)dG(v).

They were first defined 41 years ago by Gutman and Trinajstic [10], and are referred to due to their
uses in QSAR and QSPR. Ten types of Zagreb indices including the first and second Zagreb indices
and the first and second multiplicative Zagreb indices of the subdivision and r-subdivision graphs were
recently studied by Togan, Yurttas and Cangul, [26]. Li and Zhao introduced the first general Zagreb
index in [17]:

Mα(G) =
∑

u∈V (G)

[dG(u)]
α.

If α = 2, we get the first Zagreb index M1.

Similarly to Zagreb indices, the first and second Zagreb co-indices are defined in [6] in 2008:

M1(G) =
∑

(u,v)/∈E(G)

[dG(u) + dG(v)] and M2(G) =
∑

(u,v)/∈E(G)

dG(u)dG(v)

which are useful in stating existing results in a more compact form.

Recently, Todeschini and Consonni, [25], have introduced the multiplicative variants of these additive
graph invariants by

Π1(G) =
∏

u∈V (G)

d2G(u) and Π2(G) =
∏

(u,v)∈E(G)

dG(u)dG(v)

and called them multiplicative Zagreb indices.

The first and second Zagreb indices of some graph operations are found in [16]. In [5], the mul-
tiplicative Zagreb indices of these graph operations are calculated. In [12] and [14], the two Zagreb
indices were compared for connected graphs.

Very recently, Xu, Das and Tang, [30], have defined two more graph invariants, called multiplicative
Zagreb coindices, by

Π1(G) =
∏

(u,v)/∈E(G)

[dG(u) + dG(v)] and Π2(G) =
∏

(u,v)/∈E(G)

[dG(u)dG(v)]

and obtained upper and lower bounds for these two invariants of connected (molecular) graphs.

In the same paper, another graph invariant which is called the total multiplicative sum Zagreb index
was defined by
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T

Π(G) =
∏

(u,v)∈V (G)

[dG(u) + dG(v)]

and as a variant of the multiplicative sum Zagreb index,

Π∗
1(G) =

∏

(u,v)∈E(G)

[dG(u) + dG(v)]

was defined in [7] and some properties were studied in [29].

We must note that the sums and products in all definitions are taken for non-ordered pairs (u, v).
That is, for example if dG(u) + dG(v) is contained in a sum or product, then dG(v) + dG(u) must not be
contained.

In this section, relations between the first and second Zagreb indices and the first and second mul-
tiplicative Zagreb indices of a simple graph G, of the subdivision graph S(G) and of the r-subdivision
graph Sr(G) will be given. The first and second Zagreb indices of the subdivision graph S(G) for some
well-known graph types were given in [26]:

Theorem 3.1.

M1(S(G)) =





8n− 10 if G = Pn, n ≥ 2

8n if G = Cn, n > 2

(n− 1)(n+ 4) if G = Sn, n ≥ 2

n3 − n if G = Kn, n ≥ 2

ts(t+ s+ 4) if G = Kt,s, ∀t, s > 0

2(4t+ 4s+ 1) if G = Tt,s, t ≥ 3, s ≥ 1

and

M2(S(G)) =





8n− 12 if G = Pn, n ≥ 2

8n if G = Cn, n > 2

2n(n− 1) if G = Sn, n ≥ 2

2n(n− 1)2 if G = Kn, n ≥ 2

2ts(t+ s) if G = Kt,s, ∀t, s > 0

4(2t+ 2s+ 1) if G = Tt,s, t ≥ 3, s ≥ 1.

In the same paper, [26], the first and second multiplicative Zagreb indices, Zagreb coindices, multi-
plicative sum Zagreb index, multiplicative Zagreb coindices and total multiplicative sum Zagreb index
of the subdivision graph S(G) for the same well-known graph classes were given. For the completeness
of the topic, we recall them without proof:
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Theorem 3.2.

Π1(S(G)) =





24n−6 if G = Pn, n ≥ 2

24n if G = Cn, n > 2

22n−2(n− 1)2 if G = Sn, n ≥ 2

(n− 1)2n2n
2−n if G = Kn, n ≥ 2

t2ss2t22t·s if G = Kt,s, ∀t, s > 0

9 · 24(t+s−1) if G = Tt,s, t ≥ 3, s ≥ 1

and

Π2(S(G)) =





24n−6 if G = Pn, n ≥ 2

24n if G = Cn, n > 2

22n−2(n− 1)n−1 if G = Sn, n ≥ 2

(2n− 2)n(n−1) if G = Kn, n ≥ 2

(4ts)t·s if G = Kt,s,∀t, s > 0

27 · 24(t+s−1) if G = Tt,s, t ≥ 3, s ≥ 1.

Theorem 3.3. Π∗
1(S(G)) =





9 · 24n−8 if G = Pn, n ≥ 2

24n if G = Cn, n > 2

3n−1(n+ 1)n−1 if G = Sn, n ≥ 2

(n+ 1)n(n−1) if G = Kn, n ≥ 2

(t+ 2)t·s(s+ 2)t·s if G = Kt,s, ∀t, s > 0

24(t+s−2) · 3 · 53 if G = Tt,s, t ≥ 3, s ≥ 1.

Theorem 3.4.

T

Π(S(G)) =





24n
2−14n+1334n−6 if G = Pn, n ≥ 2
22n(2n−1) if G = Cn, n > 2

2
3
2
(n−1)(n−2)3(n−1)2 [n(n+ 1)]n−1 if G = Sn, n > 2

2m(m−1)+n(n−1)/2(n− 1)n(n−1)/2(n+ 1)mn if G = Kn, n ≥ 2
2t·s(t·s−1)+[t(t−1)+s(s−1)]/2ss(s−1)/2tt(t−1)/2

(t+ 2)t·s
2
(s+ 2)t

2·s(s+ t)s·t
if G = Kt,s, ∀t, s > 0

4(s+ t)2 − 10(s+ t) + 8 if G = Tt,s, t ≥ 3, s ≥ 1.

In [1], the following very useful relation between the first Zagreb index and coindex is given:

M1(G) +M1(G) = 2m(n− 1).

By means of the last equation, we now prove the following theorem:

Theorem 3.5. Let m, n, m(S1), n(S1) be the number of edges and vertices of G and S(G), respectively.

Then the first Zagreb coindex of subdivision graph of path, cycle, star, complete, bipartite and tadpole

graphs is given as follows:

M1(S(G)) =





8n2 − 24n+ 18 if G = Pn, n ≥ 2
4n(2n− 3) if G = Cn, n > 2

(n− 1)(7n− 12) if G = Sn, n > 2
n(n− 1)(n2 − 3) if G = Kn, n ≥ 2

ts(3t+ 3s+ 4ts− 8) if G = Kt,s, ∀t, s > 0
8(s+ t)2 − 12(s+ t)− 2 if G = Tt,s, t ≥ 3, s ≥ 1.
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Theorem 3.6. Let m, n, m(S1), n(S1) be as above. Then the second Zagreb coindex of the subdivision

graph of path, cycle, star, bipartite and tadpole graphs are given as follows:

M2(S(G)) =





8n2 − 28n+ 26 if G = Pn, n ≥ 2
4n(2n− 3) if G = Cn, n > 2

(n− 1)(11
2
n− 10) if G = Sn, n > 2

n(n−1)
2

(4n2 − 9n+ 3) if G = Kn, n ≥ 2
st[8st− 5

2
(s+ t)− 2] if G = Kt,s,∀t, s > 0

8(s+ t)2 − 12(s+ t)− 5 if G = Tt,s, t ≥ 3, s ≥ 1.

Theorem 3.7.

Π1(S(G)) =





24n
2−18n+21 · 34n−8 if G = Pn, n ≥ 2
4n(2n−3) if G = Cn, n > 2

23
(n−1

2

)
3n−1nn−1 if G = Sn, n > 2

2
(n−2)(n+1)

2 [4(n− 1)]
(n
2

)
(n+ 1)

−n(n−1)
2 if G = Kn, n ≥ 2

4
(ts
2

)
(2t)

(t
2

)
(2s)

(s
2

)
(t+ 2)s(s+ 2)t(s+ t)ts if G = Kt,s,∀t, s > 0

22[2(s+t)2−7(s+t)+8]32s+2t−352s+2t−5 if G = Tt,s, t ≥ 3, s ≥ 1

and

Π2(S(G)) =





4(n−2)(2n−3) if G = Pn, n ≥ 2
4n(2n−3) if G = Cn, n > 2

4(n−1)(n−2)(n− 1)n−1 if G = Sn, n > 2

2
(n
2

) (n−2)(n+3)
2 (n− 1)

n2(n−1)
2 if G = Kn, n ≥ 2

2ts(t+s+ts−3)ts(s+ts−1)st(t+ts−1) if G = Kt,s, ∀t, s > 0
22(s+t−1)(2s+2t−3)32(t+s−2) if G = Tt,s, t ≥ 3, s ≥ 1.

The following result gives the relations between the first and second Zagreb indices of the r-subdivision
graph Sr(G) and the first Zagreb index of the graph G:

Theorem 3.8. Let G be a simple graph with n vertices and m edges and let Sr(G) be the r-subgraph of

G. Then the first and second Zagreb indices of Sr(G) are related to the first Zagreb index by the relations

M1(S
r(G)) = M1(G) + 4mr,

M2(S
r(G)) = 2M1(G) + 4m(r − 1).

Proof. For a simple graph G, we have

M1(S
r(G)) =

n+rm∑

i=1

d2i

=
n∑

i=1

d2i +
n+rm∑

i=n+1

d2i

= M1(G) + 4mr

as all degrees dn+1, dn+2, ..., dn+rm of the added vertices are 2.
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Secondly, every edge (i, j) of G is subdivided in r + 1 parts with weights 2di, 2dj and r − 1 times
2 · 2. Therefore,

M2(S
r(G)) =

∑

(i,j)∈E
(2di + 2dj + 4(r − 1))

=
∑

(i,j)∈E
(2di + 2dj) + 4

∑

(i,j)∈E
(r − 1)

= 2M1(G) + 4m · (r − 1).

Looking at the orders of the magnitudes of the first and second Zagreb indices, Caporossi and Hansen
conjectured that there is a nice comparision between these two indices, [3]:

M1(G)

n
≤ M2(G)

m
.

This nice inequality which is known as the Zagreb indices inequality is true for many graph types includ-
ing trees, unicyclic graphs, graphs with only two different vertex degrees, and some other graph classes
with vertex degrees satisfying several conditions. Hansen and Vukićević proved that Zagreb indices
inequality is true for all molecular graphs, [11].

We have a lower bound for the first Zagreb index of Sr(G) in terms of m, n and r:

Corollary 3.1. Let G be a simple graph with n vertices and m edges. Then the first Zagreb index of the

r-subdivision graph Sr(G) satisfies the following inequality:

M1(S
r(G)) ≥ 4m(m+ nr)

nr
.

Proof. Ilic and Stevanovic, [14], gave the sharp bound M1(G) ≥ 4m2

n
. By using this inequality and

previous theorem, we get

M1(S
r(G)) = M1(G) + 4mr ≥ 4m2

n
+ 4mr =

4m(m+ nr)

n
≥ 4m(m+ nr)

nr
.

We have a similar inequality which we shall call as the Zagreb indices inequality for the r-subdivision
graphs:

Corollary 3.2. Let G be a simple graph with n vertices and m edges. Then the first and second Zagreb

indices of Sr(G) satisfy the following inequality:

M1(S
r(G))

m+ nr
≤ M2(S

r(G)) + 4m(r − 1)

2m
.
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Proof. By using the previous corollary, we get

nr ·M1(S
r(G)) ≥ 4m2 + 4mnr

nrM1(S
r(G))− 4m2 − 4mnr +m ·M1(S

r(G)) ≥ m ·M1(S
r(G))

M1(S
r(G))− 4m

m
≥ M1(S

r(G))

m+ nr
.

Hence

M1(S
r(G))

m+ nr
≤ M1(S

r(G))

m
− 4

=
M1(G) + 4mr

m
− 4

=
M2(Sr(G))−4mr+4m

2
+ 4mr

m
− 4

=
M2(S

r(G)) + 4mr + 4m− 8m

2m

=
M2(S

r(G)) + 4m(r − 1)

2m
.

Example 3.1. Let m,n,m(Sr), n(Sr) be the number of edges and vertices of G and Sr(G), respectively.

Then the first and second Zagreb indices of the r-subdivision graphs of path, cycle, star, complete,

bipartite and tadpole graphs are given as follows:

M1(S
r(Pn)) = 4nr − 4r + 4n− 6,

M1(S
r(Cn)) = 4n(r + 1),

M1(S
r(Sn)) = (n− 1)(4r + n),

M1(S
r(Kn)) = n(n− 1)2 + 4rm,

M1(S
r(Kt,s)) = ts(t+ s+ 4r),

M1(S
r(Tt,s)) = 2 + 4(r + 1)(t+ s),

and

M2(S
r(Pn)) = 4(nr − r + n− 2),

M2(S
r(Cn)) = 4n(r + 1),

M2(S
r(Sn)) = 2(n− 1)(n+ 2r − 2),

M2(S
r(Kn)) = 2n(n− 1)(n+ r − 2),

M2(S
r(Kt,s)) = 2st[(s+ t) + 2(r − 1)],

M2(S
r(Tt,s)) = 4 [(r + 1)(s+ t) + 1] .

The following result gives the relations between the first and second multiplicative Zagreb indices of
the r-subdivision graph Sr(G) and the first and second multiplicative Zagreb indices of the graph G:
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Theorem 3.9. Let G be a simple graph with n vertices and m edges and let Sr(G) be the r-subgraph of

G. Then the first and the second multiplicative Zagreb indices of Sr(G) are

Π1(S
r(G)) = 22rm · Π1(G),

Π2(S
r(G)) = 22rm · Π2(G).

Proof. For a simple graph G,

Π1(S
r(G)) =

n+rm∏

i=1

d2i =
n∏

i=1

d2i ·
n+rm∏

i=n+1

d2i = Π1(G) · 22rm

as all degrees dn+1, dn+2, ..., dn+rm of the newly added vertices are 2.
Secondly, every edge (i, j) of G is subdivided in r + 1 parts with weights 2di, 2dj and r − 1 times

2 · 2. Therefore,

Π2(S
r(G)) =

∏

(i,j)∈E

[
2di · 2dj · (2 · 2)(r−1)

]

=
∏

(i,j)∈E
(2di · 2dj) ·

∏

(i,j)∈E
4(r−1)

= 22m
∏

(i,j)∈E
didj · 4m(r−1)

= 22mr · Π2(G).

Reti and Gutman gave some bounds and inequalities for multiplicative Zagreb indices in [23]. Ap-
plying these formulae to the multiplicative Zagreb indices of r-subgraphs by using previous theorem, we
obtain some results for r-subgraphs:

Corollary 3.3. For a simple graph G with n vertices and m edges, we have

Π1(S
r(G)) ≤ 22(n+rm) ·

(m
n

)2n
.

Proof. By [23], we know that

Π1(G) ≤
(
2m

n

)2n

,

so using previous theorem, we get

Π1(S
r(G))

22rm
≤

(
2m

n

)2n

Π1(S
r(G)) ≤ 22rm ·

(
2m

n

)2n

Π1(S
r(G)) ≤ 22(n+rm) ·

(m
n

)2n
.
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Corollary 3.4. For a simple graph G with n vertices and m edges, it holds that

Π1(S
r(G)) ≤ 22rm ·

(
M1(G)

n

)n

.

Proof. By [23], we know that

Π1(G) ≤
(
M1(G)

n

)n

,

so using Theorem 3.9, we get

Π1(S
r(G))

22rm
≤

(
M1(G)

n

)n

Π1(S
r(G)) ≤ 22rm ·

(
M1(G)

n

)n

.

Corollary 3.5. For a simple graph G with n vertices and m edges, it holds that

Π2(S
r(G)) ≥ 22m(r+1) ·

(m
n

)2m
.

Proof. By [23],

Π2(G) ≥
(
2m

n

)2m

.

Using Theorem 3.9, we have

Π2(S
r(G))

22mr
≥

(
2m

n

)2m

Π2(S
r(G)) ≥ 22mr ·

(
2m

n

)2m

Π2(S
r(G)) ≥ 22m(r+1) ·

(m
n

)2m
.

Corollary 3.6. For a simple graph G with n vertices and m edges, it holds that

Π2(S
r(G)) ≤ 22rm ·

(
M2(G)

m

)m

.

Proof. Similarly, by [23], we know that

Π2(G) ≤
(
M2(G)

m

)m

,

so by Theorem 3.9, we get the desired result:

Π2(S
r(G))

22rm
≤

(
M2(G)

m

)m

Π2(S
r(G)) ≤ 22rm ·

(
M2(G)

m

)m

.
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Example 3.2. Let m, n, m(Sr), n(Sr) be the number of edges and vertices of G and Sr(G), respec-

tively. Then the first and second Zagreb indices of the r-subdivision graphs of path, cycle, star, complete,

bipartite and tadpole graphs are given as follows:

Π1(S
r(Pn)) = 22(nr−r+n−2),

Π1(S
r(Cn)) = 22n(r+1),

Π1(S
r(Sn)) = 22r(n−1) · (n− 1)2,

Π1(S
r(Kn)) = (n− 1)2n · 2rn(n−1),

Π1(S
r(Kt,s)) = ts2t · t2s · 22rts,

Π1(S
r(Tt,s)) = 32 · 22(rt+t+rs+s−2),

and

Π2(S
r(Pn)) = 22(nr−r+n−2),

Π2(S
r(Cn)) = 22n(r+1),

Π2(S
r(Sn)) = 22r(n−1) · (n− 1)(n−1)),

Π2(S
r(Kn)) = (n− 1)n(n−1) · 2nr(n−1),

Π2(S
r(Kt,s)) = (ts)ts · 22tsr,

Π2(S
r(Tt,s)) = 22[(t+s)(r+1)−2] · 33.

The other 6 types of Zagreb indices of the r-subdivision graphs of the above graph classes were
calculated in [27].

Although we have concentrated on several versions of Zagreb indices in this section, there are many
other vertex degree based topological indices. We shall recall some of them below and give some in-
equalities for these indices of the r-subdivision graphs.

The Randić index, also known as the connectivity index, of a graph is the sum of bond contributions
1/(dudv)

1/2 where du and dv are the degrees of the vertices making bond u ∼ v:

R(G) =
∑

uv∈E(G)

1

(dudv)1/2
.

The Randić index was introduced as a structural descriptor which initially was called branching index
that later became Randić connectivity index, one of the most used molecular descriptor in the QSPR and
QSAR modeling, [20]. Later this index was generalized by Bollobás and Erdős to the following form
for any real number α, and named the general Randić index, [2]:

Rα(G) =
∑

uv∈E(G)

(dudv)
α.

There are a lot of variants of the Randić index amongst topological indices. The sum connectivity
index was defined as a slight variant of the Randić index and it is exactly the additive version of the
Randić index, [32]:
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χ(G) =
∑

uv∈E(G)

1

(du + dv)1/2
.

This index was extended to the general sum-connectivity index in [33] in 2010:

χα(G) =
∑

uv∈E(G)

(du + dv)
α.

The harmonic index was defined as another variant of the Randić index, [9]:

H(G) =
∑

uv∈E(G)

2

du + dv
.

The following result gives some inequalities for Randic, sum-connectivity and harmonic indices of
Sr(G):

Theorem 3.10. Let G be a simple graph with n vertices and m edges and ∆, and δ be the maximum and

minimum degrees of G, respectively. Then the inequalities for Randic, sum-connectivity and harmonic

indices of Sr(G) are given as follows:

2m√
2∆

+
m(r − 1)

2
≤ R(SrG)) ≤ 2m√

2δ
+

m(r − 1)

2
,

2m√
2 + ∆

+
m(r − 1)

2
≤ χ(Sr(G)) ≤ 2m√

2 + δ
+

m(r − 1)

2
,

4m

2 + ∆
+

m(r − 1)

4
≤ H(Sr(G)) ≤ 4m

2 + δ
+

m(r − 1)

4
.

Proof. The proof is given for the sum-connectivity index. Similar combinatorial methods can be used
for others. There are two types of entries in χ(Sr(G)):

i) u ∈ V (G) and v is a newly added vertex of degree 2 in Sr(G): For each u, there are du added
vertices v forming and edge with u, so each vertex pair adds 1√

2+du
to χ(Sr(G)).

ii) Both u and v are middle vertices (of degree 2) which form an edge: There are r − 1 vertex pairs
in each edge of Sr(G), so m(r−1)

2
is added to χ(Sr(G)). Finally, adding all these together, we get

χ(Sr(G)) =
∑

u∈V

1√
2 + du

+
m(r − 1)

2
.

If the maximum degree ∆ is taken in place of each du, it can be easily seen that

χ(Sr(G)) ≥ 2m√
2 + ∆

+
m(r − 1)

2
.
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Similarly

χ(Sr(G)) ≤ 2m√
2 + δ

+
m(r − 1)

2
.

Another topological index based on the connectivity between atoms and bonds of a molecule was
defined in [8]. This topological index which is used to describe the heats of formation of alkanes is
called the atom-bond connectivity index (ABC index) and given by the formula

ABC(G) =
∑

uv∈E(G)

(
1

du
+

1

dv
− 2

dudv
)1/2.

For the atom-bond connectivity index of the r-subdivision graph, we have an exact formula which
can be proven similarly:

Lemma 3.11. Let G be a simple graph with n vertices and m edges and ∆, and δ be the maximum and

minimum degrees of G, respectively. Let Sr(G) be the r-subgraph of G. Then the atom-bond connectivity

index of Sr(G) is

ABC(Sr(G)) =
m(r + 1)√

2
.

Another interesting problem is to explore the relationship between topological index of a composite
graph and that of its building blocks. In 2011, Ranjini at all calculated the Zagreb indices of the line
graphs of the tadpole graphs, wheel graphs and ladder graphs by using the subdivision concept in [21].
The line graph L(G) of a graph G is the graph whose vertices are the edges of G, and two edges e and f

are incident if and only if they have a common end vertex in G. Inspired by the results of [21], Su and
Xu calculated the topological indices of the graphs L[S(Tr,s)]:

Proposition 1. Let G be the line graph of the subdivision graph of the tadpole graph Tr,s. Then

i) Mα(G) = 2α+1(r + s− 2) + 3α+1 + 1

ii) Rα(G) = 22·α+1(r + s− 3) + 3 · 6α + 32·α+1 + 2α

iii) χα(G) = 22·α+1(r + s− 3) + 3 · 6α + 3 · 5α + 3α.

Proof. The subdivision graph S(Tr,s) contains 2(r+s) edges, so its line graph contains 2(r+s) vertices,
out of which 3 vertices are of degree 3 and one vertex of degree 1. The remaining 2r + 2s − 4 vertices
are all of degree 2. so the Mα value of G is equal to 2α+1(r+ s− 2)+3α+1+1. this completes the proof
of (i).

The line graph L[S(Tr,s)] contains a path of length 2 · s− 1 and let x1 be the unique vertex of degree
3 attached to this path. Hence

∑
uv∈E(G) (dudv)

α which respect to the path is 4α(2s− 3) + 6α + 2α. Let
x2 and x3 be the neighbors of x1 which are of degree 3 in the line graph L[S(Tr,s)]. The vertices x2 and
x3 have two neighbors of degree 3 and one neighbor of degree 2 in L[S(Cr) + e], where e is the edge
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adjacent to S(Cr). The vertex x1 has two adjacent vertices of degree 3 and one vertex of degree 2 in the
path. Hence

∑
uv∈E(G) (dudv)

α corresponding to the vertices is 32α+1+6α. Among the remaining 2r−2

vertices, there exist 2r − 3 vertices with neighbors of degree 2 and one vertex with a neighbor of degree
3. Hence

∑
uv∈E(G) (dudv)

α with respect to 2r − 2 vertices is 22α(2r − 3) + 6α. Hence the Rα-value of
G is 22α+1(r + s− 3) + 3 · 6α + 32α+1 + 2α. This completes the proof of (ii).

By the similar arguments as the proof of (i) and (ii), we can obtain the proof of (iii).

Corollary 3.7. [21] Let G be the line graph of the subdivision graph of the tadpole graph Tr,s. Then

M1(G) = 8r + 8s+ 12 and M2(G) = 8r + 8s+ 23.

Corollary 3.8. [21] Let G be the line graph of the subdivision graph of the tadpole graph Tr,s. Then

χ1(G) = 8r + 8s+ 12 and M1(G) = 8(n+ k)2 − 8(n+ 2k)− 6.

4. Applications to double graphs

For a graph G with vertex set V (G) = {v1, v2, ..., vn}, we take another copy of G with vertices
labelled by {v1, v2, ..., vn} this time, where vi corresponds to vi for each i. If we connect vi at one copy
to the neighbours of vi for each i at the other copy, we obtain a new graph called the double graph of G.
It is denoted by D(G). The double graphs of the cyclic graph C4 and path graph P6 are shown in Figures
8 and 9:

Double graphs were first introduced by Indulal and Vijayakumari, [15], in the study of equienergetic
graphs. Later Munarini et al., [19], calculated the double graphs of Nn and Kt,s as N2n and K2m,2n,
respectively. Here we first calculate double graphs of other simple graph types such as cycle graph Cn,
path graph Pn, star graph Sn, complete graph Kn, tadpole graph Tt,s.

Figure 8. Double graph of cyclic graph C4
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Figure 9. Double graph of path graph P6

For convenience, we shall denote the number of vertices and edges of G, D(G) and S(D(G)) by
n, m, nd, md and nd(S1), md(S1), respectively. The following relations are obvious and will be used
in the rest of the chapter:

Lemma 4.1. With the above notation, we have

i) nd = 2n

ii) md = 4m

iii) nd(S1) = md + nd = 2n+ 4m,

iv) md(S1) = 2md = 8m.

Proof. i) nd = 2n by definition.

ii) md = 2m+
n∑

i=1

dvi = 2m+ 2m = 4m.

iii) nd(S1) = md + nd by definition. Also by i) and ii), nd(S1) = 2n+ 4m.
iv) md(S1) = 2md = 8m by the definition of subdivision graph.

In this section, the first and second Zagreb indices and the first and second multiplicative Zagreb
indices for the double graphs of some graph types will be calculated. First we have

Theorem 4.2. The First and second Zagreb indices of double graphs of some well-known graphs are

given by

M1((D(G)) =





32n− 48 if G = Pn, n ≥ 2

32n if G = Cn, n > 2

8n(n− 1) if G = Sn, n ≥ 2

8n(n− 1)2 if G = Kn, n ≥ 2

16[2(t+ s) + 1] if G = Tt,s, t ≥ 3, s ≥ 1

and

M2(D(G)) =





64(n− 2) if G = Pn, n ≥ 2

64n if G = Cn, n > 2

16(n− 1)2 if G = Sn, n ≥ 2

8n(n− 1)3 if G = Kn, n ≥ 2

16(3t+ 4s+ 4) if G = Tt,s, t ≥ 3, s ≥ 1.
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Proof. We prove the theorem for star graphs. Similar methods can be used for others. Let G be a star
graph Sn. Its double graph has nd = 2n and md = 2m + 2(n− 1) = 4(n− 1). In D(Sn), we have two
vertices with degree 2(n − 1) in the centers of stars, 2(n − 1) vertices of degree 2 at the end points of
stars. So if we use the definition of M1(G), we have

M1(D(Sn)) = 22 · 2(n− 1) + 2 · [2(n− 1)]2

= 16(n− 1).

There is only one type of entry in M2(D(Sn)) forming an edge: If u is an endpoint (pendant vertice) of
degree 2 and v is the central vertex of degree 2(n− 1) in D(Sn) then, for each u and v there are 4(n− 1)

edges so each vertex pair adds 2 ·2(n−1) ·4(n−1) is added to M2(D(Sn)). By the definition of M2(G)

we get

M2(D(Sn)) = 2(n− 1) · 2 · 4(n− 1)

= 16(n− 1) + 16(n− 1)2

= 16n(n− 1).

Theorem 4.3. First and second multiplicative Zagreb indices of double graphs of some well-known

graphs are given by

Π1((D(G)) =





28(n−1) if G = Pn, n ≥ 2

28n if G = Cn, n > 2

24n · (n− 1)4 if G = Sn, n ≥ 2

[2(n− 1)]4n if G = Kn, n ≥ 2

28(t+s−1) · 34 if G = Tt,s, t ≥ 3, s ≥ 1.

and

Π2(D(G)) =





216(n−1) if G = Pn, n ≥ 2

216n if G = Cn, n > 2

[4(n− 1)]4(n−1) if G = Sn, n ≥ 2

[2(n− 1)]4n(n−1) if G = Kn, n ≥ 2

22(6t+8s−5) · 310 if G = Tt,s, t ≥ 3, s ≥ 1.

In [31], Zagreb indices and multiplicative Zagreb indices of some well-known graph types were
given. Here, they are recalled without proof:

Theorem 4.4. Let m, n, m(S1), n(S1), md(S1), nd(S1) be the number of edges and vertices of

G, S(G) and S(D(G)), respectively. Then the first and second Zagreb indices of the subdivision graph

of double graphs of path, cycle, star, complete and tadpole graphs are given as follows:

M1(S(D(G))) =





16(3n− 4) if G = Pn, n ≥ 2

48n if G = Cn, n > 2

8(n− 1)(n+ 2) if G = Sn, n ≥ 2

8n2(n− 1) if G = Kn, n ≥ 2

16(3(t+ s) + 1) if G = Tt,s, t ≥ 3, s ≥ 1
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and

M2(S(D(G))) =





32(2n− 3) if G = Pn, n ≥ 2

64n if G = Cn, n > 2

16n(n− 1) if G = Sn, n ≥ 2

16n(n− 1)2 if G = Kn, n ≥ 2

32(2(t+ s) + 1) if G = Tt,s, t ≥ 3, r ≥ 1.

Theorem 4.5. The first and second multiplicative Zagreb indices of the subdivision graphs of double

graphs of several graph types

Π1(S(D(G))) =





216(n−1) if G = Pn, n ≥ 2

216n if G = Cn, n > 2

(n− 1)4 · 24(3n−2) if G = Sn, n ≥ 2

(n− 1)4n · 24n2
if G = Kn, n ≥ 2

28[2(t+s)−1] · 34 if G = Tt,s, t ≥ 3, s ≥ 1.

and

Π2(S(D(G))) =





28(3n−4) if G = Pn, n geq2

224n if G = Cn, n > 2

216(n−1) · (n− 1)4(n−1) if G = Sn, n ≥ 2

[4(n− 1)]4n(n−1) if G = Kn, n ≥ 2

224(t+s)−16 · 312 if G = Tt,s, t ≥ 3, s ≥ 1.

We conclude this chapter by the following two theorems which give the first and second Zagreb and
also multiplicative Zagreb indices of the r-subdivision graph of the double graph of some graphs:

Theorem 4.6. Let m, n, m(Sr), n(Sr), md(Sr), nd(Sr) be the number of edges and vertices of

G, Sr(G) and Sr(D(G)), respectively. Then the first and the second Zagreb indices of r-subdivision

graphs of double graphs of path, cycle, star, complete and tadpole graphs are given as follows:

M1(S
r(D(G))) =





16(nr − r + 1) + 32(n− 2) if G = Pn, n ≥ 2

32n+ 16nr if G = Cn, n > 2

8(n− 1) [1 + 2r + (n− 1)] if G = Sn, n ≥ 2

8n(n− 1) [(n− 1) + r] if G = Kn, n ≥ 2

16 [(s+ t)(r + 2) + 1] if G = Tt,s, t ≥ 3, s ≥ 1

and

M2(S
r(D(G))) =





32 + 16(n− 1)(r − 1) + 64(n− 2) if G = Pn, n ≥ 2

64n+ 16n(r − 1) if G = Cn, n > 2

8(n− 1) [2n+ r − 1] if G = Sn, n ≥ 2

8n(n− 1) [2(n− 1) + (r − 1)] if G = Kn, n ≥ 2

16 [(s+ t)(r2 + 3) + 2] if G = Tt,s, t ≥ 3, r ≥ 1.
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Theorem 4.7. The first and second multiplicative Zagreb indices of the r-th subdivision of double graphs

of several graph types are given by

Π1(S
r(D(G))) =





28[1+r(n−1)+(n−2)] if G = Pn, n ≥ 2

28n(r+1) if G = Cn, n > 2

24(n−1)[1+2r] [2(n− 1)]4 if G = Sn, n ≥ 2

[2(n− 1)]4n 24nr(n−1) if G = Kn, n ≥ 2

28[(t+s)(r+1)−1]34 if G = Tt,s, t ≥ 3, s ≥ 1

and

Π2(S
r(D(G))) =





22[(r−1)(n−1)+4(3n−4)] if G = Pn, n ≥ 2

28n(r+2) if G = Cn, n > 2

28(n−1)(r+1)(n− 1)4(n−1) if G = Sn, n ≥ 2

(n− 1)4n(n−1)24n(n−1)(r+1) if G = Kn, n ≥ 2

28[(t+s)(r+2)−2]312 if G = Tt,s, t ≥ 3, s ≥ 1.
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[32] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252–1270.
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