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Abstract: This paper considers the model order selection due to process of identification of OE (output error) models with constant 
parameters in the presence of measurements with non-Gaussian noise distributions. In practical conditions, in measurements there are 
rare, inconsistent observations with the largest part of population of observations. Therefore, synthesis of robust algorithms is of 
primary interest. The presence of outliers can considerably degrade the performance of linearly recursive algorithms based on the 
assumptions that measurements have Gaussian distributions. In this paper, the robust parameter estimation algorithm is proposed 
which is based on Huber’s theory of robust statistics. On the other side, ad hoc selection of model orders leads to overparametrization 
or parsimony problem. The natural frame to avoid these problems is AIC (Akaike’s information criterion) for model order selection, 
which is obtained by minimization of the Kullback-Leibler information distance. The originally proposed Akaike's criterion cannot 

be applied since stochastic disturbance in the model belongs to the class of -contaminated distributions. By determining the least 

favourable probability density for a given class of probability distribution represents a base for design of the RAIC (robust version of 
Akaike’s information criterion). The benefits of RAIC for robust parameter estimation procedure is illustrated through intensive 
simulations which demonstrate the superiority of the proposed robust procedure in relation to the linear algorithms (derived under the 
assumption that the stochastic disturbance has a Gaussian distribution). 
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Nomenclature 

 Degree of contamination 

(·) Vector influence function 

(k) Regression vector 

(k) Vector of true parameters 

ˆ( )θ k  Vector of parameter estimates 

aj, bj System parameters 

E(·) Mathematical expectation 

J() Identification criterion 

Φ(·) Robust loss function 

p*(·) The least favourable distribution of probability

P Approximately normal distribution class 

p(e) Probability density function 

2 Variance 

P(k|k) A posteriori covariance matrix 

P(k|k – 1) A priori covariance matrix 

e(k) Stochastic disturbance 

u(k) Input signal 

y(k) Output signal 

 (k) Prediction error 

yM (k) Output of an auxiliary model 

1. Introduction 

It is well known that obtaining models of physical 

systems based on the fundamental laws of physics is a 

difficult problem. The system identification is an 

alternative approach, which ensures obtaining the 

mathematical models based on input/output 

measurements [1, 2]. Most identification algorithms 

assume that the model structure is a priori known. As 

is well known, a fundamental difficulty in statistical 
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analysis is the choice of an appropriate model and 

determining the order of a model. In recent years, the 

necessity of introducing the concept of model has 

been recognized and the problem is posed how to 

choose the “best approximating” model among a class 

of competing models with different numbers of 

parameters by a suitable model selection criterion 

given a data set. Also, there is presently a great deal of 

interest in simple criteria represented by parsimony of 

parameters for choosing one of a set of competing 

models to describe a given data set. The selection of a 

parsimonious model, in general, is a nontrivial 

problem without the aid of model selection criteria. 

Several information criterions have been proposed 

for structure selection in linear dynamic input/output 

models. The model which minimizes the criterion is 

then chosen as the best model from the available set. 

Examples of the classical criterions are the FPE (final 

prediction error), AIC (Akaike’s information criterion) 

and BIC (Bayesian information criterion). These 

techniques find a tradeoff between goodness of fit and 

model complexity. The performance of an 

order-selection criterion is optimal if the model of the 

selected order is the most accurate model in the 

considered set of estimated models. 

Used way for deriving model selection criteria is 

based on the quantification of “how close are” the 

probability density of the generating model and the 

probability density of the fitted approximating model. 

Several coefficients or “measures” have been 

introduced in the literature for this quantification. The 

Kullback-Leibler information distance is the most 

frequently used information theoretic coefficient for 

measuring divergence or separation between two 

probability densities [3]. The AIC is a commonly used 

tool for choosing between alternative models [4]. 

Here, those results are extended on the case when 

the measurement noise is a non-Gaussian. Justification 

of this approach was confirmed in practice [5, 6]. 

Namely, in measurements there are rare, inconsistent 

observations with the largest part of population of 

observations (outliers). The presence of outliers can 

considerably degrade the performance of linearly 

recursive algorithms based on the assumptions that 

measurements have a Gaussian distribution. 

The synthesis of robust algorithms is of primary 

interest. The synthesis is based on Huber’s theory of 

robust statistics [6]. As a generator of a recursive 

algorithm, according Huber’s theory, it is defined the 

functional based on the least favourable probability 

distribution for a given class of probability 

distribution. 

This paper considers the model order selection 

using robust Akaike’s criterion. The recursive 

algorithm for the OE (output error) model with time 

invariant parameters has also been discussed. 

Robustness of the used robust OE parameter 

estimation algorithm is accomplished by introducing 

the nonlinear transformation of prediction error 

(Huber’s function). Robust recursive algorithms based 

on this idea in identification of linear dynamical 

systems are discussed in Refs. [7, 8] while in an area 

of nonlinear filtering are discussed in Ref. [9]. 

The performances of the algorithm are described 

through simulation results that demonstrate the 

superiority of the proposed algorithm in relation to the 

linear algorithm (derived under the assumption that 

the stochastic noise has a Gaussian distribution). 

The rest of the paper is organized as follows: 

Section 2 considers the robust identification algorithm 

for OE models; Section 3 presents the robust version 

of Akaike’s information criterion; illustration of the 

algorithm behavior based on simulations is given in 

Section 4 and concluding remarks are given in Section 

5. 

2. Robust Parameter Estimation for OE 
Model 

The general form of the OE model is 

  
1

1

( )
( ) ( ) ( )

( )

B q
y k u k e k

A q



            (1) 

where u(k), y(k) and e(k) are input, output and 
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stochastic noise, respectively. Polynomials A(q-1) and 

B(q-1) have the form: 

  
1 1

1

1 1
1

( ) 1 ...

( ) ...

n
n

m
m

A q a q a q

B q b q b q

  

  

   

  
        (2) 

The block structure of OE model is given in Fig. 1. 

Practical and theoretical studies have shown that in 

a stochastic model of the system there are some 

observations that are inconsistent with the largest part 

of the population (outliers) [5], and that is why the 

disturbance (measurement noise) e(k) in the model (1) 

is a non-Gaussian. Hence, the probability density 

function of the disturbance belongs to approximately 

normal distribution class: 
  1 2{ ( ) : ( ) (1 ) ( ) ( )}ε p e p e ε p e εp e   P     (3) 

which 2
1 1( ) : (0, ),p e N 2

2 2( ) : (0, )p e N , 2 2
2 1  . 

In other words, the probability density function p(e) 

represents a mixture of normal (Gaussian) 

distributions where 2
1σ  and 2

2σ denote variances. The 

parameter 0 1ε  is called the degree of 

contamination. 

Let us introduce an auxiliary model: 
1

1

( )
( ) ( )

( )M

B q
y k u k

A q



             (4) 

Since the parameters ai (i = 1, …, n) and bi (j = 

1, …, m) are unknown, their estimates are used, so the 

output of the auxiliary model is calculated as 

1

1

ˆ ˆ ˆ ˆ ˆ( ) ( 1) ( )

ˆ ˆ( 1) ( )

M M n M

m

y k a y k a y k n

b u k b u k m

      

    




   (5) 

Let ̂  is the estimated vector of OE parameters, 

and (k) is the observation vector of OE parameters: 

1 1
ˆ ˆˆ ˆ ˆ[ , , , , , ]

ˆ ˆ( ) [ ( 1) ( ), ( 1) ( )]

T
n m

T
M M

a a b b

k y k y k n u k u k m



      





 
 

(6) 

At the moment k, before the estimate ˆ( )k  is 

known, the prediction of the model is [8] 
ˆˆ ( ) ( 1) ( )T

My k k k                (7) 
 

 
Fig. 1  Output error model. 
 

The natural definition of the prediction error 

(residual) is 
ˆ( ) ( ) ( )Mk y k y k              (8) 

The identification criterion (a generator of recursive 

parameter estimation procedure) is based, according to 

OE methodology, on the prediction error and has a 

mathematical form, for systems with constant 

parameters: 

 ( ) ( ( ))J E k               (9) 

in which Φ(·) represents a robust loss function, which 

would suppress undesirable observations: 
*( ) log ( )p             (10) 

In the last relation, p*(·) represents the least 

favourable distribution of probability for a given class 

of probability distribution (3). This distribution is 

obtained by using the mathematical machinery of 

robust statistics [6]. 

The empirical functional for systems with 

time-invariant parameters has the form (obtained from 

Eq. (9) for sufficiently large k): 

 
1

1
) ( ( ))(

k

t
k

i
k

J  


           (11) 

Expanding ( )kJ   in the vicinity of the preceding 

estimate ˆ(k 1)   in Taylor series, one obtains: 

   
 2

ˆ ˆ ˆ( ) (k 1) (k 1) (k 1)

ˆ(k 1)

k k kJ J J

O

        

  

    

 
(12) 

where 

 
lim 0
x

O x

x
             (13) 

and  denotes the Euclidean norm. The desired value 
ˆ( )k can be obtained by solving the equation: 

 ˆ(k) 0kJ              (14) 

Based on Eq. (12) after differentiating, twice one 

can obtain: 
2 2 '

1( ) ( 1) ( ) ( ( )) ( ) ( )T
k kk J k J k k k          (15) 

A derivative of the loss function '( ) ( )     , for the 

class of ε-contaminated distributions of probabilities is 

Huber’s function, and it is given by 
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 ( ( )) min ( ), sgn( ( ))k k k k           (16) 

where k is a suitable chosen constant [6]. Huber’s 

function and its derivative are shown in Fig. 2. 

Let us assume further that the following 

assumptions are satisfied: 

(a) The estimate ˆ( )k is in the vicinity of the 

estimate ˆ( 1)k  ; 

(b) The estimate ˆ( 1)k   is optimal at the instant 

k-1. 

Taking into account ˆ= ( 1)k    in Eq. (15), and 

bearing in mind the assumption a), one can obtain 
2 2

1

'

ˆ ˆ( (k 1)) ( 1) ( ( 2))

( ( )) ( ) ( )

k k

T

k J k J k

k k k

      


  

  
 (17) 

Based on the assumption (a) it also follows that 

 O  in Taylor’s series (12) becomes 0. 

By introducing the notation 2 ˆ( ) ( ( 1))kR k k J k   
from the solution of Eqs. (14) and (17), one can obtain 

 1ˆ ˆ ˆ( ) ( 1) ( ) ( 1)kk k R k k J k
             (18) 

'( ) ( 1) ( ( )) ( ) ( )TR k R k k k k           (19) 

From the assumption (b), it follows

1
ˆ( ( 1)) 0kJ k    . Based on this condition, and if 

ˆ( 1)k    is put in the first derivative of the 

solution of Eq. (14), a recursive robust algorithm, 

from Eqs. (18)-(19), is finally obtained as 
1ˆ ˆ( ) ( 1) ( ) ( ) ( ( ))k k R k k k


             (20) 
'( ) ( 1) ( ( )) ( ) ( )TR k R k k k k             (21) 

 

 
(a) 

 
(b) 

Fig. 2  Nonlinear function of residuals (a) Huber’s 
function; (b) derivative of Huber’s function. 

To avoid computing the inverse matrix 
1
( )R k


 in 

each iteration, let us introduce the matrix
1

( ) ( )P k R k


 . Using this notation and applying the 
matrix inversion lemma [1], from Eqs. (20) and (21), 

one can obtain the definitive form of a recursive 

algorithm for identification of dynamic systems with 

time-invariant parameters: 
ˆ ˆ( ) ( 1) ( ) ( ) ( ( ))k k P k k k           (22) 

1'

( 1) ( ) ( ) ( 1)
( ) ( 1)

( ( )) ( ) ( 1) ( )

T

T

P k k k P k
P k P k

k k P k k


 
  

    

 

  
 (23) 

3. Robust Akaike’s Criterion 

In a general case, a model of system can be 

described by an assumed probability density function 

of measurements. This probability density is put in 

correspondence with the exact probability density 

measurements. The consistency between two 

probability densities describes the Kullback-Leibler 

information distance. By minimization of the 

information distance it is obtained the criterion for 

determining the model order [1]. For the given model 

order this criterion is identical to the maximum 

likelihood criterion. If it is assumed that the model (1) 

has constant parameters and a stochastic noise e(k) has 

a Gaussian distribution, Akaike’s criterion has the 

form: 
2

1

( ) ( ) ,
k

A
i

W k i p p n m


           (24) 

in which k represents a number of measurements and 

p is a number of parameters. In this paper, it is 

necessary to define Akaike’s criterion for a general 

case: 

(1) The system parameters are time-invariant; 

(2) The stochastic noise has a non-Gaussian 

distribution described by Eq. (3). 

Based on Eq. (10) and the least favourable 

distribution of probability for a given class of 

probability distribution (3), it is obtained: 

 

2
1

2
1

1
2
1

2( )
ln ( )

12
( )

2
( ) ln ( )

2 1

k
k k

k
k k

k k k

 
 

  
       



 


 





 


 

(25)
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Since in the paper estimation algorithm is based on 

robust statistics [2], the criterion for the selection of 

the model structure will be called robust Akaike’s 

criterion. Taking into account conditions (1) and (2) 

this criterion has the form: 

1

( ) ( ( )) ,
k

RA
i

W k k p p n m


    
      

(26)
 

Based on the point of criterion minimum (26), 

polynomial orders ( , )A    and ( , )B    are 

determined. 

Remark 1: The criterion (26) determine models 

collection because when p is determined from 

minimum of the criterion there are multiple 

combinations of polynomial orders m and n which 

satisfy the condition. Because, it is adopted: 

, 2n m p n                 (27) 

4. Simulation Results 

The proposed robust Akaike’s criterion has been 

tested on the following OE model: 
1 2

1 2

0.5 0.3
( ) ( ) ( )

1 0.7 0.5

q q
y k u k e k

q q

 

 


 

 
     (28) 

The system identification example, is based on 

measured 1,000 input-output data points obtained 

during the experiments. 

During the simulations, it is assumed that measured 

noise has non-Gaussian distribution: 
 ( ) (1 ) (0;0.1) (0;10)p e       P N N    (29) 

PRBS signal is used for input signal. Figs. 3-5 show 

noise signal, system input and corresponding system 

output, respectively. 

Based on the point of criterion minimum (26), for 

nine different model orders, it is shown that the 

observed system can be best described by a second 

order model (Fig. 6). 

To demonstrate the superiority of the proposed 

robust OE identification algorithm, a comparison with 

linear OE identification algorithm [8], when input 

signal is PRBS signal, is made. 

The simulation results are compared in terms of 

mean square error (MSE), defined by 

 2ˆln E ( ) ( )MSE k k             (30) 

 

 
Fig. 3  A non-Gaussian noise sequence,  = 0.1. 
 

 
Fig. 4  PRBS excitation signal. 
 

 
Fig. 5  Measured output signal of the system with 

contamination  = 0.1. 
 

 
Fig. 6  RAIC criterion for selection of model order. 
 

Figs. 7-9 show parameter estimates, and mean 

square errors. 

Figs. 10 and 11 show noise signal and system 

output respectively, the contamination  = 0.1. 

Figs. 12-14 show parameter estimates, and mean 

square errors. 
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Fig. 7  Estimates of parameters a1 and a2 obtained in 

non-Gaussian noise environment with contamination  = 0.1 

(solid line: parameter estimates robust OE, dash-dot: 
parameter estimates using linear OE algorithm, dotted line: 
true parameter values). 
 

 
Fig. 8  Estimates of parameters b1 and b2 obtained in 

non-Gaussian noise environment with contamination  = 0.1 

(solid line: parameter estimates robust OE, dash-dot: 
parameter estimates using linear OE algorithm, dotted line: 
true parameter values). 
 

 
Fig. 9  Mean square error, obtained in non-Gaussian noise 

environment with contamination  = 0.1. 

 
Fig. 10  A non-Gaussian noise sequence  = 0.2. 

 
Fig. 11  Measured output signal of the system with 

contamination  = 0.2. 
 

 
Fig. 12  Estimates of parameters a1 and a2 obtained in 

non-Gaussian noise environment with contamination  = 0.2 

(solid line: parameter estimates robust OE, dash-dot: 
parameter estimates using linear OE algorithm, dotted line: 
true parameter values). 
 

 
Fig. 13  Estimates of parameters b1 and b2 obtained in 

non-Gaussian noise environment with contamination  = 0.2 

(solid line: parameter estimates robust OE, dash-dot: 
parameter estimates using linear OE algorithm, dotted line: 
true parameter values). 
 

 
Fig. 14  Mean square error, obtained in non-Gaussian 

noise environment with contamination  = 0.2. 
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The simulation results have shown that the classical 

linear algorithm is very sensitive to the presence of 

non-Gaussian noise, as opposed to the proposed 

robust algorithm. Comparing Figs. 9 and 14, it can be 

clearly seen that the superiority of the proposed robust 

algorithm is greater in higher degrees of 

contamination. 

5. Conclusions 

The paper considers robust identification of OE 

models with time invariant parameters where 

observations are disturbed by non-Gaussian noise. On 

the other hand, it is well known that ad hoc selection 

of model orders leads to overparametrization or 

parsimony problem. The natural frame to avoid these 

problems was Akaike’s criterion for model order 

selection. The synthesis of robust algorithms is of 

primary interest because the presence of non-Gaussian 

noises can considerably degrade the performance of 

linearly algorithms. Based on Huber’s theory of robust 

statistics, the robust versions of identification 

algorithm and Akaike’s criterion for model order 

selection were proposed. 

Simulation results have illustrated significant 

increasing of accuracy in parameter estimates of OE 

model by using the proposed robust identification 

algorithm with robust proposed robust version of 

Akaike’s criterion for model order selection, in 

relation to the traditional linear identification 

algorithm. 
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