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Abstract
The effects of mesenchymal stem cells (MSCs) on the phenotype and function of natural killer

T (NKT) cells is not understood. We used concanavalin A (Con A) and α‐galactosylceramide

(α‐GalCer)‐induced liver injury to evaluate the effects of MSCs on NKT‐dependent hepatotox-

icity. Mouse MSCs (mMSCs) significantly reduced Con A‐ and α‐GalCer‐mediated hepatitis in

C57Bl/6 mice, as demonstrated by histopathological and biochemical analysis, attenuated the

influx of inflammatory [T‐bet+, tumour necrosis factor‐α (TNF‐α), interferon‐γ (IFN‐γ)‐producing

and GATA3+, interleukin‐4 (IL‐4)‐producing] liver NKT cells and downregulated TNF‐α, IFN‐γ

and IL‐4 levels in the sera. The liver NKT cells cultured in vitro with mMSCs produced lower

amounts of inflammatory cytokines (TNF‐α, IFN‐γ, IL‐4) and higher amounts of immunosup-

pressive IL‐10 upon α‐GalCer stimulation. mMSC treatment attenuated expression of

apoptosis‐inducing ligands on liver NKT cells and suppressed the expression of pro‐apoptotic

genes in the livers of α‐GalCer‐treated mice. mMSCs reduced the cytotoxicity of liver NKT cells

against hepatocytes in vitro. The presence of 1‐methyl‐DL‐tryptophan, a specific inhibitor of

indoleamine 2,3‐dioxygenase (IDO), or L‐NG‐monomethyl arginine citrate, a specific inhibitor

of inducible nitric oxide synthase (iNOS), in mMSC‐conditioned medium injected into

α‐GalCer‐treated mice, counteracted the hepatoprotective effect of mMSCs in vivo and

restored pro‐inflammatory cytokine production and cytotoxicity of NKT cells in vitro. Human

MSCs attenuated the production of inflammatory cytokines in α‐GalCer‐stimulated human

peripheral blood mononuclear cells in an iNOS‐ and IDO‐dependent manner and reduced their

cytotoxicity against HepG2 cells. In conclusion, MSCs protect from acute liver injury by atten-

uating the cytotoxicity and capacity of liver NKT cells to produce inflammatory cytokines in an

iNOS‐ and IDO‐dependent manner.
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1 | INTRODUCTION

Mesenchymal stem cells (MSCs) are adult, multipotent cells that can be

found in almost all postnatal tissues (Gazdic, Volarevic, Arsenijevic, &

Stojkovic, 2015). Due to their immunomodulatory ability and capacity

for self‐renewal and differentiation into tissues of mesodermal origin,

MSCs have been tested in many preclinical and clinical studies as

possible new therapeutic agents for the treatment of immune

disorders (Volarevic, Nurkovic, Arsenijevic, & Stojkovic, 2014). MSCs

can alter the immune response and regulate the proliferation, activation

and effector function of T lymphocytes, professional antigen‐presenting

cells [dendritic cells (DCs),macrophages, B lymphocytes] andnatural killer
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(NK) cells, through cell‐to‐cell contact or through the production of solu-

ble factors (Gazdic et al., 2015). Prigione and colleagues recently

described that human MSCs (hMSCs) could affect in vitro expansion of

natural killer T (NKT) cells, in both a cell‐to‐cell contact and paracrine

manner (Prigione et al., 2009), but MSC‐mediated suppression of NKT

cells in vivo has not been investigated.

NKT cells represent a uniqueT‐cell subset expressing an invariant

T‐cell receptor (TCR) α chain (Vα14‐Jα18 in mice; Vα24‐Jα18 in

humans) paired with a limited TCR Vβ chain repertoire (Vβ8.2, Vβ7 or

Vβ2 in mice; Vβ11 in humans) together with NK cell‐related markers

(NK1.1 inmice; CD161 in humans) (Swain, 2008). NKT cells are themost

abundantly present in the murine liver and are considered as the major

effector cells in the pathogenesis of acute liver failure in mice (Biburger

& Tiegs, 2005). To examine the MSC–NKT cell interaction in vivo, we

used twowell‐establishedmurine models of fulminant liver failure, con-

canavalin A (Con A)‐ and α‐galactosylceramide (α‐GalCer)‐induced liver

injury. Con A activates lymphocytes irrespective of their antigen speci-

ficity (Volarevic, Markovic, et al., 2014). NKT cells, T lymphocytes, and

macrophages are the main immune cells involved in the pathogenesis

of Con A‐induced liver injury (Volarevic, Markovic et al., 2014). On the

contrary, α‐GalCer is dependent on the presentation of theMajor histo-

compatibility complex (MHC)‐homologous CD1d molecule and is

known as a potent activator of NKT cells. Accordingly, injection of α‐

GalCer induces liver injury in mice by activating liver NKT and DCs,

while macrophages are dispensable for α‐GalCer‐mediated liver injury

(Volarevic, Markovic et al., 2014), suggesting that α‐GalCer‐induced

hepatitis as an ideal model for studying the pathogenesis of NKT‐

dependent liver disorders.

Herewith we provide the evidence that MSCs inhibit cytokine pro-

duction and cytotoxic activity of NKT cells in an inducible nitric oxide

synthase (iNOS)‐ and indoleamine 2,3‐dioxygenase (IDO)‐dependent

manner and significantly attenuate Con A‐ and α‐GalCer‐induced

NKT cell‐dependent, acute liver injury. These findings could be helpful

in highlighting the importance of NKT cells in immunomodulatory

effects of MSCs in acute liver failure.

2 | MATERIALS AND METHODS

2.1 | Cells

Murine MSCs (mMSCs) isolated from bone marrow of C57BL/6 mice

were purchased from Gibco Gibco/Invitrogen, Paisley, UK (no.

S1502–100). The cells were cultured in Dulbecco's Modified Eagle

Medium (DMEM) containing 10% heat‐inactivated fetal calf serum

(FCS), 100 IU/ml penicillin G and 100 μg/ml streptomycin (Sigma‐

Aldrich, Munich, Germany), at 37°C in a 5% CO2 incubator. mMSCs

in passage 4 were used throughout the experiments. Consented (in

accordance with the Guidelines of the Ethics Committee of the State

University of Novi Pazar and Health Center of Novi Pazar) and charac-

terized hMSCs isolated from human adipose tissue were obtained from

Stem Cell Laboratory, Department of Biomedical Sciences, State Uni-

versity of Novi Pazar, Serbia (data not shown) (Nurkovic, Dolicanin,

Tutic, & Kovacevic‐Filipovic, 2013). hMSCs were cultured in DMEM

supplemented with 10% FCS, 100 IU/ml penicillin G and 100 μg/ml

streptomycin (Sigma‐Aldrich) at 37°C in a 5% CO2 incubator. hMSCs

in passage 4 were used throughout these experiments. Human liver

hepatocellular carcinoma cell line HepG2 cells (ATCC HB‐8065) were

maintained in DMEM supplemented with 10% FCS, at 37°C in a 5%

CO2 incubator.

2.2 | Hepatocyte isolation

Mouse hepatocytes were isolated as previously described (Volarevic

et al., 2015). Briefly, a cannula was inserted in the portal vein and the

liver was perfused for 15–20 min with T1 solution (0.9% NaCl, 0.05%

KCl, HEPES 0.2%, 0.08 mg/ml EGTA, pH 7.4) (all from Sigma‐Aldrich).

As soon as the perfusion was started, the hepatic vein was immediately

cut to allow perfusate to run as waste. The liver was then perfused

with T2 solution (0.6% NaCl, 0.05% KCl, 1.2% HEPES, 0.07% CaCl2,

3 g/ml collagenase type I, pH 7.4) (all from Sigma‐Aldrich). The disag-

gregated liver tissue was collected with a curved spatula and trans-

ferred into a plate where the tissue was mechanically disrupted with

a scalpel. Minced tissue was collected with 2 ml DMEM (Sigma‐

Aldrich), filtered through a 70 μm cell strainer and centrifuged at

600 rpm for 4 min. The supernatant was removed, the pellet was

resuspended in 3 ml DMEM, cells were passed on 37.5% Percoll cush-

ion (30 ml), centrifuged at 1050 rpm for 3 min and resuspended in 2 ml

DMEM; viable hepatocytes were counted.

2.3 | Generation of MSC‐conditioned medium
(MSC‐CM)

mMSCs or hMSCs were seeded at a density of 10 000 cells/cm2. In

order to collect the mMSC‐CM or hMSC‐CM, mMSCs or hMSCs were

first cultured in serum containing complete medium and incubated at

37°C in a humid atmosphere with 5% CO2. At 80% confluence, the

cells were washed twice with 1× phosphate‐buffered saline (Invitrogen,

Carlsbad, CA, USA). The medium was then changed to serum‐free

medium. After 48 h, the media was collected, centrifuged at 13 000×g

at 4°C for 10 min and stored at −80°C until used (Linero & Chaparro,

2014).

2.4 | Pharmacological inhibition of IDO and iNOS

mMSCs or hMSCs were cultured for 48 h in culture medium containing

1 mM 1‐methyltryptophan (1‐MT, Sigma‐Aldrich), an inhibitor of IDO

enzymatic activity (Yang et al., 2009).

To block iNOS activity, mMSCs or hMSCs were cultured for 48 h

in the presence of 1 mM of an iNOS inhibitor, L‐NG‐monomethyl argi-

nine citrate (L‐NMMA, Sigma‐Aldrich) (Ren et al., 2008).

2.5 | Animals

Male 6–8‐week‐old C57Bl/6 mice were used. All animals received

human care and all experiments were approved by and conducted in

accordance with the Guidelines of the Animal Ethics Committee of

the Faculty of Medical Sciences of the University of Kragujevac,

Serbia. Mice were housed in a temperature‐controlled environment

with a 12 h light–dark cycle and were administered standard labora-

tory chow and water ad libitum. Per group we used 10 mice.
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2.6 | Con A‐induced hepatitis

Wild‐type C57Bl/6 mice were given a single intravenous injection of

Con A (Sigma‐Aldrich) at 12 mg/kg bodyweight dissolved in 250 μl

saline (Volarevic, Misirkic et al., 2015). mMSCs (5 × 105) were intrave-

nously injected, via the tail vein, immediately after Con A administration

(Con A + mMSC‐treated mice). Control animals received the appropri-

ate amount of mMSCs only or saline only. Serum levels of aspartate

aminotransferase (AST) and alanine aminotransaminase (ALT) were

measured 24 h after Con A administration, by a standard photometric

method using the automated biochemistry analyser Olympus AU 400

(Olympus Diagnostica GMBH, Hamburg, Germany) and Olympus AU

reagents, according to the manufacturer's instructions (Volarevic,

Milovanovic et al., 2012; Volarevic, Mitrovic et al., 2012).

2.7 | α‐GalCer‐induced hepatitis

Wild‐type C57BL/6 mice were given a single intravenous injection of

α‐GalCer (50 μg/kg) dissolved in 200 μl saline (Volarevic, Markovic

et al., 2014). mMSCs (5 × 105) were intravenously injected, via the tail

vein, into C57Bl/6 mice immediately after α‐GalCer administration (α‐

GalCer + mMSC‐treated mice), whereas control animals received the

appropriate amount of mMSCs only or saline only. To demonstrate

that soluble factors were responsible for the mMSC‐mediated inhibi-

tion of NKT cell function, mice were injected intravenously with

0.2 ml mMSC‐CM, 0.2 ml mMSC‐CM + 1‐MT or 0.2 ml mMSC‐

CM + L‐NMMA, immediately after α‐GalCer administration. Control

animals received 0.2 ml saline only. Serum levels of AST and ALT were

measured 16 h after intravenous injection of α‐GalCer (Volarevic,

Markovic et al., 2014).

2.8 | Histological analyses and semi‐quantitative
assessment of liver injury

Histological analysis and semi‐quantitative determination of liver injury

were performed as previously described (Volarevic, Mitrovic et al.,

2012). Briefly, the isolated livers were fixed in 10% phosphate‐buff-

ered formalin, embedded in paraffin, and consecutive 4 μm tissue

sections were cut at various depths and mounted on slides. Sections

were stained with haematoxylin and eosin and examined under low‐

power (100×) light microscopy (Zeiss Axioskop 40, Jena, Germany)

equipped with a digital camera. Sections were examined by two

independent investigators in a blind manner.

2.9 | Isolation of hepatic mononuclear cells (MNCs)
and analysis with flow cytometry

The isolation of liver‐infiltrating MNCs was conducted as previously

described (Volarevic, Mitrovic et al., 2012). Hepatic MNCs were

screened for various cell surface and intracellular markers with flow

cytometry 8 h after Con A and 2 h after α‐GalCer injection. Briefly,

1 × 106 MNC were incubated with R‐PE‐labelled murine CD1d tetra-

mer preloaded with α‐GalCer (ProImmune, Oxford, UK), anti‐mouse

CD4, CD3, CD8, CD25, F4/80, CD11c, CD80, CD86, CD19, FasL,

CD107, TRAIL, perforin, granzyme B, NKG2D and KLRG1 monoclonal

antibodies conjugated with fluorescein isothiocyanate (FITC),

phycoerythrin (PE), peridinin chlorophyll protein (PerCP) or

allophycocyanin (APC) (all from BD Biosciences, San Jose, CA, USA)

following manufacturer's instructions. MNCs derived from the liver

were concomitantly stained for the intracellular content of tumour

necrosis factor‐α (TNF‐α), interferon‐γ (IFN‐γ), interleukin‐4 (IL‐4),

IL‐10, IL‐12, T‐bet and GATA3 by using the fixation/permeabilization

kit and anti‐mouse monoclonal antibodies conjugated with FITC, PE,

PerCP and APC (BD Bioscience). For intracellular cytokine staining,

cells were stimulated with 50 ng/ml Phorbol myristate acetate (PMA)

and 500 ng/ml ionomycin for 5 h and GolgiStop (BD Biosciences)

was added. Cells were fixed in Cytofix/Cytoperm, permeated with

0.1% saponin and stained with fluorescent antibodies. Flow cytometric

analysis was conducted on a BD Biosciences FACSCalibur and

analysed by using the Flowing software analysis program.

2.10 | Detection of mMSCs in the livers of con
A‐ and α‐GalCer‐treated mice

mMSCs were fluorescence‐labelled using pre‐incubation with carboxy-

fluorescein diacetate succinimidyl ester (CFSE; Molecular Probes,

Eugene, or, USA) according to the manufacturer's instructions, as

described previously (Rüster et al., 2006). For homing assays, 5 × 105

CFSE‐labelled mMSCs were injected into the tail veins of mice imme-

diately after Con A or α‐GalCer administration. MNC suspensions were

prepared from liver tissues 8 h after Con A and 2 h after α‐GalCer

injection and analysed by flow cytometry.

2.11 | Isolation of NKT cells

NKT cells were isolated from hepatic MNCs by magnetic cell sorting

according to the manufacturer's instructions. Single‐cell suspensions

of MNCs derived from the liver were labelled with a cocktail of biotin‐

conjugated monoclonal anti‐mouse antibodies against NKp46,

CD45R, CD8a, CD115 and TCRγδ and MicroBeads conjugated to

monoclonal anti‐biotin antibody (Miltenyi Biotec, Bergisch Gladbach,

Germany). The labelled cells were subsequently depleted by separation

over a MACS Column (Miltenyi Biotec), which was placed in the mag-

netic field of a MACS Separator (Miltenyi Biotec). In the second step,

the NK1.1+ NKT cells were labelled with monoclonal anti‐mouse

NK1.1 antibody conjugated to APC and microBeads conjugated to

monoclonal anti‐mouse anti‐APC antibody and positively selected using

a MACS Column (Miltenyi Biotec) and a MACS Separator (Miltenyi

Biotec). IsolatedNKT cellswere then used in the co‐culture experiments

and cytotoxicity assay as purified NKT cells. NKT cells isolated from

liversofα‐GalCer‐,α‐GalCer+mMSC‐CM‐,α‐GalCer+mMSC‐CM+1‐-

MT‐ and α‐GalCer + mMSC‐CM + L‐NMMA‐treated mice were restim-

ulated with α‐GalCer in complete medium, α‐GalCer in mMSC‐CM,

α‐GalCer in mMSC‐CM + 1‐MT or α‐GalCer in mMSC‐CM + L‐NMMA,

respectively. After 48 h, supernatants were collected for cytokine mea-

surement and NKT were harvested for the cytotoxicity assay.

2.12 | Preparation of human peripheral blood
mononuclear cells (PBMNCs)

The serum samples were obtained from fasting participants in

the morning and PBMNCs were prepared using Histopaque
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(SigmaAldrich) density gradient centrifugation, as previously described

(Müller et al., 2006).

2.13 | Co‐culture of mMSCs and NKT cells

NKT cells, stimulated in vitro with α‐GalCer (100 ng/ml), were cultured

alone and physically separated from mMSCs using a 0.4 μm porous

transwell system (Corning Incorporated, Life Sciences, France). Control

cultures of NKT cells without α‐GalCer stimulation were also included

in all experiments. For contact‐independent co‐cultures, NKT cells

were placed in the lower chamber (24 well) and mMSCs were seeded

in the transwell inserts, at a ratio of 10:1 (Krampera et al., 2013). After

48 h of culture, supernatants were collected and frozen at −20°C until

cytokine concentrations were measured by enzyme‐linked immuno-

sorbent assay (ELISA; R&D Systems, Minneapolis, MN, USA), while

activated NKT were harvested for flow cytometry analysis or the cyto-

toxicity assay. hMSC and PBMNC interaction was examined in a simi-

lar set‐up. PBMNCs, in complete medium supplemented with α‐GalCer

(100 ng/ml), were added to the lower chamber and hMSCs were added

to the upper chamber, at a ratio of 10:1 (Prigione et al., 2009). The

levels of cytokines in supernatants and the cytotoxicity of PBMNCs

were evaluated after 48 h of culture. α‐GalCer‐stimulated PBMNCs

(100 ng/ml) had been cultured for 48 h in the hMSC‐CM in the pres-

ence or absence of 1 mM 1‐MT or 1 mM L‐NMMA (Sigma‐Aldrich). Cul-

ture supernatants and cytokine‐containing cells were collected for

cytokine measurement and the cytotoxicity assay.

2.14 | Cytotoxicity assay

TheDP version of the xCELLigence system (RocheCA,USA)was used in

this study. TheDP version comprises ameasurement unit housedwithin

a standard tissue culture incubator with three stations that each take

E16 plates (each E16 plate has 16 wells). Complete medium (100 μl)

was added to each well and background impedance on the plates was

measured on the xCELLigence RTCA DP instrument at 37°C and 5%

CO2. HepG2 cells were used as targets for NKT cells. The seeding den-

sity of 4 × 104 HepG2 cells/well was considered optimal and used for all

assays. An effector to target ratio (E:T ratio) of 10:1 was used (Wang

et al., 2013). HepG2 cells were resuspended in DMEM with 10% FCS

at 4 × 105 cells/ml. In total, 100 μl tumour cells were added to each well

of the E16 plate, which was then placed in the xCELLigence RTCA DP.

NKT cells, isolated from α‐GalCer + MSC‐treated mice and α‐GalCer‐

treated mice, were counted and resuspended at a concentration of

4 × 106 cells/ml in DMEM +10% FCS media. Then, 100 μl NKT cells or

media alone was added to the respective wells. The E16 plates were

placed in the xCELLigence RTCA DP and impedance measurements

were recorded every 15 min for 24 h at 37°C and 5% CO2. NKT

cell‐mediated death of tumour cells was monitored in real time and

was indicated by a decrease in cell index. Datawere analysedwith RTCA

Software 1.2 (Acea Biosciences, San Diego, CA, USA).

2.15 | Measurement of cytokines

Levels of TNF‐α, IFN‐γ, IL‐4 and IL‐10 in the mouse serum and TNF‐α,

IFN‐γ, IL‐10, transforming growth factor‐β (TGF‐β), hepatocyte growth

factor (HGF) and prostaglandin E2 (PGE2) in culture supernatants were

measured using ELISA kits specific for the mouse cytokines (R&D

Systems), according to the manufacturer's instructions. The IDO con-

tent of mouse serum and culture supernatants was determined using

a mouse ELISA kit (no MI0064, NeoBioLab NeoBioLab, Massachusetts,

USA).

Concentrations of TNF‐α, IFN‐γ and IL‐4 in human cell

culture supernatants were measured by ELISA kits specific for humans

(R&D Systems), according to the manufacturer's instructions.

2.16 | Detection of kynurenine

As IDO catalyses the metabolism of tryptophan in the kynurenine

pathway, IDO activity was determined by spectrophotometric assay

for kynurenine in the serum of Con A‐ and α‐GalCer‐treated animals

and in culture supernatants (Ling et al., 2014).

2.17 | Real‐time reverse transcription‐polymerase
chain reaction (RT‐PCR) analysis of apoptosis‐ and
autophagy‐related genes

Total RNA was extracted using TRIZOL and reverse transcribed with

M‐MuLV reverse transcriptase and random hexamers (all from Life

Technologies, Carlsbad, CA, USA). The real‐time RT‐PCR analysis was

performed in a Realplex Mastercycler (Eppendorf, Hamburg, Germany)

using TaqMan Master Mix and the following TaqMan primers and

probes from Life Technologies: Atg4b (no. Mm00558047_m1),

Atg5 (Mm00504340_m1), Atg7 (Mm00512209_m1), Atg12

(Mm00503201_m1), beclin‐1 (Mm01265461_m1), p53‐upregulated

modulator of apoptosis (Puma; Mm00519268_m1), Noxa

(Mm00451763_m1), B‐cell lymphoma 2 (Bcl‐2; Mm00477631_m1),

Bcl‐2‐associated X protein (Bax; Mm00432051_m1), Bcl‐2‐associated

death promoter (Bad; Mm00432042_m1), p53 (Mm01731287_m1),

phosphatase and tensin homologue (Pten; Mm00477208_m1), apo-

ptotic protease activating factor 1 (Apaf1; Mm01223702_m1), Bcl‐xL

(Mm00437783_m1) and X‐linked inhibitor of apoptosis protein (XIAP;

Mm00776505_m1). The reaction conditions were as recommended by

the manufacturer. The threshold cycle (Ct) values of the housekeeping

gene (18 s RNA) were subtracted from the Ct values of target genes to

obtain ΔCt. The relative gene expression is presented as 2–ΔCt value

normalized to the treatment without mMSCs.

2.18 | Statistical analysis

Results were analysed using Student's t‐test. All data in this study were

expressed as the mean ± standard error of the mean (SEM). Values of

p < 0.05 were considered as statistically significant.

3 | RESULTS

3.1 | mMSCs ameliorate Con A‐induced hepatitis

mMSCs migrated in the livers of Con A‐treated mice (Figure 1A) and

efficiently ameliorated Con A‐induced acute liver injury as determined

by liver enzyme tests (Figure 1B) and histology (Figure 1C). Serum AST

and ALT levels were significantly lower (p < 0.05) in Con A + mMSC‐
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treated mice compared with mice that received Con A only (Figure 1B).

Histological analysis indicated that mMSC‐treated mice were less sen-

sitive to Con A‐induced hepatic injury (Figure 1C). Liver tissue sections

of Con A + mMSC‐treated mice showed several solitary areas of

necrotic tissue characterized by standard morphological criteria (i.e.

loss of architecture, vacuolization, karyolysis and increased eosino-

philia). By contrast, liver tissue sections in Con A‐treated mice showed

widespread areas of necrosis with extensive infiltration of MNCs

within liver lobules and around the central veins and portal tracts, indi-

cating the ongoing inflammatory process (Figure 1C). In accordance

with the histological analysis, mMSCs significantly attenuated produc-

tion of inflammatory cytokines. The concentrations of TNF‐α, IFN‐γ

and IL‐4 cytokines were significantly lower (TNF‐α, p < 0.001; IFN‐γ,

p < 0.05; IL‐4, p < 0.001), whereas the concentration of anti‐inflamma-

tory IL‐10 was significantly higher (p < 0.05) in sera of Con A‐treated

mice that received mMSCs (Figure 1D).

3.2 | mMSC treatment attenuates the presence of
hepatotoxic TNF‐α‐, IFN‐γ‐ and IL‐4‐producing NKT
cells in the liver of Con A‐treated mice

The cellular make‐up of the liver revealed a significantly lower number

of TNF‐α‐ (p < 0.01) and IFN‐γ‐producing (CD4+ α‐GalCer‐loaded

CD1d Tetramer+) NKT cells that expressed T‐bet (p < 0.05) (Figure

S1A–C) in the livers of Con A + mMSC‐treated mice compared with

animals treated with Con A only. Also, the total number of hepatotoxic

IL‐4‐producing NKT cells that expressed Th2 transcription factor

GATA3 (Figure S1E, F) was significantly lower (p < 0.05) in the livers

of Con A + mMSC‐treated mice. The percentage of protective IL‐10‐

producing NKT cells was significantly higher (p < 0.05) in the livers of

Con A + mMSC‐treated mice, suggesting a possible role of mMSCs in

polarization of liver NKT cells (Figure S1D). However, the difference

in the number of IL‐10‐producing NKT cells did not reach statistical

significance (p > 0.05) (data not shown). Although there was no

statistical difference (p > 0.05) in the number of liver infiltrated CD8+

T and CD19+ B cells between experimental groups, mMSCs treatment

significantly (p < 0.05) attenuated the total number of inflammatory

IL‐12‐producing macrophages and DCs (Figure S2), indicating a

possible impact of mMSCs on the function of antigen presenting cells

in the liver.

3.3 | Single injection of mMSCs significantly reduced
α‐GalCer‐induced liver injury

In order to provide evidence that mMSCs suppress NKT cell activity

in vivo, directly and independently from DCs and/or macrophages,

we used α‐GalCer‐induced hepatitis. mMSCs migrated in the livers of

α‐GalCer‐treated mice (Figure 2A) and prevented the increase in serum

liver transaminases (Figure 2B). This finding was consistent with scarce

necrotic areas observed in the livers of α‐GalCer + mMSC‐treated ani-

mals, in contrast to significantly larger necrotic areas in liver paren-

chyma and massive infiltration of MNCs within liver lobules and

FIGURE 1 Mouse mesenchymal stem cells (mMSCs) ameliorate concanavalin a (con a)‐induced hepatitis. Mice were injected intravenously with
0.2 ml saline, 5 × 105 mMSCs suspended in 0.2 ml saline, con a (12 mg/kg) or 5 × 105 mMSCs suspended in 0.2 ml saline immediately after con
a administration. The samples for aspartate aminotransferase/alanine aminotransaminase (AST/ALT) measurement and histological analysis were
collected after 24 h, whereas sera for cytokine measurement and livers for fluorescence‐mMSCs detection were collected 8 h after systemic
treatment. (A) detection of carboxyfluorescein diacetate succinimidyl ester‐labelled mMSCs in the liver, (B) serum AST and ALT levels, (C) a
histological examination was performed with haematoxylin and eosin (H&E) staining. H&E staining images of representative liver tissue samples are
shown at the same magnifications (×100). (D) concentration of serum cytokines. Data presented as mean ± standard error of the mean; n = 10 mice
per experimental group. *p < 0.05; ***p < 0.001
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around the central veins and portal tracts of mice treated with

α‐GalCer only (Figure 2C). A diminished inflammatory injury in

α‐GalCer + mMSC‐treated mice correlated with the cytokine produc-

tion. The concentrations of inflammatory (TNF‐α, IFN‐γ and IL‐4) cyto-

kines were significantly lower (p < 0.05) in sera of α‐GalCer‐treated

mice that received mMSCs, whereas there was no difference

(p > 0.05) in serum concentration of anti‐inflammatory IL‐10 between

experimental groups (Figure 2D).

3.4 | mMSCs reduce the number of TNF‐α‐,
IFN‐γ‐ and IL‐4‐producing NKT cells in the liver of
α‐GalCer‐treated mice

Intracellular staining of liver NKT cells revealed a significantly lower

total number of TNF‐α‐ (p < 0.05), IFN‐γ‐ (p < 0.01) and IL‐4‐producing

NKT cells (p < 0.05) in α‐GalCer + mMSC‐treated mice, indicating that

mMSCs attenuate production of pro‐inflammatory cytokines in the

liver NKT cells (Figure 3). There was no significant difference

(p > 0.05) in the number of protective IL‐10‐producing NKT cells

between experimental groups (Figure 3).and in the percentage (Figure

S3) and total number (data not shown) of regulatory DCs (CD11c+CD8
+) and IL‐10‐producing DCs, as well as inflammatory CD11c+ DCs

expressing CD11b, MHC class II, co‐stimulatory molecules CD80 and

CD86, and IL‐12‐producing DCs in the livers of α‐GalCer + mMSC‐

treated mice compared with animals treated with α‐GalCer only,

suggesting that mMSCs modulate production of cytokines by acting

directly on liver NKT cells.

3.5 | mMSCs attenuate expression of FasL, TRAIL
and CD107 in liver NKT cells, reduce their
hepatotoxicity and suppress the expression of
pro‐apoptotic genes in α‐GalCer‐induced hepatitis

mMSCs significantly attenuated the expression of the apoptosis‐

inducing ligands FasL (p < 0.05) and TRAIL (p < 0.01) and the degranu-

lation marker CD107 (p < 0.05) on liver NKT cells of α‐GalCer‐treated

mice (Figure 4A), whereas we did not find any difference in cytotoxic

mediators (perforin and granzyme B) and receptors (NKG2D and

KLRG1) expression between the experimental groups (Figure 4A).

Accordingly, the results obtained by xCELLigence system for monitor-

ing real‐time cytotoxicity showed that NKT cells isolated from α‐

GalCer + mMSC‐treated mice were significantly less cytotoxic against

HepG2 cells and hepatocytes than NKT cells isolated from animals

treated with α‐GalCer only (Figure 4B, C), indicating that mMSC treat-

ment significantly reduced the hepatotoxic potential of liver NKT cells.

We next examined the influence of mMSCs on the expression of major

apoptosis‐regulating genes in α‐GalCer hepatitis. mMSCs significantly

reduced (p < 0.05) the expression of mRNA encoding pro‐apoptotic

mediators Noxa, Bax, Bad and Apaf1 (Figure 4D) in the livers of

α‐GalCer‐treated mice. The expression of other pro‐apoptotic (Pten,

Puma, p53) as well as anti‐apoptotic genes (Bcl‐2, Bcl‐xL, XIAP) was

FIGURE 2 A single injection of mouse mesenchymal stem cells (mMSCs) significantly reduces α‐galactosylceramide (α‐GalCer)‐induced liver injury.
Mice were injected intravenously with 0.2 ml saline, 5 × 105 mMSCs suspended in 0.2 ml saline, α‐GalCer (50 μg/kg) or 5 × 105 mMSCs suspended
in 0.2 ml saline immediately after α‐GalCer administration. The samples for aspartate aminotransferase/alanine aminotransaminase (AST/ALT)
measurement and histological analysis were collected after 16 h, whereas sera for cytokine measurement and livers for fluorescence‐labelled
mMSCs detection were collected 2 h after the induction of hepatitis. (A) detection of carboxyfluorescein diacetate succinimidyl ester‐labelled
mMSCs in the liver, (B) serum AST and ALT levels, (C) a histological examination was performed with haematoxylin and eosin (H&E) staining. H&E
staining images of representative liver tissue samples are shown at the same magnifications (×100). (D) concentration of serum cytokines. Data
presented as mean ± standard error of the mean; n = 10 mice per experimental group. *p < 0.05, **p < 0.01
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not significantly affected by mMSCs (p > 0.05) (Figure 4D). The expres-

sion of genes required for the induction of autophagy (atg4b, atg5,

atg7, atg12, and Bcn1) did not reach statistical difference (p > 0.05)

in the liver of α‐GalCer + mMSC‐treated mice compared with

α‐GalCer‐treated mice (Figure S4). These data indicate that mMSCs

could alleviate α‐GalCer hepatitis through the suppression of NKT

cytotoxicity and subsequent decrease in apoptotic hepatocyte demise.

3.6 | mMSCs suppress activity of NKT cells in a
paracrine manner

In order to investigate whether cell‐to‐cell contact was required for

immunoinhibitory effects of mMSCs on NKT cells, co‐cultures were

performed in a transwell systemwhere the two cell types are separated

by a membrane permeable to soluble molecules. The significantly lower

(p < 0.05) amounts of TNF‐α and IFN‐γwere noticed in supernatants of

in vitro α‐GalCer‐stimulated liver NKT cells co‐cultured with mMSCs in

the transwell system when compared with α‐GalCer‐stimulated liver

NKT cells that were cultured alone (Figure 5A). Intracellular staining

revealed that in vitro α‐GalCer‐activated NKT cells co‐cultured with

mMSCs expressed significantly lower amounts of inflammatory cyto-

kines (TNF‐α, p < 0.05; IFN‐γ, p < 0.01; IL‐4, p < 0.05) and a significantly

higher (p < 0.05) amount of immunosuppressive IL‐10 (Figure 5B), indi-

cating that mMSCs suppress activity of NKT cells in a paracrinemanner.

To directly demonstrate that soluble factors were responsible for the

mMSC‐mediated inhibition of NKT cell function, mice were intrave-

nously injected with mMSC‐CM, immediately after α‐GalCer

administration (α‐GalCer +mMSC‐CM‐treatedmice). mMSC‐CM treat-

ment significantly downregulated (p < 0.05) serumAST andALT levels in

α‐GalCer‐treated mice (Figure 5C). Additionally, liver NKT cells isolated

from α‐GalCer + mMSC‐CM‐treated mice were significantly less cyto-

toxic against HepG2 hepatocyte cells than NKT cells isolated frommice

treated only with α‐GalCer (Figure 5D).

3.7 | mMSCs suppress activity of NKT cells in an
iNOS‐ and IDO‐dependent manner

As IDO, PGE2, HGF, IL‐10 and TGF‐β are well‐known mediators of

MSC‐mediated inhibition (Meisel et al., 2004; Nasef et al., 2007; Sato

et al., 2007), these immunosuppressive factors were measured in the

sera of α‐GalCer‐ and α‐GalCer + mMSC‐treated mice, as well as in

the supernatants derived from liver NKT cells stimulated with α‐

GalCer in the presence or absence of mMSCs. There was no difference

in the levels of PGE2, HGF, IL‐10 and TGF‐β between groups (Figure 6

A, B). However, levels of IDO and kynurenine in the sera of α‐GalCer +

mMSC‐treated mice (Figure 6A), as well as in the supernatants derived

from NKT cells stimulated in the presence of mMSCs, were signifi-

cantly higher (p < 0.05) (Figure 6B).

Additionally, kynurenine was also elevated in the serum of Con

A + mMSC‐treated mice (Figure S5A), suggesting that the production

of IDO by mMSCs may be important for efficient and strong sup-

pression of NKT cell effector functions in both models of acute liver

injury.

FIGURE 3 Mouse mesenchymal stem cells (mMSCs) reduce the influx of tumour necrosis factor‐α (TNF‐α)‐, interferon‐γ (IFN‐γ)‐ and interleukin‐4
(IL‐4)‐producing natural killer T (NKT) cells in the liver of α‐galactosylceramide (α‐GalCer)‐treated mice. (A) Total numbers of TNF‐α‐, IFN‐γ‐ and
IL‐4‐producing (CD4+ α‐GalCer‐loaded CD1d tetramer+) NKT cells were significantly lower in the liver of mice treated with α‐GalCer and mMSCs

compared with mice treated only with α‐GalCer. (B) representative flow cytometry dot plots show percentages of TNF‐α‐, IFN‐γ‐, IL‐4‐,
IL‐10‐positive cells in the population of liver CD4+ α‐GalCer‐loaded CD1d tetramer+ NKT cells 2 h after systemic treatment. Values are
mean ± standard error of the mean (n = 10 per group). *p < 0.05, **p < 0.01
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FIGURE 4 Mouse mesenchymal stem cells (mMSCs) attenuate the expression of FasL, TRAIL and CD107 on liver natural killer T (NKT) cells, reduce
their hepatotoxicity and suppress the expression of pro‐apoptotic genes in α‐galactosylceramide (α‐GalCer)‐induced hepatitis. (A) the percentage
of FasL, TRAIL and CD107 expressing NKT cells was significantly lower in the liver of mice treated with α‐GalCer and mMSCs compared with mice
treated with α‐GalCer only. The results obtained by xCELLigence system showed less cytotoxic activity of liver NKT cells isolated frommice treated
with α‐GalCer and mMSCs against (B) HepG2 cells and (C) hepatocytes. (D) real‐time reverse transcription‐polymerase chain reaction analysis
revealed that mMSCs decreased the expression of several pro‐apoptotic genes (Noxa, Bax, Bad and Apaf1) but not anti‐apoptotic genes (Bcl‐2, Bcl‐
xL and XIAP) in the liver tissue of α‐GalCer‐treated mice. Values are mean ± standard error of the mean (n = 10 per group). *p < 0.05, **p < 0.01

FIGURE 5 Mouse mesenchymal stem cells (mMSCs) suppress the activity of natural killer T (NKT) cells in a paracrine manner. (a, B) In vitro
α‐galactosylceramide (α‐GalCer)‐stimulated liver NKT cells isolated from healthy mice were co‐cultured for 48 h with mMSCs in transwell
systems at a ratio of 10:1. The level of cytokines in (a) supernatants and (B) their intracellular expression in liver NKT cells are shown. (C, D) mice
were injected intravenously with saline (0.2 ml), α‐GalCer (50 μg/kg) or mMSC‐conditioned medium (mMSC‐CM; 0.2 ml) immediately after
α‐GalCer administration. (C) serum aspartate aminotransferase and alanine aminotransaminase levels collected 16 h after the systemic treatment.
(D) liver NKT cells isolated from α‐GalCer + mMSC‐CM‐treated mice were significantly less cytotoxic against HepG2 hepatocyte cells than NKT
cells isolated from mice treated only with α‐GalCer. Data were shown as the mean ± standard error of the mean of 10 mice per group and are
pooled from two independent experiments.*p < 0.05, **p < 0.01
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IDO plays a key role in hMSC‐based immunosuppression, whereas

mMSCs also use iNOS‐dependent suppression of the immune

response (Shi et al., 2012). Accordingly, blockade of iNOS by L‐NMMA

or IDO activity by 1‐MT abrogated the hepatoprotective capacity of

mMSCs‐CM injected to α‐GalCer‐treated and Con A‐treated mice.

There were significantly elevated (p < 0.05) serum levels of AST and

ALT, as well as widespread areas of necrosis with extensive infiltration

of MNCs in the livers of α‐GalCer + mMSC‐CM + L‐NMMA‐ and α‐

GalCer + mMSC‐CM + 1‐MT‐treated mice compared with α‐GalCer +

mMSC‐CM‐treated animals (Figure 6C, D). Also, increased serum levels

of AST andALT (Figure S5B) and extensive hepatocytes necrosis (Figure

S5C) were noticed in Con A + mMSC‐CM + L‐NMMA‐ and Con

A +mMSC‐CM+ 1‐MT‐treatedmice comparedwith mice that received

Con A + mMSC‐CM.

In line with results obtained in vivo, when liver NKT cells were

cultured in mMSC‐CM, a significant (p < 0.05) inhibition of TNF‐α

and IL‐4 production, as well as the cytotoxicity against HepG2 cells,

was observed (Figures S5D, E, 6E, F). The presence of L‐NMMA or

1‐MT in mMSCs‐CM managed to counteract the inhibitory effect

exerted by mMSC‐CM (Figures S5D, E, 6E, F).

3.8 | hMSCs alter effector functions of
α‐GalCer‐stimulated human PBMNCs in an
iNOS‐ and IDO‐dependent manner

In order to demonstrate the relevance of the data obtained in the ani-

mal model for hMSC suppression of NKT cells, we investigated

whether hMSCs affect cytokine production and cytotoxic potential

FIGURE 6 Mouse mesenchymal stem cells (mMSCs) suppress the activity of natural killer T (NKT) cells in an inducible nitric oxide synthase (iNOS)‐
and indoleamine 2,3‐dioxygenase (IDO)‐dependent manner. IDO, prostaglandin E2, hepatocyte growth factor, interleukin‐10, transforming growth
factor‐β and kynurenine were determined in (a) mice sera and (B) supernatants by enzyme‐linked immunosorbent assay. (C, D) C57BL/6 mice were
treated with saline (0.2 ml), α‐galactosylceramide (α‐GalCer; 50 μg/kg), mMSC‐conditioned medium (mMSC‐CM; 0.2 ml), mMSC‐CM
(0.2 ml) + 1‐methyltryptophan (1‐MT; 1 mM) or mMSC‐CM (0.2 ml) + L‐ NG‐monomethyl arginine citrate (L‐NMMA; 1 mM) immediately after α‐
GalCer administration. (C) serum aspartate aminotransferase and alanine aminotransaminase levels and (D) histological tissue samples were
analysed 16 h after treatment (haematoxylin and eosin staining). (E, F) In vitro α‐GalCer‐stimulated liver NKT cells were co‐cultured for 48 h in
mMSC‐CM, mMSC‐CM + 1‐MT (1 mM) or mMSC‐CM + L‐NMMA (1 mM). (E) cytokine production and (F) cytotoxic potential of NKT cells against
the HepG2 hepatocyte cells are depicted. Data are shown as the mean ± standard error of the mean of 10 mice per group and are pooled from two
independent experiments.*p < 0.05, **p < 0.01
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of in vitro expanded and activated human NKT cells. As shown in

Figure S6A, supernatants derived from α‐GalCer‐stimulated PBMNCs

co‐cultured with hMSCs in a transwell system showed significantly

lower (p < 0.05) levels of IFN‐γ and IL‐4, compared with supernatants

derived from stimulated PBMNCs cultured alone. The cytotoxicity of

α‐GalCer‐stimulated PBMNCs cultured with hMSCs against target

HepG2 cells was significantly lower (p < 0.05) when compared with

the cytotoxicity of α‐GalCer‐stimulated PBMNCs cultured alone

(Figure S6B). In line with the results obtained in mice, L‐NMMA and

1‐MT almost completely restored production of pro‐inflammatory

cytokines (TNF‐α, IFN‐γ and IL‐4) as well as the cytotoxic activity

of α‐GalCer‐stimulated PBMNCs, suggesting iNOS and IDO as

important factors for hMSC‐mediated suppression of human NKT

cells (Figure S6C, D).

4 | DISCUSSION

Although the efficacy of MSC‐based therapy of acute liver diseases

has been reported [reviewed in Volarevic, et al. (2014)], the effect

of MSCs on the phenotype and function of liver NKT cells, major

effector cells in acute liver injury, is not fully understood. Here we

provide the evidence that MSCs protect from acute liver injury by

attenuating cytotoxicity and the capacity of liver NKT cells to pro-

duce inflammatory cytokines in an iNOS‐ and IDO‐dependent

manner.

NKT cells are most abundantly present in the microvascular com-

partments of the liver. Therefore, these cells have been directly linked

to the development of liver damage in a number of animal models of

hepatitis, as well as in patients with autoimmune hepatitis (Swain,

2008). NKT cells appear to play crucial roles in the induction of hepatic

injury by co‐operating with conventional T cells, macrophages and

DCs, and through the effector mechanisms involving the Fas/FasL

interaction, perforin/granzyme system and the IFN‐γ‐, IL‐4‐ and/or

TNF‐α‐mediated system (Takeda et al., 2000).

Here we showed that mMSCs migrated in injured liver and atten-

uated Con A‐induced liver injury by reducing the number of major

effector cells, including TNF‐α, IFN‐γ‐ and IL‐4‐producing NKT cells,

DCs and macrophages in the liver (Figures S1, 2), which was accompa-

nied by lower serum levels of TNF‐α, IFN‐γ and IL‐4, and a higher

serum level of IL‐10 (Figure 1D). These results hinted that it is impor-

tant to distinguish the direct action of mMSCs on NKT cells from indi-

rect effects mediated by other cell types contained in the liver.

Therefore, we used another animal model of NKT cell‐mediated

fulminant liver failure, induced by α‐GalCer, to evaluate the effect of

mMSCs on NKT cells in hepatitis. mMSC treatment led to a decrease

in the total number of TNF‐α‐, IFN‐γ‐ and IL‐4‐producing NKT cells

followed by attenuation of α‐GalCer hepatitis (Figure 3). We found

that mMSCs reduced α‐GalCer‐induced liver injury by suppressing

NKT cells without affecting cytokine production, polarization and

antigen presentation of liver DCs (Figure S3).

It was reported that the administration of α‐GalCer upregulated

FasL and TRAIL in NKT cells, receptors responsible for NKT cell‐medi-

ated apoptosis and cytotoxicity, leading to liver injury (Huang et al.,

2014). In acute liver injury, MSCs inhibit hepatocyte apoptosis by

suppressing the expression of Bax and Bad (Cai et al., 2015). Bax inter-

acts with Noxa, the expression of which is induced by IFN‐γ in a p53‐

independent manner (Sun & Leaman, 2005). Accordingly, our findings

show that mMSCs attenuate NKT cell hepatotoxicity through inhibi-

tion of the surface expression of FasL, TRAIL and CD107, reduce

IFN‐γ and suppress expression of pro‐apoptotic Noxa, Bax, Bad, lead-

ing to the attenuation of hepatocyte damage (Figure 4).

Various mediators are proposed to be responsible for the immuno-

suppressive effects of MSCs, including nitric oxide (NO), IDO, TGF‐β,

HGF, PGE2 and IL‐10 (Meisel et al., 2004; Nasef et al., 2007; Sato

et al., 2007). IDO plays a key role in hMSC‐mediated

immunomodulation, whereas mMSCs mainly use iNOS‐dependent

suppression of the immune response (Ren et al., 2009).

IDO produced by MSCs suppresses proliferation or induces apo-

ptosis of T and B lymphocytes, suppresses IFN‐γ production in NK

cells, inhibits the cytotoxicity of CD8+ T and NK cells and induces

the differentiation of monocytes into immunosuppressive M2 macro-

phages (Corcione et al., 2006; François, Romieu‐Mourez, Li, &

Galipeau, 2012; Li et al., 2014; Rasmusson, Uhlin, Le Blanc, & Levitsky,

2007; Sotiropoulou, Perez, Gritzapis, Baxevanis & Papamichail 2006;

Spaggiari et al., 2008).

MSC‐derived IDO is an enzyme that has powerful immunomodu-

latory effects resulting from its enzymatic activity which leads to

catabolism of the essential amino acid L‐tryptophan to L‐kynurenine

(Ito et al., 2010). Metabolites of the L‐kynurenine pathway have been

shown to act as immunoregulatory molecules that have immunosup-

pressive effects in the tissue microenvironment (Ito et al., 2010).

Accordingly herewith we showed that injection of mMSCs increased

serum levels of kynurenine in Con A‐ and α‐GalCer‐treated mice

accompanied by attenuated liver injury.

mMSCs mainly use an iNOS‐dependent mechanism to produce

NO and directly suppress proliferation and cytokine production in

lymphocytes (Ren et al., 2009). As NO is highly unstable, it only acts

locally and for NO‐dependent suppression immune cells have to be

recruited into close proximity to MSCs (Sato et al., 2007). When an

injury is present, MSCs migrate in response to inflammatory cyto-

kines and chemokines, produced by damaged hepatocytes and liver‐

infiltrated immune cells, and home to the sites of wounding (Rüster

et al., 2006). Under inflammatory conditions, IFN‐γ and TNF‐α pro-

voke mMSCs to express iNOS (Li et al., 2012). As, in the presence

of IFN‐γ, low molecular concentrations of NO increase IDO activity

(López, Alegre, Díaz, Mugueta, González, 2006), we assumed that

after α‐GalCer or Con A stimulation, NKT cells increased production

of IFN‐γ, which provoked mMSCs to express iNOS and produce NO,

which increased IDO activity and led to the attenuation of NKT cell

cytotoxicity (Figure S7).

Accordingly, results obtained by pharmacological inhibition of

iNOS and IDO activity in MSCs indicate that both iNOS and IDO sig-

nalling pathways are responsible for MSC‐mediated suppression of

NKT cell activity.

The presence of either L‐NMMA, a specific iNOS inhibitor, or

1‐MT, a specific inhibitor of IDO, in mMSC‐CM injected into

α‐GalCer‐treated mice, counteracted the hepatoprotective effect of

mMSCs, elevated serum levels of AST and ALT and increased liver tis-

sue loss and inflammatory cell infiltration (Figures S5B, C, 6C, D). In line
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with results obtained in vivo, either L‐NMMA or 1‐MT almost

completely restored pro‐inflammatory cytokine production (TNF‐α

and IL‐4) as well as cytotoxic activity of NKT cells against HepG2

hepatocyte cells in vitro (Figures S5D, E, 6E, F), suggesting the

importance of both iNOS and IDO signalling for mMSC‐mediated

inhibition of NKT cell effector functions.B6

It was demonstrated that pharmacological inhibition of iNOS and

IDO skewed the cytokine response of NKT cells towards Th1 profile

(Ito, Ando, & Seishima, 2015; Molano, Illarionov, Besra, Putterman,

& Porcelli, 2008). Reciprocally, NO and tryptophan‐derived catabo-

lites, L‐kynurenine, 3‐hydroxy‐kynurenine or 3‐hydroxy‐anthranilic

acid, shifted the cytokine balance towards a more Th2 pattern (Daniel

et al., 2006; Molano et al., 2008). A decrease in the production of IL‐

4 in liver NKT cells of Con A + mMSC‐ and α‐GalCer + mMSC‐

treated mice could be explained by the fact that, although IL‐4 is

considered a prototypic Th2‐type (i.e. anti‐inflammatory) cytokine, in

the setting of NKT‐dependent liver disease, IL‐4 has pro‐inflamma-

tory properties (Swain, 2008).

5 | CONCLUSION

Our study provides the evidence that MSCs protect from acute liver

injury by attenuating liver NKT cell cytotoxicity and their capacity to

produce inflammatory cytokines in an iNOS‐ and IDO‐dependent

manner. Such novel findings could contribute to improve the potential

of clinical therapeutic trials using MSC infusion for immunomodulation

purposes.
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SUPPORTING INFORMATION

Additional Supporting Information may be found online in the

supporting information tab for this article.

Figure S1. mMSCs treatment attenuates the presence of hepatotoxic

NKT cells in the liver of Con A‐treated mice. Livers of saline‐, mMSC‐,

Con A‐ and Con A + mMSC‐treated mice were analysed by intracellular

cytokine staining and FACS analysis 8 h after treatment. The total

number of (A) TNF‐α‐producing (CD4+ α‐GalCer‐loaded CD1d Tetra-

mer+) NKT cells, (B) IFN‐γ‐producing NKT cells, (C) CD4+Tbet+ cells,

(E) IL‐4‐producing NKT cells, (F) CD4+Gata3+ cells was significantly

lower in the livers of Con A + mMSC‐treated mice. (D) The percentage

of IL‐10‐producing NKT cells was significantly higher in the livers of

Con A + mMSC‐treated mice. Values are mean ± SEM (n = 10 per

group). *p < 0.05, **p < 0.01

Figure S2. mMSCs treatment markedly decreases liver infiltration

and cytokine production in macrophages and dendritic cells. (A)

The total number of liver infiltrating F4/80+, F4/80+ IL‐12‐ and

F4/80+ IL‐10‐producing macrophages was significantly lower in

Con A + mMSC‐treated mice compared witho Con A‐treated mice.

(B) In addition, a significant decrease in the total number of CD11c
+ and CD11c+ IL‐12‐producing DCs was observed in Con

A + mMSC‐treated mice 8 h after treatment. (C) There was no sta-

tistical difference in the number of liver infiltrating CD8+ T and

CD19+ B cells between experimental groups. Values are mean ± SEM

(n = 10 per group). *p < 0.05, **p < 0.01

Figure S3. mMSCs did not significantly affect phenotype of liver‐

infiltrating dendritic cells in α‐GalCer‐induced hepatitis. The percent-

age of (A) inflammatory CD11c+ DCs expressing CD11b, MHC class

II, co‐stimulatory molecules CD80 and CD86, and IL‐12‐producing

DCs and (B) regulatory CD11c+CD8+ DCs and IL‐10 producing

DCs is shown. Values are mean ± SEM (n = 10 per group).

*p < 0.05, **p < 0.01

Figure S4. mMSC treatment has no effect on autophagy in α‐

GalCer‐treated animals. The expression of genes required for induc-

tion of autophagy (atg4b, atg5, atg7, atg12 and Bcn1) is shown

Figure S5. mMSCs suppress activity of liver NKT cells in an iNOS‐

and IDO‐dependent manner. (A) Kynurenine was determined in mice

sera. (B, C) C57BL/6 mice were treated with saline (0.2 ml), Con A

(12 mg/kg), mMSC‐CM (0.2 ml), mMSC‐CM (0.2 ml) + 1‐MT

(1 mM) or mMSC‐CM (0.2 ml) + L‐NMMA (1 mM) immediately after

Con A administration. (B) Serum AST and ALT levels and (C) histo-

logical tissue samples were analysed 16 h after treatment (H&E

staining). (D, E) In vitro α‐GalCer‐stimulated liver NKT cells were

co‐cultured for 48 h in mMSC‐CM, mMSC‐CM + 1‐MT (1 mM) or

mMSC‐CM (0.2 ml) + L‐NMMA (1 mM). (D) Cytokine production

and (E) cytotoxic potential of NKT cells against the HepG2 hepato-

cyte cells are depicted. Data are shown as the mean ± SEM of 10
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mice per group and are pooled from two independent experiments.

*p < 0.05, **p < 0.01

Figure S6. hMSCs alter effector functions of α‐GalCer‐stimulated

human PBMNCs in an IDO‐dependent manner. (A, B) In vitro α‐

GalCer‐stimulated human PBMNC isolated from healthy donors

were co‐cultured for 48 h with hMSCs in transwell systems at ratio

10:1. (A) The level of cytokines in the supernatants and (B) cytotox-

icity of α‐GalCer‐stimulated PBMNC are shown. (C, D) In vitro α‐

GalCer‐stimulated PBMNC were co‐cultured for 48 h in hMSC‐CM,

hMSC‐CM + 1‐MT (1 mM) or hMSC‐CM + L‐NMMA (1 mM). (C)

Cytokine production and (D) cytotoxic activity of α‐GalCer‐stimu-

lated PBMNCs. Values are mean ± SEM of triplicates of two inde-

pendently performed experiments

Figure S7. iNOS and IDO signalling pathways are responsible for

mMSC‐mediated suppression of NKT cell activity in acute liver

injury. After α‐GalCer or Con A stimulation, NKT cells increased pro-

duction of IFN‐γ and TNF‐α that provoke mMSCs to express iNOS.

Under inflammatory conditions, low molecular concentrations of

highly unstable NO act locally, increasing the IDO activity, which

leads to the attenuation of NKT cell cytotoxicity
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