
Draft

HOMOCYSTEINE AND HOMOCYSTEINE-RELATED 
COMPOUNDS: AN OVERVIEW OF THE ROLES IN THE 

PATHOLOGY OF THE CARDIOVASCULAR AND NERVOUS 
SYSTEMS

Journal: Canadian Journal of Physiology and Pharmacology

Manuscript ID cjpp-2018-0112.R2

Manuscript Type: Review

Date Submitted by the 
Author: 25-Jul-2018

Complete List of Authors: Djuric, Dragan; School of Medicine University of Belgrade, Institute of 
Medical Physiology
Jakovljevic, Vladimir; Faculty of Medical Sciences University of 
Kragujevac, Physiology; I.M. Sechenov First Moscow State Medical 
University (Sechenov University), Pathology
Zivkovic, Vladimir; Faculty of Medicine, Department of Physiology
Srejovic, Ivan; Faculty of Medical Sciences, University of Kragujevac, 
Svetozara Markovica 69, 34000, Kragujevac, Serbia, Department of 
Physiology, 

Is the invited manuscript for 
consideration in a Special 

Issue:
2017 IACS Hungary

Keyword: hyperohomocysteinemia, homocysteine, cardiovascular system, 
hyperexcitability, nervous system

 

https://mc06.manuscriptcentral.com/cjpp-pubs

Canadian Journal of Physiology and Pharmacology



Draft

1

HOMOCYSTEINE AND HOMOCYSTEINE-RELATED COMPOUNDS: AN 

OVERVIEW OF THE ROLES IN THE PATHOLOGY OF THE CARDIOVASCULAR 

AND NERVOUS SYSTEMS

Dragan Djuric1, Vladimir Jakovljevic2,3, Vladimir Zivkovic2, Ivan Srejovic2

1Institute of Medical Physiology "Richard Burian" Faculty of Medicine, University of Belgrade, 

Visegradska 26, 11000 Belgrade, Serbia

2University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara 

Markovica 69, 34000 Kragujevac, Serbia

3I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of 

Human Pathology, Trubetskaya st. 8, Moscow 119991, Russia 

Correspondence should be addressed to:

Prof. Dragan Djuric, MD, PhD

Institute of Medical Physiology "Richard Burian" Faculty of Medicine, University of Belgrade

Visegradska 26, 11000 Belgrade, Serbia

Phone number: +381 11 360 71 12

Fax: +381 11 361 12 61

e-mail address: dr_djuric@yahoo.com

Page 1 of 62

https://mc06.manuscriptcentral.com/cjpp-pubs

Canadian Journal of Physiology and Pharmacology



Draft

2

List of Abbreviations:

5-MTHF - 5-methyltetrahydrofolate 

ACE - angiotensin-converting enzyme 

ANGII - angiotensin II 

BH4 - tetrahydrobiopterin 

CBS - cystathionine β-synthase 

cGMP - cyclic guanosine 3’,5’-monophosphate 

CVD - cardiovascular disease

Cys - L-cysteine 

eNOS - endothelial nitric oxide synthase

ERK - extracellular-signal-regulated protein kinase

ET-1 - endothelin-1 

FAD - flavin adenine dinucleotide 

FMN - flavin mononucleotide 

GPx - glutathione peroxidase 

GSH - reduced glutathione 

H2O2 - hydrogen peroxide 

HO-1 - heme oxygenase 1

iNOS - inducible nitric oxide synthase 

IRAK - IL-1R-associated kinase

JNK - Jun kinases/SAPK

MAPK - mitogen-activated protein kinase

MMP - matrix metalloproteinases

Page 2 of 62

https://mc06.manuscriptcentral.com/cjpp-pubs

Canadian Journal of Physiology and Pharmacology



Draft

3

MAT - methionine adenosyltransferase 

MetRS - methionyl-tRNA synthetase 

MS - methionine synthase 

MyD88 - myeloid differentiation primary response gene 88

NAC - N-acetyl-L-cysteine

NADPH oxidase - nicotinamide adenine dinucleotide phosphate-oxidase 

NF-κB - nuclear factor kappa B 

NMDA – N-methyl-D-aspartate

NOS - nitric oxide sinthase

NOS - nitric oxide

O2
- - superoxide anion 

•OH - hydroxyl radical

ONOO- - peroxynitrite

RBC - red blood cells

SAH - S-adenosylhomocysteine 

SOD - superoxide dismutase 

TIR - toll/interleukin-1 receptor

TIRAP - toll-Interleukin I receptor domain-containing adaptor protein

TLR4 - toll-like receptor 4
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ABSTRACT

Homocysteine, sulfhydryl group containing amino acid, is intermediate product during 

metabolism of the amino acids methionine and cysteine. Hyperhomocysteinema (HHcy) is used 

as a predictive risk factor for cardiovascular disorders, the stroke progression, screening for 

inborn errors of Met metabolism, and as a supplementary test for vitamin B12 deficiency. Two 

organic systems in which homocysteine (Hcy) has the most harmful effects are the 

cardiovascular and nervous system. The adverse effects of Hcy are achieved by the action of 

several different mechanisms, such as overactivation of NMDA receptors, activation of TLR-4, 

disturbance in Ca2+ handling, increased activity of NADPH oxidase and subsequent increase of 

production of reactive oxygen species, increased activity of NOS and NOS uncoupling and 

consequent impairment in NO and ROS synthesis. Increased production of reactive species 

during HHcy are related with increased expression of several proinflammatory cytokines, 

including IL-1β, IL-6, TNF-α, MCP-1, and intracellular adhesion molecule-1. All these 

mechanisms contribute to the emergence of diseases like atherosclerosis and related 

complications such as myocardial infarction, stroke, aortic aneurysm, as well as Alzheimer 

disease and epilepsy. This review provides evidence that supports the causal role for HHcy in the 

development of CVD and nervous system disorders. 

Key words: hyperohomocysteinemia, homocysteine, cardiovascular system, 

hyperexcitability, nervous system
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INTRODUCTION

Homocysteine, sulfhydryl group containing amino acid, is intermediate product during 

metabolism of the amino acids methionine and cysteine (McBreairty 2016; Selhub and Troen 

2016). Homocysteine is nonprotein amino acid which behaves as both a substrate and product of 

methionine. Homocysteine has key role in methylation cycle, within which a methyl group is 

transferred to a different substrate (Fernández-Arroyo et al. 2016). Formed homocysteine can be 

utilized in two ways: 1) homocysteine can be remethylated to methionine by catalytic activity of 

the enzyme N5, N10-methylenetetrahydrofolate reductase; 2) homocysteine can be converted to 

cysteine in a reaction that is catalyzed by cystathionine β-synthase (CBS) (Faeh et al. 2006; 

Ganguly and Alam 2015).

METABOLIC FATE OF HOMOCYSTEINE AND REALTED COMPOUNDS

Methionine is an essential amino acid, whose quantity in the body depends exclusively on the 

diet. Metabolic importance of methionine is reflected in the large number of transmethylation 

reactions, which result in transfer of one carbon methyl group to various substrates (DNA, RNA, 

proteins, phospholipids, polysaccharides, catecholamine, choline) during the methionine cycle. 

Methionine is also source in synthesis of other sulfur-containing compounds (cysteine and 

taurine). Taking into account the limitation of dietary supply of methionine, it should be paid 

attention on importance of methionine synthesis by remethylation of homocysteine (Figure 1).

During the methionine cycle, the first step is conversion of methionine to S-

adenosylmethionine (SAM), in reaction regulated by ATP and enzyme methionine 

adenosyltransferase (MAT). Methyl groups can be transferred from SAM to various substrate 

molecules in reaction catalyzed by various methyltransferases. During these reactions SAM is 
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transformed into S-adenosylhomocysteine (SAH). SAH is then hydrolyzed to adenosine and 

homocysteine in reversible reaction regulated enzyme SAH hydrolase. This point has a key role 

in the further direction of homocysteine metabolism - remethylation or transsulfuration (Ables  et 

al. 2016; Steed and Tyagi 2011).

Homocysteine undergo the remethylation process in case of methionine deficiency. This 

metabolic pathway requires folic acid as donor of methyl groups for methionine restoration 

(Pizzolo et al. 2011). Remethylation is catalyzed by methionine synthase (MS), enzyme that uses 

vitamin B12 (cobalamin) as cofactor and 5-methyltetrahydrofolate (5-MTHF) as methyl group 

donor (Figure 1). In this reaction methyl group is transferred from 5-MTHF to homocysteine, 

resulting in forming new methionine, which can be used for protein synthesis or converted to 

SAH, again.

Transsulfuration pathway occurs if methionine is present in sufficient amount. The 

crucial enzyme in this metabolic pathway of homocysteine is cystathionine β-synthase (CBS), 

enzyme that requires vitamin B6 as cofactor, and catalyzes reaction of serine and homocysteine 

to form cystathionine. In next step cystathionine is hydrolyzed by γ-cystathionase (CTH) (also 

requires vitamin B6) to cysteine and a-ketobutyrate (Ables  et al. 2016; Steed and Tyagi 2011). 

Some studies showed that exercise can affect the homocysteine metabolism by transsulfuration 

pathway and decrease homocysteine accumulation and oxidative stress (Deminice et al. 2016).

If there is impairment of remethylation and/or transsulfuration pathway, homocysteine 

will accumulate in cells, and in these cases of increasing concentrations of homocysteine, it can 

be converted to more toxic metabolite homocysteine-thiolactone (Jakubowski 2000). Enzyme 

that catalyzes this reaction in all types of cells is methionyl-tRNA synthetase (MetRS), and this 

conversion takes place in two phases. The first phase involves the activation of carboxyl group of 
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homocysteine by ATP and formation of MetRS-bound homocysteinyl adenylate. During the 

second phase the side chain thiolate displaces the AMP group from the activated carboxyl group 

of homocysteine, forming homocysteine thiolactone (Jakubowski 1999; Jakubowski 2000).

Homocysteine thiolactone, as a highly reactive compound can acylate amino groups of 

large number of proteins, forming homocysteinyl groups linked by peptide bonds to proteins, and 

thus causing the changes in their activity. On the other hand, homocysteine thiolactone can be 

hydrolyzed by action of calcium dependent enzyme, serum homocysteine thiolactonase, to 

homocysteine (Jakubowski 2000; McCully 2015).

In human plasma homocysteine is present in various forms, most of it is bound by 

disulfide bonds to plasma proteins, mainly albumins (around 70%). Approximately 20–30% of 

plasma homocysteine forms homocysteine dimers or forms dimers with other thiols, and less 

then 2% is present as free thiol (Hankey and Eikelboom 1999; Refsum et al. 1998). Thus in most 

of the investigations it was determined total plasma homocysteine, which includes all the above 

mentioned forms of homocysteine.

BASIC MECHANISMS IN DEVELOPMENT OF HYPERHOMOCYSTEINEMIA

Numerous factors can affect the total plasma homocysteine (tHcy) levels in human plasma, such 

as gender (woman have lover tHcy than men), nutrition habits (diet deficient in folate, vitamin 

B6 and B12 leads to increment of tHcy), lifestyle habits (smoking, alcohol consumption, 

sedentary way of living) (Naik et al. 2007; Nagele et al. 2011; Nilsson et al. 2014; Nygård et al. 

1995; Hildebrandt et al. 2015; Jung et al. 2015).

Hyperhomocysteinemia is a condition characterized by increased values of total plasma 

homocysteine (tHcy) levels in human plasma, above 15 μmol/L (Genest 1999). Depending on the 
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value of tHcy, hyperhomocysteinemia is classified as mild (tHcy is between 16-30 μmol/L), 

intermediate (tHcy is between 31-100 μmol/L) and severe (tHcy above 100 μmol/L) (Hankey 

and Eikelboom 1999). There are also extremely grave forms of hyperhomocysteinemia 

accompanied by the appearance of homocysteine in the urine (homocysteinuria), when tHcy are 

even greater than 500 μmol/L (Kumar et al. 2016).

Hyperhomocysteinemia is caused by imbalance in processes and factors involved in the 

metabolism of homocysteine. Hyperhomocysteinemia can result from four main disorders: 1) 

genetic abnormalities of enzymes involved in homocysteine metabolism, 2) nutritional 

deficiencies in folate, vitamin B6 and vitamin B12, 3) methionine rich diet, and 4) decreased renal 

function. Two enzymes and three vitamins play a key role in the regulation of circulating 

homocysteine levels (Nagele et al. 2011; Nilsson et al. 2014; Iacobazzi et al. 2014; Cook and 

Hess 2005; Perna et al. 2012). 

The deficiency in enzymes involved homocysteine metabolism (5,10-methylene 

tetrahydrofolate reductase (MTHFR), methionine synthase (MS), and cystathionine-β-synthase 

(CBS)) are rare cause of hyperhomocysteinemia, but can cause the most severe forms of this 

condition. The most common disorder of enzymes involved in homocysteine metabolism 

probably is polymorphism of gene coding for the MTHFR (C-to-T substitution at nucleotide 677, 

and subsequent substitution of Val with Ala), causing the production of thermo labile variant of 

enzyme (Cortese and Motti 2001). MTHFR catalyzes the reduction of 5,10-

methylenetetrahydrofolate (5,10-MTHF) to 5-methyltetrahydrofolate (5-MTHF), in a NADPH-

dependent reaction. Although this disorder usually causes mild to moderate 

hyperhomocysteinemia, the results of recent studies indicate the relationship of MTHFR 

polymorphism with other diseases (Abd-Elmawla et al. 2016; Jadavji et al. 2015). Other 
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mutations of MTHFR gene can cause much more severe forms of hyperhomocysteinemia and 

consequent disorders (Froese et al. 2016). MS plays central role in methionine cycle and folate 

metabolism. This enzyme catalyze transfer of methyl group from 5-MTHF to homocysteine 

resulting in regeneration of methionine. Decrement in MS activity will also cause the decrease in 

SAM content, which acts as methyl group donor for large number of compounds, including 

DNA, RNA, and proteins. On the other hand decrease of SAM level will increase production of 

5-MTHF, whereby MS is only enzyme in mammalian cells that can utilize 5-MTHF, which 

results in accumulation of 5-MTHF and trapping of folate in this form in cells (Watkins et al. 

2002). The most common genetic cause of severe hyperhomocysteinemia is CBS deficiency, 

which can result in 40-fold increase of tHcy and homocysteinuria in homozygous (Kumar et al. 

2016). CBS catalyses the formation of cystathionine from homocysteine and serine during 

transsulfuration pathway of homocysteine metabolism. Inhibition of CBS activity cause increase 

of methionine production, and subsequent increase level of SAM. Increased SAM content will 

decrease activity of MTHFR by feedback mechanism, thereby inhibiting remethilation pathway 

also (McCully 2015).

Hyperhomocysteinemia can also occur due to dietary insufficient intake of folate 

(vitamin B9), vitamin B12 and vitamin B6. These vitamins act as cofactors of enzymes included in 

homocysteine metabolism, and their blood levels are inversely correlated to tHcy. Because of 

that many disorders accompanied with hyperhomocysteinemia are treated with B vitamins 

complex (Kumar et al. 2016). Beside the role in maintaining of the methylation reactions, folate 

have crucial role in growth and cell division, which is of particular importance during fetal 

development (Desai et al. 2016). Even in acute application, folic acid exhibit favorable impact on 

heart and coronary circulation by increasing the outflow of NO, and reducing the production of 
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free radicals (Djurić et al. 2007). Deficiency of folate in pregnancy leads to neural tube defects 

and other developmental defects (Blom et al. 2006; Kharb et al. 2016). Additionally occurs mild 

to moderate hyperhomocysteinemia, which is also associated with a range of disorders. Vitamin 

B12 acts as cofactor for MS, and its deficiency causes impairment of remethylation of 

homocysteine, hyperhomocysteinemia and stockpiling of 5-MTHF (Hannibal et al. 2016). 

Vitamin B6 deficiency is related to impairment of CBS function, considering that act as cofactor 

of this enzyme (Taysi et al. 2015).

The high methionine intake by diet will cause the increase of tHcy level in plasma 

considering that half of methionine taken by food is converted to homocysteine (Tyagi 1999; 

Mandaviya et al. 2014). Thus the excessive dietary intake of groceries rich in methionine (meat, 

fish) can cause hyperhomocysteinemia. On the other hand, vegetarians can also develop 

hyperhomocysteinemia due to reduced intake of vitamin B12 (Pawlak  2015; Zeuschner et al. 

2013).

Kidney is organ that has central role in metabolism of homocysteine, because it contains 

all metabolizing enzymes: MS, CBS and CTH. Rise in values of tHcy is observed in early stages 

of renal failure, and during progression of the disease the values of tHcy increase (Ferechide and 

Radulescu 2009; Amin et al. 2016; Tak et al. 2016). The hyperhomocysteinemia in patients with 

terminal phases of renal failure (dialysed patients) could be the consequence of several causes: 

the decreased renal excretion of homocysteine due to impaired renal function, disturbance in 

homocysteine metabolism, alimentary deficiency in vitamins included in homocysteine 

metabolism, and undiagnosed genetic abnormalities of   metabolizing enzymes (Sette and 

Almeida Lopes 2014).
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Increased tHcy levels can also be increased due to drugs that interfere to metabolic 

pathways of folate, vitamin B6 and vitamin B12 (Faeh et al. 2006).

ROLE OF HOMOCYSTEINE IN CARDIOVASCULAR PATHOLOGY

Cardiovascular system consists of three components: heart, blood vessels and blood, and 

participates in maintaining of internal body homeostasis in many aspects: transport of oxygen, 

carbon dioxide, nutrients, metabolism waste products, and hormones to and from every single 

cell in the body. The blood vessels are composed of three separated layers: intima, media and 

adventitia. The intima consists of single layer of endothelial cells that have crucial role in 

regulation of blood flow. Media is dominantly composed of vascular smooth muscle cells, and 

represents the thickest layer. The adventitia is outer layer made of connective and fat tissue that 

have protective role of other inner layers. Blood vessels differ depending on part of circulation to 

which it belongs (arterial, capillary or venous), or of specific needs and functions of tissues and 

organs in which it is located. Blood vessels are actively involved in the regulation of blood 

pressure and blood flow by summarizing the effects of autonomous nervous system, various 

hormones and endothelial derived factors on changes of diameter. The vascular dilatation caused 

by shear stress of the blood is mediated by production of endothelium-derived relaxing factor – 

nitric oxide (NO) (Gutterman et al. 2016). NO is synthesized by NO synthase and diffuses 

through cell membranes to the vascular smooth muscle cells, increases production of cyclic GMP 

and induces the relaxation.

Cardiovascular diseases represent the diseases of heart and blood vessels and represent 

the cause of about one-third of lethal outcomes in the world (Mangge et al. 2014). Since 

cardiovascular diseases are caused by large number of factors, rarely can be extracted one 
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particular causative agent of any specific disturbance in functioning of the heart or blood vessels. 

Increased levels of homocysteine have been associated with a number of vascular complications, 

and due to this fact hyperhomocysteinemia has been classified as an independent risk factor for 

atherosclerosis and cardiovascular diseases (Wang et al. 2016; Djuric et al. 2000; Majors et al. 

1997; de Jong et al. 1998). Hyperhomocysteinema (HHcy) is used as a predictive risk factor for 

cardiovascular disorders, the stroke progression, screening for inborn errors of Met metabolism, 

and as a supplementary test for vitamin B12 deficiency (Shoamanesh et al. 2016; Pang et al. 

2016; Perry et al. 1995; Zhang et al. 2016b; Cioni et al. 2016; Bostom et al. 1999; Folsom et al. 

1998). In Framingham Offspring Study homocysteine is stated as one of four factors that 

increase risk of incident ischemic stroke (Shoamanesh et al. 2016), and earlier studies also 

showed connection between increased levels of homocysteine and stroke (Pang et al. 2016; Perry 

et al. 1995). Data from previously conducted studies have shown that elevated levels of 

homocysteine can be considered as independent risk factor for coronary heart disease (Zhang et 

al. 2016; Cioni et al. 2016; Bostom et al. 1999; Folsom et al. 1998). 

Almost fifty years ago Kilmer McCully described the case of child with elevated 

concentrations of homocysteine, cystathione and homocysteine-cysteine disulfide in plasma and 

urine and low levels of methionine in plasma (McCully 1969). During necropsy author found 

many lesions composed of loose fibrous connective tissue in medium-sized and small arteries of 

many tissues and organs, due to increased homocysteine levels, what was the basis for the 

homocysteine theory of atherosclerosis. Since then, many investigations dealing with the effects 

of homocysteine on cardiovascular tissues and roles of homocysteine in pathogenesis of 

numerous cardiovascular disorders. Experimentally and clinically data have shown a variety of 

adverse effects of homocysteine including impaired endothelium-dependent relaxation regulated 
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by nitric oxide and endothelium-derived hyperpolarizing factor, proliferation of vascular smooth 

muscle cells, increment and oxidation of low-density lipoprotein, decrease of thrombomodulin 

expression (Cheng et al. 2011; Zhang et al. 2016a; Glueck et al. 2016; Yang et al. 2016). 

Due to innately lower amount of CBS enzyme in cardiomyocytes and cell types 

represented in vascular tissues could be more sensitive to homocysteine toxicity (Chen et al. 

1999; Tyagi et al. 2009). There is no unique, comprehensive theory which includes all effects of 

Hcy on cardiovascular system, considering that this compound damages several cell types 

through multiple mechanisms (Figure 2). Furthermore, taking into account results of 

investigations that showed that Hcy-lowering therapy have not shown clinical efficacy there are 

not enough facts to support routine screening and treatment of elevated Hcy levels (Djuric et al. 

2008; Martí-Carvajal et al. 2017).

Taking into account large number of critically important functions of endothelial cells: 

platelet adhesion and coagulation, regulation of cellular growth, maintenance of vasomotor 

function and immune function, endothelial dysfunction has been referred as key pathological 

condition in generation of cardiovascular diseases (Goldenberg and Kuebler 2015; Knolle and 

Wohlleber 2016). Endothelial dysfunction can be defined as disruption of homeostasis between 

vasodilatation and vasoconstriction.

One of the most frequently mentioned mechanisms that link Hcy to endothelial 

dysfunction is oxidative stress (Tyagi N et al. 2005) (Table 1). Homocysteine induces increase in 

production of reactive oxygen and nitrogen species (ROS/RNS), and this increment in content of 

these highly reactive molecules is closely associated with endothelial dysfunction and other cell 

species in the vascular wall (Mangge et al. 2014). The major source of ROS in the cell is 

mitochondrial respiration, but under physiological conditions there is balance in production and 
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degradation of free radicals. Some other enzymes also contribute in ROS generation, like 

nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase), nitric oxide synthase 

(NOS), lipoxygenases, cytochrome P-450. Hyperhomocysteinemia is associated with production 

of different ROS: superoxide anion (O2
-), hydroxyl radical (•OH), peroxynitrite (ONOO-), 

hydrogen peroxide (H2O2), as well as other peroxides and hypochlorous acid, and their organic 

analogues (Papatheodorou and Weiss 2007). Within the investigation where the coronary and 

mesenteric arteries were incubated with methionine it has been revealed the role of angiotensin-

converting enzyme (ACE) and angiotensin II (ANGII) signaling pathway in activation of 

NADPH oxidase and increase in O2
- production (Huang et al. 2015). The link between ACE, 

ANGII signaling and NADPH oxidase have been noticed earlier, but in this study it was 

described the role of homocysteine in activation of ACE (Huang et al. 2012). Namely, 

homocysteine induces homocysteinylation of ACE, which in turn have greater activity of this 

enzyme, followed by increased transduction by ACE/ANG II/AT1R signaling pathway, and 

increased activation of NADPH oxidase and consequent production of O2
-.

On the other hand homocysteine induces increased expression of different forms of 

NADPH oxidase (Table 1). NOX4 is isoform of NADPH oxidase highly represented in the 

kidney, and incubation of tubular cells with homocysteine showed increased production of O2
- 

(Hwang et al. 2011). Proposed underlying mechanism was increment expression of NOX4 by 

homocysteine. The above mentioned changes induced by homocysteine were abolished by 

supplementation of folic acid, and consequent decrease of homocysteine level in 

hyperhomocysteinemic rats. Murray and colleagues indicated to another link between NOX4 and 

homocysteine metabolism (Murray et al. 2015). Results of their study showed that activity of 

NOX2 and NOX4 derived reactive species have pivotal role in balancing between remethylation 
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and transsulfuration pathways. In NOX4 deficient mice directing homocysteine through 

transsulfuration pathway was reduced, as well as amount of synthesized cisteine, which is 

necessary for the synthesis of glutathione, a basic endogenous antioxidant (Figure 1). Namely, 

half of the required amount of cisteine is provided from homocysteine through transsulfuration 

pathway, and therefore, significant reduction of cisteine production from homocysteine has 

considerable metabolic consequences (Mosharov et al. 2000). Furthermore, Smith and coauthors 

shoved that inhibition of NOX4 worsens the dilation induced by acetylcholine in blood vessels 

previously exposed to homocysteine thiolactone (Smith et al. 2015). Different NADPH oxidase 

isoform, NOX2 is the mostly represented in the endothelium. Incubation of Human Umbilical 

Vein Endothelial Cells (HUVEC) with homocysteine induced significant increase in NOX2 

protein expression, as well as increase in nuclear localization of p47phox (Sipkens et al. 2013). 

These changes induced by homocysteine were correlated with increased production of O2
-, 

accumulation of nitrotyrosine residues and apoptosis of endothelial cells. Similar changes were 

detected in cardiomyocytes (Sipkens et al. 2011). Based on these facts, it can be concluded that 

homocysteine increases the expression of different isoforms of NADPH oxidase, as well as 

activation this enzyme, resulting in both cases in increase of O2
- content.

Increased production of O2
- leads to decreased bioavailability of nitric oxide (NO), due to 

reaction of these two molecules and production of highly reactive peroxynitrite (ONOO-). NO is 

synthesized by three isoforms of enzyme nitric oxide synthase (NOS): endothelial NOS (eNOS 

or NOSI), inducible NOS (iNOS or NOSII) and neuronal NOS (nNOS or NOSIII). eNOS and 

nNOS are constitutive enzymes and their activity is regulated by changes in Ca2+ content in the 

cytoplasm. All three isoforms generate NO from L-arginine in the presence of O2 and NADPH. 

Also as cofactors are necessary flavin mononucleotide (FMN), flavin adenine dinucleotide 
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(FAD), and tetrahydrobiopterin (BH4). BH4 is crucial for NOS function because it binds NOS 

monomers to form dimers which contain two reductase domains ‘coupled’ to another pair of 

oxygen domains (Lee et al. 2016). NOS monomers generate O2
- instead of NO, and this 

‘uncoupled’ enzyme represents a ROS producer. The classical signaling pathway of NO includes 

activation of soluble guanylyl cyclase and production of cyclic guanosine 3’,5’-monophosphate 

(cGMP). NO acts on autocrine or paracrine manner. In study on HUVECs increased 

homocysteine induced decrement in NO production, and also increment in production of 

endothelin-1 (ET-1), as one of the most potent vasoconstrictor (Tian et al. 2016). On the other 

hand homocysteine can increase production of NO by upregulation of iNOS by proinflammatory 

cytokines, which synthesis is amplified by homocysteine. But in these conditions homocysteine 

induces increased expression of iNOS, and increment of O2
- production by uncoupling of iNOS 

(Duan et al. 2006).

Recently, it has been indicated potentially new mechanism involved in Hcy induced 

changes in cardiovascular system (CVS) which implies Toll-like receptor 4 (TLR4) (Table 1) 

(Figure 3). TLR4 belongs to the Toll-like receptor (TLR) family, and their roles in pathogenesis 

of CVD are intensively studied. Namely, TLR4, that normally play a role in the innate immune 

response and recognize viral or bacterial antigen motifs, are expressed in almost all cells 

represented in CVS (Becher et al. 2018) and participate in pathogenesis of atherosclerosis (den 

Dekker et al. 2010), ischemic heart disease (Satoh et al. 2016), heart failure (Liu et al. 2015) or 

aorta aneurism (Lai et al. 2016). Results of Jeremic and colleagues indicates that ablation of 

TLR4 in HHcy mice diminish changes induced by increased levels of Hcy such as left 

ventricular hypertrophy, increased oxidative stress and decreased antioxidative capacity, and 

mitochondrial fission (Jeremic et al. 2017a). Same authors provided results on the basis of which 
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it can be concluded that TLR4 during HHcy mediate in predominance of mitochondrial fission in 

endothelial cells, and consequent oxidative stress, endothelial cell loss and dysfunction, 

increased collagen deposition, which ultimately causes hypertension (Jeremic et al. 2017b). On 

the other hand, mutation of TLR4 alleviated vascular inflammation and prevented hypertension 

(Familtseva et al. 2016). Molecular mechanisms and signaling pathways involved in above 

mentioned changes in CVS induced by HHcy trough TLR4 are probably same or similar to those 

that exist in other cells and tissues. Intracellular domain of TLR4, Toll/interleukin-1 receptor 

(TIR) domain, activates several adopter proteins such as: myeloid differentiation primary 

response gene 88 (MyD88), Toll-Interleukin I receptor domain-containing adaptor protein 

(TIRAP), TIR domain-containing adaptor protein inducing interferon-b (TRIF), TRIF-related 

adaptor molecule (TRAM), which actually represents the first step of TLR signal transduction 

(Goulopoulou et al. 2016). MyD88 further engages IL-1R-associated kinases (IRAKs) which 

initiate activation of nuclear factor kappa light-chain-enhancer of activated B cells (NF-κB) and 

production of cytokines. Another, TRIF pathway, requires TRAM, which through activation of 

several kinases (receptor-interacting serine/threonine-protein 1 (RIP-1) kinase and transforming 

growth-factor-b-activated kinase 1 (TAK-1)) activates NF-κB and mitogen-activated protein 

kinase (MAPK), and overall result is increment of expression of proinflammatory genes and 

synthesis of inflammatory cytokines (Figure 3) (De Nardo. 2015; Li et al. 2014).

Effects of Hcy and its different forms on heart, coronary circulation and heart tissue 

oxidative balance were intensively investigated by Jakovljevic and Djuric. In study dealing with 

correlation between plasma total Hcy (tHcy) level and coronary atherosclerosis, it has been 

shown that tHcy was significantly higher in patients with angiographically conformed coronary 

artery disease (CAD) compared to healthy control (Mitrovic et al. 2002). Besides that, in group 
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of patients with CAD level of tHcy more frequently exceeded the value of 15 mmol/l, which was 

also more common with older people, and there was positive correlation between increased tHcy 

level and uric acid level. In study that examined the effects of various Hcy-related compounds 

(DL-Hcy, DL-Hcy thiolactone-hydrochloride (TLHC) and L-Hcy TLHC) the authors 

emphasized their harmful effects on cardiac function during acute administration in isolated rat 

heart (Zivkovic et al. 2012). During acute application of DL-Hcy TLHC simultaneous inhibition 

of production of the gasotransmitters (NO, H2S and CO) additionally exacerbated the effects of 

DL-Hcy TLHC (Zivkovic et al. 2013). The inhibition of CO production expressed most 

deleterious effects in comparison to deprivation of NO and H2S production. Furthermore, results 

of another investigation showed protective effects of H2S in changes induced by DL-Hcy 

(Stojanovic et al. 2016a). Namely, application of DL-propargylglycine, as an inhibitor of H2S 

formation, decreased all cardiodynamic parameters and increased the concentration of O2
-, which 

was even more pronounced with the simultaneous application with DL-Hcy, which leads to the 

conclusion that DL-Hcy shows a lower pro-oxidative effect in the presence of H2S. It is also 

shown that previously mentioned Hcy-related compounds (DL-Hcy, DL-Hcy TLHC and L-Hcy 

TLHC) impair oxygen consumption of rat heart tissue homogenate, as well as the inclusion of 

the gasotransmitters NO, H2S and CO in these effects (Uzelac et al. 2017).

Results of several investigations even few decades ago indicated the link between Hcy 

and N-methyl-D-aspartate (NMDA) receptors (Table 1). NMDA receptor belongs to the 

heterogeneous family of ionotropic glutamate receptors, whose roles are best known within the 

function of the nervous system, but also in has been shown that functional NMDA receptors are 

expressed in a variety of non-neuronal cells, among others in the cells of the cardiovascular 

system (Gill et al. 1988; Chen et al. 2005; Doronzo et al. 2010). Functional NMDA receptors are 
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heterotetramers that contain two obligatory GluN1 subunits and two more GluN2 and/or GluN3 

subunits (Vyklicky et al. 2014; McGee and Abdel-Rahman. 2016). However, Western Blot 

analysis in the work of Leung and colleagues have shown that GluN2 subunits are not present in 

adult rat heart, while GluN1 subunits are expressed in the atrium and ventricle, which caused 

speculation that the NMDA receptors at the heart could be composed of homooligomeric GluN1 

subunits (Leung et al. 2002). On the other hand other study showed transient expression of 

GluN2B subunit in perinatal cardiac myocytes (Seeber et al. 2004), while previous research have 

indicated the presence of GluN2C subunit in the heart (Lin et al. 1996). NMDA receptors in the 

heart have important role regulation of electrical activity of conductive system of the heart, and 

therefore could play a role in arrhythmogenesis (D'Amico et al. 1999; Shi et al. 2014). Hcy, as 

NMDA receptor activator, induced shortening of SA nodal recovery time and AV nodal effective 

refractoriness, causing proarrhythmogenic condition, while Mg2+, as endogenous inhibitor of 

NMDA receptors mitigated changes induced by HHcy (Soni et al. 2016). Several studies 

confirmed anti-arrhythmic effects of NMDA receptor blockers, such as MK-801. NMDA 

receptor inhibition reduced the likelihood of arrhythmias in conditions of ischemia and 

reperfusion (Sun et al. 2014) and increased heart rate variability, which also has anti-arrhythmic 

properties (Shi et al. 2017). It is also shown that NMDA receptors, at least partially, participate 

in changes of heart function induced by Hcy (Rosenberger et al. 2006) (Figure 3). In fact, most 

of the studies dealing with effects of the NMDA receptors modulation on the cardiac function 

actually examined the influence of NMDA receptors in different parts of CNS on heart. Aim of 

research by Srejovic and colleagues was to determine the role of NMDA receptors in cardiac 

function, as well as the possible role played by the oxidative stress induced by the 

overstimulation of NMDA receptors in isolated rat heart induced by acute application of DL-Hcy 
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TLHC (Srejovic et al. 2015). Authors combined application of DL-Hcy TLHC and MK-801 

(NMDA receptor blocker) and based on results of this research it is clear that NMDA receptors 

in heart do have role in regulation of cardiac function, as well as that Hcy achieve its effect 

through NMDA receptors. Similar results were achieved by another NMDA receptor antagonist, 

memantine, and ifenprodil, as negative modulator of NMDA receptor function (Srejovic et al. 

2017). There are several proposed mechanisms and signaling paths that mediate in effects 

induced by NMDA receptor activation. One of the most important features of NMDA receptors, 

which make them unique in relation to other ionotropic glutamate receptors, are high 

conductivity for Ca2+ (Vyklicky et al. 2014) (Figure 3). Increased Ca2+ inflow and overload due 

to activation of NMDA receptors induces disruption of Ca2+ homeostasis and consequent ROS 

production, disturbances in mitochondrial function and pro-apoptotic environment in the cell 

(Gao et al. 2007). Increased Ca2+ influx activates phosphoinositide 3-kinase and protein kinase B 

(PI3K-Akt signaling pathway), which further induces phosphorylation and consequent activation 

of protein kinase C (PKC), NOX and mitogen-activated protein kinase (MAPK): 1) extracellular-

signal-regulated protein kinases (ERKs), 2) Jun kinases/SAPK (JNKs) and 3) p38 (McGee and 

Abdel-Rahman. 2014; McGee and Abdel-Rahman. 2016). Increased NOX activity induces 

increased production of ROS. Increment of ROS production additionally activates MAPK, which 

further activates NF-κB and proinflamatory environment (Pang et al. 2014). Furthermore, Ca2+ 

overload and activation of PI3K induce increased production of NO by NOS (Simon et al. 2014). 

But, as indicated above, NO in conditions of increased synthesis of O2
-, forms ONOO-, while 

pro-inflammatory cytokines induces increased expression of iNOS, uncoupling of NOS and 

increased production of O2
- by NOS, thus creating a vicious circle (Mangge et al. 2014, Campos-

Mota et al. 2017).
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Bearing in mind that inflammation is important factor in pathogenesis of cardiovascular 

diseases, a certain number of papers dealt with role of Hcy in induction of inflammation and 

showed that HHcy is accompanied with upregulation of several pro-inflammatory cytokines, 

including IL-1β, IL-6, TNF-α, MCP-1, and intracellular adhesion molecule-1 (Table 1). NMDA 

receptors are also present in almost all blood cells so that their activation may have various 

effects on the signaling pathways in these cells. Activation of NMDA receptors in red blood cells 

(RBC) induces increase in Ca2+ content and thus changes properties of RBCs such as cell 

volume, membrane steadiness, and capacity to transfer O2 (Makhro et al. 2017; Makhro et al. 

2013). On the other hand, Reinhart and coworkers indicated that neither activation nor inhibition 

has any influence biophysical properties of RBCs, such as deformability and aggregability 

parameters (Reinhart et al. 2011). Namely, treatment of RBCs with homocysteic acid, and 

combination of memantine and homocysteic acid did not change any of observed parameters. 

Bearing in mind that plasma concentrations of Hcy in healthy population are below 15 µmol/l, in 

cases of severe HHcy, when Hcy concentration exceeds 100 µmol/l, homocysteine and 

homocysteic acid probably have a dominant role in the regulation of NMDA receptor activity in 

the blood cells (Adragna 2010). The presence of the NMDA receptors in several types of 

immune competent cells was also confirmed, suggesting their role in regulation of immune 

response and inflammation (Boldyrev et al. 2012). Similar to the aforementioned mechanisms in 

other types of cells, activation of NMDA receptors by homocysteine or homocysteic acid in cells 

of immune system induces Ca2+ accumulation, and consequent increase of reactive species 

production and oxidative stress, and activation of MAPK (Boldyrev et al. 2013). Activation of 

neutrophils causes increased expression of NMDA receptors on their membranes, so in the 

conditions of HHcy neutrophils generates large amount of ROS and easier undergo to 
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degranulation process (Bryushkova et al. 2011). These changes produce pro-inflammatory 

environment and enhance the production of pro-inflammatory cytokines such as TNF-α, 

interleukin-1β and interleukin-6 in neutrophils, monocytes or macrophages via NF-κB, ERK, and 

P2X7 stimulation (da Cunha et al. 2010; Zanin et al. 2015). Augmented production of pro-

inflammatory cytokines and activation of immune cells activates both necrotic and apoptotic cell 

death. Platelets also express NMDA receptors, and results of several studies suggest their 

significant role in the functioning of platelets. NMDA receptor antagonists, such as MK-801 and 

memantine, induce inhibition on platelet aggregation and activation, while NMDA receptor 

agonists increased aggregation in the presence of low concentrations ADP with an increase in 

Ca2+ content in platelets (Kalev-Zylinska et al. 2014). In accordance with the above fact, it has 

been shown that Hcy causes an increase in whole blood platelet aggregation, as well as in 

production of O2
- (Karolczak et al. 2017). Antagonists of NMDA receptors induced reduced 

increment of platelet aggregation induced by Hcy, while increased production of O2
- remained 

unchanged, suggesting other possible mechanism involved, independent of Ca2+ entry.

Activation of ERK and Akt by Hcy induces increment of expression of matrix 

metalloproteinases (MMP) in macrophages (Lee et al. 2012) (Figure 3) (Table 1). Activity of 

MMPs lead to destruction of extracellular matrix which may result in a rupture of the 

atherosclerotic plaque. It has also been shown that it is in patients ascending aortic aneurysms 

there is positive correlation between serum level of Hcy and activity of MMP-3 and MMP-9 

(Tsarouhas et al. 2011; Vacek et al. 2012). 

Literature data suggest that homocysteine might predispose to cancer is the activation of 

pro-inflammatory genes due to region-specific hypomethylation. Results of in vitro and in vivo 
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experiments have suggested that homocysteine might provoke intestinal mucosal injury by 

modulating TNF-α-mediated cytotoxicity (Oussalah et al. 2011; McCully 2009).

Martí-Carvajal and colleagues presented updated review regarding homocysteine-

lowering interventions and their effects on prevention of cardiovascular events, as well as 

reduction of all-cause mortality (Martí-Carvajal et al, 2017). Authors of this third update of the 

Cochrane review shoved that there were no differences in effects of homocysteine-lowering 

interventions in the form of supplements of vitamins B6, B9 or B12 given alone or in combination 

comparing with placebo on myocardial infarction, death from any cause or adverse events. In 

terms of stroke, this review found a small difference in effect favoring to homocysteine-lowering 

interventions in the form of supplements of vitamins B6, B9 or B12 given alone or in combination 

comparing with placebo. Authors suggested there was a need for additional trials that would be 

more comprehensive and in which the effects of antihypertensive therapy only should be 

compared with combined therapy by antihypertensive drugs and homocysteine-lowering 

maneuvers, as well as the effects of different doses of homocysteine-lowering substances.

HOMOCYSTEINE AND RELATED COMPOUNDS, NERVOUS SYSTEM AND 

HYPEREXCITABILITY

In addition to the previously mentioned fact that Hcy represent independent risk factor for 

cardiovascular diseases, there is a growing interest in examining the role of Hcy in the 

pathogenesis of neurological disorders (Table 2). For instance, HHcy is brought into the 

connection to cognitive decline, it has been practically demonstrated that there is a positive 

correlation between increased values of Hcy and reduction of cognitive functions (Setién-Suero 

et al. 2016). One of the most studied form of cognitive impairment certainly is Alzheimer's 
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disease, where it has been shown that Hcy is one of the risk factors (Janel et al. 2017; Moretti et 

al. 2017). Some authors indicate the correlation between pathophysiological changes in the 

vascular system and nervous disorders. In study by Moretti and colleagues it was shown that low 

vitamin D concentrations and HHcy are common characteristics in two types of dementia, 

subcortical vascular and Alzheimer (Moretti et al. 2017). There are probably similar pathogenetic 

mechanisms by which Hcy induces changes in the cardiovascular and nervous system. Longoni 

and coworkers analyzed changes in glial reactivity in rat astrocyte cultures induced by Hcy 

(Longoni et al. 2017). Results of this study showed that Hcy induced decrease in the activities of 

Na+, K+ ATPase, superoxide dismutase (SOD), and glutathione peroxidase (GPx), as well as in 

the reduced glutathione (GSH) content. On the other hand Hcy induced increase in transcription 

for nuclear factor kappa B (NFκB) and decrease in expression of heme oxygenase 1 (HO-1). 

Similarly to the abovementioned changes induced by Hcy in cardiovascular system, there is 

analogous pattern in nervous tissues. Namely, Hcy induces disruption of blood-brain barrier 

trough NMDA receptor overstimulation and consequent excitotoxicity (Kamat et al. 2016). 

Activation of MMPs, due to disturbed Ca2+ signaling during HHcy, further disrupts tight 

junctions alleviating damage of blood-brain barrier. Administration of MK-801 and H2S 

mitigates changes induced by Hcy (Kamat et al. 2013). Furthermore, Hcy induces inflammation 

in nervous tissue via NF-κB and increases pro-inflammatory cytokines, (TNF-α, IL-1β and IL-6), 

chemokine and prostaglandin E (da Cunha et al. 2010; da Cunha et al. 2012).

A group of researchers gathered around Djuric and Stanojlovic carried out a large number 

of studies dealing with investigation of the role of Hcy in the pathophysiology of epilepsy and 

seizures. Stanojlovic and colleagues examined effects of increasing doses of DL-homocysteine 

thiolactone (DL-Hcy TLHC) on brain electrical activity (Stanojlović et al. 2009). 
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Electroencephalographic (EEG) recordings showed the two types of seizures, the coexistence of 

convulsive and nonconvulsive epilepsy. The results of this investigation indicated that acute 

administration of DL-Hcy TLHC significantly changes neuronal activity, EEG tracings, and 

behavioral responses. The same research group examined the effect of ethanol on changes in the 

nervous activity induced by DL-Hcy TLHC (Rasić-Marković et al. 2009a). Results indicated that 

ethanol alone increased EEG spectral power density with a marked spectrum shift toward low 

frequency waves. On the other hand, highest applied dose of ethanol in combination with DL-

Hcy TLHC, actually decreased EEG spectral power density, while lower doses had opposite 

effects. These data depict complex scheme of influence of ethanol on CNS functions and 

interrelationship of ethanol and epilepsy. The aim of next investigation was to assess the effects 

of MK-801, as noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, and 

ifenprodil, as negative modulator of NMDA receptors, in order to elucidate role of NMDA 

receptors in Hcy-induced seizures (Rašić-Marković et al. 2011). Administration of MK-801 30 

minutes prior to DL-Hcy TLHC significantly decreased number of seizure episodes, and also 

showed tendency to reduce incidence of convulsions, latency to the first seizure onset and the 

severity of seizure. Ifenprodil had different effect, mitigation of latency to the first seizure onset 

and increment of number of seizure episodes. These results indicate that MK-801 has potentially 

anticonvulsive effect and that NMDA receptors perhaps could be the target for seizures 

reduction. In study by same experimental group conducted by Hrncic and coauthors it was 

assessed the relationship between sleep deprivation and epilepsy (Hrncić et al. 2013). Selective 

deprivation of paradoxical sleep in adult rats induced changes in EEG and behavior which can be 

characterized as factors that could facilitate Hcy-induced seizures in rats. On the other hand, 

results of another study pointed out beneficial impact of physical activity on Hcy-induced 
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seizures in rats (Hrncic et al. 2014a). Experimental group of rats that which were physically 

active expressed increased seizure latency and decreased number of seizures, compared to 

sedentary rats treated with Hcy. In the same time, it has been shown that exercise induces 

increment of antioxidant capacity which can be, at least partially, the cause of the positive effect 

of physical activity on epileptogenesis. The subject of the next study was the assessment of 

relationship between Hcy, oxidative stress and behavioral changes (Hrncic et al. 2016). HHcy in 

rats was induced by methionine-enriched diet and oxidative stress was altered in different 

regions of brain. HHcy induced anxiety was associated with simultaneous increase of index of 

lipid peroxidation in the cortex and caudate nucleus, which leads to the conclusion that 

proanxiogenic effects of HHcy could be consequence of oxidative stress in the rat brain. 

The importance of vitamin B complex (folate, B6 and B12) in Hcy is well known (Figure 

1) so there is a question about the effects of vitamin B supplementation on the epileptogenic 

potential of Hcy. Results of study aimed to compare the effects of co-administration with folic 

acid (vitamin B9) and Hcy and Hcy alone on seizures incidence, median number of seizure 

episodes and severity in adult rats showed no difference in these two groups, but activity of Na+, 

K+ ATPase and Mg²⁺ ATPase was significantly increased (Rasic-Markovic et al. 2015). It has 

been previously proven that DL-Hcy TLHC strongly inhibits activity of Na+, K+ ATPase in 

various parts of the brain, such as hippocampus, cortex and brain stem of rats (Rasić-Marković et 

al. 2009b). This blockade of Na+, K+ ATPase in mentioned brain structures certainly play 

important role in convulsive and excitotoxic features of Hcy. In study where folic acid was 

applied with L-arginine in subchronic fashion, there was a tendency to increase latency and 

decrease the number of seizure episodes in Hcy treated rats (Rasic-Markovic et al. 2016). Based 

on this data it can be concluded that folic acid can exhibit some anticonvulsive effects. 
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Previously published study confirms this assertion (Marković et al. 2011). Namely, 

administration of folic acid 30 minutes prior to DL-Hcy TLHC decreased the incidence of 

seizures and increased latency, as well as mean total spectral power density in EEG recording. 

According to results of other studies where supplementation with folic acid alone did not 

produce desired results, namely plasma levels of Hcy were decreased, but cellular levels were 

unchanged, arises conclusion that it would be rationale to investigate effects of group of 

metabolically interconnected vitamins to pathological changes caused by Hcy (Smith et al .2013, 

Mei et al. 2010). Although vitamins B6, B12 and folic cycle first foray into focus due to Hcy 

metabolism, it is crucial to emphasize that the other B vitamins have important role in Hcy 

metabolism, niacin (B3) as cofactor for the enzymes in the folate and methionine cycles 

(dihydrofolate reductase and S-adenosylhomocysteine synthase), and riboflavin (B2) as cofactor 

for methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) 

(McCormick 2007; Marashly and Bohlega 2017; Kennedy 2016). Morris and coworkers showed 

that folic acid have protective impact on cognitive function only if level of vitamin B12 was 

within physiological range; if vitamin B12 was deficient high folate status potentiated detrimental 

effects of vitamin B12 deficiency (Morris et al. 2007).

In order to further dissect the mechanism of deleterious effect of Hcy in brain function 

Djuric and Stanojlovic research group also explored the role of gasotransmitters, primarily nitric 

oxide (NO) (Hrnčić et al. 2012; Stojanović et al. 2015). In the research regarding the effect of L-

arginine, as NO precursor, and L-NAME, as nitric oxide synthase (NOS) inhibitor, it has been 

shown that L-arginine, in a dose-dependent manner, decreases lethality, seizure incidence and 

the number of seizure episodes and increases latency time to the first seizure induced by DL-Hcy 

TLHC, while, on the other hand L-NAME have had quite opposite effects (Hrncić et al. 2010). 
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The results of this study further clarified the epileptogenic effects of Hcy and pointed to the 

anticonvulsant significance of NO. In next study authors assessed effects of 7-nitroindazole, as 

selective inhibitor of neuronal NOS (nNOS), in Hcy induced seizures and singled out nNOS as a 

key enzyme in protective effects of NO (Hrncić et al. 2012a). Namely, 7-nitroindazole increased 

the seizure incidence and the number of seizure episodes per rat, as well as severity of Hcy-

induced seizures. Beside the nNOS, inducible form of NOS (iNOS) also has important role in 

brain NO signaling. Block of iNOS by aminoguanidine shortened seizure latency time and 

augmented the number and severity of seizures induced by Hcy (Hrnčić et al. 2014b). 

Aminoguanidine also potentiated the proepileptogenic changes in EEG recording, such as 

number and duration of spike and wave discharges. Besides that, Hcy also showed propensity to 

alter the activity of acetylcholinesterase activity in rats with HHcy (Hrnčić et al. 2014c). In that 

manner Hcy could be considered as neuromodulator, bearing in mind its indisputable 

hyperexcitability properties (Hrncic et al. 2018; Hrncic et al. 2014d).

OTHER SULFUR CONTAINIG COMPOUNDS: PURPOSES AND ROLES

Beside Hcy and its various metabolites there are many other sulfur-containing compounds with 

the most diverse roles in the body. The substances of the highest significance that contain sulfur 

are amino acids methionine, cysteine, and taurine. Methionine and cysteine are proteogenic 

amino acids involved in structure of various proteins who often have crucial roles in 

physiological processes (Djuric 2018). Derivatives of sulfur-containing amino acids, glutathione 

and N-acetylcysteine, represent powerful intrinsic antioxidant agents which are continuously 

involved in the neutralization of free radicals (Colovic et al. 2018). Furthermore, sulfur-

containing amino acids have chelating site for heavy metals and because of that have beneficial 
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effects in eliminating toxic metals. In that sense, their application with chemotherapeutic drugs 

such as cisplatin seems quite rational. Although cisplatin is irreplaceable and the drug of first 

choice in many malignances, cisplatin therapy is accompanied large number of side effects, such 

as nephrological, hepatological, gastrointestinal, reproductive, hematological, cardiological, etc. 

Almost all of mentioned side effects are consequence of oxidative damage induced by cisplatin 

in various tissues. Taking into account information available so far, sulfur-containing amino 

acids could be used as protective supplementation in prevention adverse effects of metal-

containing antineoplastic drugs because they do not interfere with antitumor properties, are not 

toxic unless they are taken in excessive amounts, and have strong antioxidative potential (Rosic 

et al. 2018). L-cysteine (Cys) and N-acetyl-L-cysteine (NAC) exhibit protective role against 

deleterious effect of Hcy, although they all contain sulfur. For instance, colon damage induced 

by high intake of methionine and consequent HHcy, could be prevented with Cys and NAC 

(Stojanović et al. 2018a). Quite similar effects were achieved in liver tissue, where Cys and NAC 

improved antioxidative defense by increasing the activity of antioxidant enzymes and decreased 

tissue damage induced by subchronic methionine exposure (Stojanović et al. 2018b). On the 

other hand, HHcy induced by methionine as well as DL-Hcy TLHC in acute administration had 

opposite effect in mentioned tissues (Stojanović et al. 2016b, Stojanović et al. 2017).
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CONCLUSION

As an integral component of several disorders including cardiovascular and 

cerebrovascular diseases, neurodegeneration, liver steatosis, hyperhomocysteinemia can result 

from deficiencies of vitamin cofactors (B6, B12, folic acid) required for Hcy metabolism and/or 

from genetic disorders of its metabolism. This review provides evidence that supports the causal 

role for HHcy in the development of CVD and nervous system disorders, and outlines several 

cellular and molecular mechanisms by which Hcy induces disorders of the function of these two 

organic systems. These mechanisms include oxidative stress, inflammation, ER stress, DNA 

hypomethylation, homocysteinylation, Hcy thiolactone levels and mitochondrial dysfunction. In 

the future, further studies are much needed to provide more convincing evidence demonstrating 

the pathogenic role of HHcy in the progression of CVD and nervous system disorders in animal 

studies and clinical studies. Beside mentioned facts, it remains to be examined whether Hcy is a 

causative agent or marker of damage.
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Table 1. Mechanisms mediating the harmful effects of homoscysteine in cardiovascular 

system.

Proposed mechanism Relevant papers
Activation of Toll-like receptor 4 Jeremic N et al. 2017a; Jeremic N et al. 2017b.
Overactivation of NMDA receptors Gao et al. 2007.
Induction of oxidative stress Tyagi N et al. 2005.
Upregulation of NADPH oxidase and increase 
in O2

- production
Huang et al. 2015; Liu et al. 2015.

Activation of ACE and increase in production 
of ANGII

Huang et al. 2012.

Disturbed NO generation Topal et al. 2004.
Induction of inflammation Boldyrev et al. 2013; Zanin et al. 2015; 

Bryushkova et al. 2011.
Increment of expression of MMP Lee et al. 2012; Tsarouhas et al. 2011; Vacek 

et al. 2012.
Impairments of the conduction system of the 
heart function

Soni et al. 2016; Sun et al. 2014.
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Table 2. Mechanisms mediating the harmful effects of homoscysteine in nervous system.

Proposed mechanism Relevant papers
Decrease of Na+, K+ ATPase activity Longoni et al. 2017.
Seizures induction Stanojlović et al. 2009.
Induction of inflammation da Cunha et al. 2010; da Cunha et al. 2012.
Overstimulation of NMDA receptors Kamat et al. 2016; Kamat et al. 2013.
Disturbances in NO signaling Hrncić et al. 2010; Hrncić et al. 2012a; Hrnčić 

et al. 2014b.

Page 57 of 62

https://mc06.manuscriptcentral.com/cjpp-pubs

Canadian Journal of Physiology and Pharmacology



Draft

58

Figure 1. Major metabolic pathways of homocysteine and sulfur containing amino acids.

Figure 2. Personal research experience on the effects of homocysteine and homocysteine 

thiolactone compounds on cardiovascular system.

Figure 3. Mechanisms and pathways involved in homocysteine induced deleterious effects in 

cardiovascular system.

ERK - extracellular-signal-regulated protein kinase; IRAK - IL-1R-associated kinase; JNK - Jun 

kinases/SAPK; MAPK - mitogen-activated protein kinase; MMP - matrix metalloproteinases; 

MyD88 - myeloid differentiation primary response gene 88; NADPH oxidase - nicotinamide 

adenine dinucleotide phosphate-oxidase; NF-κB - nuclear factor kappa B; NMDA - N-methyl-D-

aspartate; NOS - nitric oxide sinthase; NOS - nitric oxide; RBC - red blood cells; TIR - 

toll/interleukin-1 receptor; TIRAP - toll-Interleukin I receptor domain-containing adaptor 

protein; TLR4 - toll-like receptor 4; TRAM - TRIF-related adaptor molecule; TRIF - TIR 

domain-containing adaptor protein inducing interferon-b; TNF-α - tumor necrosis factor alpha
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