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FINITE DIFFERENCE APPROXIMATION FOR

PARABOLIC INTERFACE PROBLEM WITH

TIME-DEPENDENT COEFFICIENTS

Bratislav V. Sredojević and Dejan R. Bojović

Abstract. The convergence of difference scheme for two-dimensional initial-
boundary value problem for the heat equation with concentrated capacity
and time-dependent coefficients of the space derivatives, is considered. An

estimate of the rate of convergence in a special discrete W̃
1,1/2

2
Sobolev norm,

compatible with the smoothness of the coefficients and solution, is proved.

1. Introduction

The finite-difference method is one of the basic tools for the numerical solution
of partial differential equations. In the case of problems with discontinuous coef-
ficients and concentrated factors (Dirac delta functions, free boundaries, etc.) the
solution has a weak global regularity and it is impossible to establish convergence
of finite difference schemes using the classical Taylor series expansion. Often, the
Bramble–Hilbert lemma takes the role of the Taylor formula for functions from the
Sobolev spaces [6,8,12].

Following Lazarov et al. [12], a convergence rate estimate of the form

‖u− v‖W k
2,h

6 Chs−k‖u‖W s
2
, s > k,

is called compatible with the smoothness (regularity) of the solution u of the
boundary-value problem. Here v is the solution of the discrete problem, h is the
spatial mesh step, W s

2 and W k
2,h are Sobolev spaces of functions with continuous

and discrete argument, respectively, C is a constant which doesn’t depend on u
and h. For the parabolic case typical estimates are of the form

‖u− v‖
W

k,k/2

2,hτ

6 C(h+
√
τ )s−k‖u‖

W
s,s/2
2

, s > k,
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where τ is the time step. In the case of equations with variable coefficients the
constant C in the error bounds depends on norms of the coefficients (see, for ex-
ample, [1,8,18]).

One interesting class of parabolic problems model processes in heat-conducting
media with concentrated capacity in which the heat capacity coefficient contains a
Dirac delta function, or equivalently, the jump of the heat flow in the singular point
is proportional to the time-derivative of the temperature [14]. Such problems are
nonstandard and the classical tools of the theory of finite difference schemes are
difficult to apply to their convergence analysis.

In the present paper a finite-difference scheme, approximating the two-dimen-
sonal initial-boundary value problem for the heat equation with concentrated capac-
ity and time dependent coefficients is derived. Special Sobolev norm (corresponding

to the norm W
1,1/2
2 for a classical heat-conduction problem) is constructed. In this

norm, a convergence rate estimate, compatible with the smoothness of the solution
of the boundary value problem, is obtained.

Note that the convergence to classical solutions is studied in [5, 19]. One-
dimensional parabolic problem with weak solution is studied in [2, 3, 10]; 2D par-
abolic problem with variable coefficients (but not time-dependent) is considered
in [3,11].

2. Preliminary results

Let H be a real separable Hilbert space endowed with inner product (·, ·) and
norm ‖ · ‖ and S-unbounded self-adjoint positive definite linear operator, with
domain D(S) dense in H . It is easy to see that the product (u, v)S = (Su, v),
u, v ∈ D(S) satisfies the inner product axioms. The closure of D(S) in the norm

‖u‖S = (u, u)
1/2
S is a Hilbert space HS ⊂ H . The inner product (u, v) continuously

extends to H∗
S × HS , where H∗

S = H−1
S is the dual space for HS . Spaces HS , H

and HS−1 represent a Gelfand triple HS ⊂ H ⊂ HS−1 with continuous imbeddings.
Operator S extends to the map S : HS 7→ H∗

S . There exist unbounded self-

adjoint positive definite linear operator S1/2, such thatD(S1/2) = HS and (u, v)S =
(Su, v) = (S1/2u, S1/2v). We also define Sobolev spaces W s

2 (a, b;H), W 0
2 (a, b;H) =

L2(a, b;H), of the functions u = u(t) mapping the interval (a, b) ⊂ R into H
(see [13,20]).

Let A and B be unbounded self-adjoint positive definite linear operators, A =
A(t), B 6= B(t), in Hilbert space H , in general noncommutative, with D(A) dense
in H and HA ⊂ HB . We consider the following abstract Cauchy problems:

B
du

dt
+Au = f(t), 0 < t < T, u(0) = 0,(2.1)

B
du

dt
+Au =

dg

dt
, 0 < t < T, u(0) = 0,(2.2)

where f(t) and g(t) are given and u(t) is the unknown function with values in H .
Let also assume that A0 6 A(t) 6 kA0 where k = const > 1 and A0 6= A0(t)
is a constant self-adjoint positive definite linear operator in H . The following
propositions are proved in [2].
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Lemma 2.1. Let f ∈ L2(0, T ;HA−1
0

). Then the solution to problem (2.1) satis-

fies a priori estmate

(2.3)

∫ T

0
‖u(t)‖2

A0
dt+

∫ T

0

∫ T

0

‖u(t) − u(t′)‖2
B

|t− t′|2 dt dt′ 6 C

∫ T

0
‖f(t)‖2

A−1
0

dt.

Lemma 2.2. Let g ∈ W
1/2
2 (0, T ;HB−1). Then the solution to problem (2.2)

satisfies a priori estimate

∫ T

0
‖u(t)‖2

A0
dt+

∫ T

0

∫ T

0

‖u(t) − u(t′)‖2
B

|t− t′|2 dt dt′

6 C

[ ∫ T

0

∫ T

0

‖g(t) − g(t′)‖2
B−1

|t− t′|2 dt dt′ +

∫ T

0

(1

t
+

1

T − t

)
‖g(t)‖2

B−1dt

]
.

An analogous result hold for the operator-difference schemes. Let Hh be a
finite-dimensional real Hilbert space with the inner product (·, ·)h and the norm
‖ · ‖h. For a self-adjoint positive linear operator Sh in Hh, by HSh

we denote
the space HSh

= Hh with the inner product (v, w)Sh
= (Shv, w)h and the norm

‖v‖Sh
= (Shv, v)

1/2
h .

Let ωτ be a uniform mesh on (0, T ) with the step size τ = T/m, ω+
τ = ωτ ∪{T }

and ω̄τ = ωτ ∪ {0, T }. Further, we shall use standard notation from the theory of
the difference schemes [17]. In particular, we set

vt̄ = vt̄(t) =
v(t) − v(t− τ)

τ
.

We consider the implicit operator-difference scheme

(2.4) Bhvt +Ahv = ϕ(t), t ∈ ω+
τ , v(0) = 0,

where Ah = Ah(t) and Bh 6= Bh(t) are linear positive definite self-adjoint operators
in Hh, in general case noncommutative, ϕ(t) is given and v(t) is an unknown
function with values in Hh. Let us also consider the scheme

(2.5) Bhvt +Ahv = ψt, t ∈ ω+
τ , v(0) = 0,

where ψ(t) is a given mesh function with values in Hh. Analogously, as in the
previous case, we assume that Ah0 6 Ah(t) 6 kAh0 where k = const > 1 and
Ah0 6= Ah0(t) is a self-adjoint positive linear operator in Hh. The following analogs
of Lemmas 2.1 and 2.2 are proved in [11].

Lemma 2.3. The solution v of operator-difference scheme (2.4) satisfies a priori

estimate

τ
∑

t∈ω+
τ

‖v(t)‖2
Ah0

+ τ2
∑

t∈ω̄τ

∑

t′∈ω̄τ ,t′ 6=t

‖v(t) − v(t′)‖2
Bh

|t− t′|2 6 Cτ
∑

t∈ω+
τ

‖ϕ(t)‖2
A−1

h0

.

Lemma 2.4. The solution v of operator-difference scheme (2.5) satisfies a priori

estimate

τ
∑

t∈ω+
τ

‖v(t)‖2
Ah0

+ τ2
∑

t∈ω̄τ

∑

t′∈ω̄τ ,t′ 6=t

‖v(t) − v(t′)‖2
Bh

|t− t′|2
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6 C
[
τ2

∑

t∈ω̄τ

∑

t′∈ω̄τ ,t′ 6=t

‖ψ(t) − ψ(t′)‖2
B−1

h

|t− t′|2 + τ
∑

t∈ω̄τ

( 1

t+ τ
+

1

T − t+ τ

)
‖ψ(t)‖2

B−1
h

]

3. Differential problem and its approximation

Let us consider the 2D initial-boundary-value problem for the heat equation in
the presence of a concentrated capacity at the line x2 = ξ, 0 < ξ < 1:

(1 +KδΣ(x))
∂u

∂t
−

2∑

i=1

∂

∂xi

(
ai(x, t)

∂u

∂xi

)
= f, on Q,(3.1)

u = 0, on ∂Ω × (0, T ),

u(x, 0) = u0(x), on Ω,

where δΣ(x) = δ(x2 −ξ) is the Dirac delta function, K = const > 0 and Ω = (0, 1)2,
Q = Ω × (0, T ). We shall assume that

ai ∈ W
2+ε,1+ε/2
2 (Q1) ∩W

2+ε,1+ε/2
2 (Q2), ε > 0,(3.2)

f ∈ W
1+ε,1/2+ε/2
2 (Q),

u0 ∈ W 2
2 (Ω1) ∩W 2

2 (Ω2),

u ∈ W
3,3/2
2 (Q1) ∩W

3,3/2
2 (Q2) ∩W

3,3/2
2 (Σ × (0, T )),(3.3)

where Ω1 = (0, 1) × (0, ξ), Ω2 = (0, 1) × (ξ, 1), Q1 = Ω1 × (0, T ), Q2 = Ω2 ×
(0, T ), Σ = {(x1, ξ)|x1 ∈ (0, 1)}. Note that conditions (3.2) express the minimal
smoothness requirements on the data under which the solution u of (3.1) may
belong to the function space stated in (3.3). To guarantee that such u really exists,
we also need some additional compatibility conditions at the corners of Ω (see [7]).
We also assume that and 0 < c1 6 ai(x, t) 6 c2, on Q.

Let ω̄h–uniform mesh with step size h in Ω̄, ωh = ω̄h ∩ Ω, ω1h = ω̄h ∩ ([0, 1) ×
(0, 1)), ω2h = ω̄h∩((0, 1)×[0, 1)), σh = ωh ∩Σ. Suppose that ξ is a rational number.
Then one can choose step h so that σh 6= ∅. Also we assume that the condition
c1h

2 6 τ 6 c2h
2 is satisfied. Define the finite differences in the usual way:

vx̄i(x, t) =
v − v−i

h
, vxi (x, t) =

v+i − v

h
,

where v±i(x, t) = v(x ± eih, t), e1 = (1, 0), e2 = (0, 1). Problem (3.1) can be
approximated on the mesh Qhτ = ω̄h × ω̄τ by the following difference scheme with
averaged right-hand side:

(1 +Kδσh
)vt̄ + Lhv = T 2

1 T
2
2 T

−
t f, on Qhτ ,(3.4)

v = 0, on γh × ω+
τ , v(x, 0) = u0(x), on ωh,

where Lhv = − 1
2

∑2
i=1((aivxi )x̄i + (aivx̄i )xi),

δσh
(x) =

{
0, x /∈ σh

1/h, x ∈ σh
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is the mesh Dirac function, and T1, T2, T
−
t are Steklov averaging operators defined

by

T1f(x1, x2) = T±
1 f(x1 ∓ h/2, x2) =

1

h

∫ x1+h/2

x1−h/2
f(x′

1, x2) dx′
1,

T2f(x1, x2) = T±
2 f(x1, x2 ∓ h/2) =

1

h

∫ x2+h/2

x2−h/2
f(x1, x

′
2) dx′

2,

T−
t f(x, t) = T+

t f(x, t− τ) =
1

τ

∫ t

t−τ

f(x, t′) dt′.

Note that these operators are commutative and transform the derivatives to divided
differences, for example:

T−
i

∂u

∂xi
= ux̄i , T+

i

∂u

∂xi
= uxi, T 2

i

∂2u

∂x2
i

= uxix̄i , T−
t

∂u

∂t
= ut̄.

We also define

T 2−
2 f(x1, x2) =

1

h

∫ x2

x2−h

(
1 +

x′
2 − x2

h

)
f(x1, x

′
2) dx′

2,

T 2+
2 f(x1, x2) =

1

h

∫ x2+h

x2

(
1 − x′

2 − x2

h

)
f(x1, x

′
2) dx′

2.

We define the following discrete norms and seminorms:

‖v‖2
L2(Qhτ ) = τ

∑

t∈ω+
τ

‖v(·, t)‖2
L2(ωh), ‖v‖2

L2(σh×ωτ ) = τ
∑

t∈ω+
τ

‖v(·, t)‖2
L2(σh)

|v|2
L2(ωτ ; W

1/2
2 (σh))

= τ
∑

t∈ω+
τ

|v(·, t)|2
W

1/2
2 (σh)

,

|v|2
W

1/2
2 (ωτ ; L2(ωh))

= τ
∑

t∈ω̄τ

τ
∑

t′∈ω̄τ , t′ 6=t

‖v(·, t) − v(·, t′)‖2
L2(ωh)

|t− t′|2 ,

|v|2
W

1/2
2 (ωτ ; L2(σh))

= τ
∑

t∈ω̄τ

τ
∑

t′∈ω̄τ , t′ 6=t

‖v(·, t) − v(·, t′)‖2
L2(σh)

|t− t′|2 ,

‖v‖2
W̃

1/2
2 (ωτ ; L2(ωh))

= |v|2
W

1/2
2 (ωτ ; L2(ωh))

+ τ
∑

t∈ω̄τ

( 1

t+ τ
+

1

T − t+ τ

)
‖v(·, t)‖2

L2(ωh),

‖v‖2
W̃

1/2
2 (ωτ ; L2(σh))

= |v|2
W

1/2
2 (ωτ ; L2(σh))

+ τ
∑

t∈ω̄τ

( 1

t+ τ
+

1

T − t+ τ

)
‖v(·, t)‖2

L2(σh),

‖v‖2
W̃

1, 1/2
2 (Qhτ )

= τ
∑

t∈ω+
τ

‖v(·, t)‖2
W 1

2 (ωh) + |v|2
W

1/2
2 (ωτ ; L2(ωh))

+ |v|2
W

1/2
2 (ωτ ; L2(σh))

.

4. Convergence of the difference scheme

In this section we prove the convergence of difference scheme (3.4) in the

W̃
1,1/2
2 (Qhτ ) norm. Let u be the solution to boundary-value problem (3.1) and
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v the solution of difference problem (3.4). The error z = u − v satisfies the finite
difference scheme

(1 +Kδσh
)zt̄ + Lhz = ϕ, on ωh × ω+

τ ,(4.1)

z = 0, on γh × ω+
τ , z(x, 0) = 0, on ωh.

where

ϕ =
2∑

i=1

ηi,x̄i + χbart + δσh
µt̄,

χ = u− T 2
1 T

2
2 u,

ηi = T+
i T

2
3−iT

−
t

(
ai
∂u

∂xi

)
− 1

2
(ai + a+i

i )uxi ,

µ = Ku− T 2
1 (Ku).

Let us set η1 = η̃1 + δσh
η̂1, χ = χ̃+ δσh

χ̂, where

η̂1 =
h2

6
T+

1 T
−
t

([
a1

∂2u

∂x1∂x2
+
∂a1

∂x2

∂u

∂x1

]
Σ

)
, χ̂ =

h2

6

[
T 2

1
∂u

∂x2

]
Σ
,

and [u]Σ = u(x1, ξ + 0, t) − u(x1, ξ − 0, t).
Using Lemmas 2.3 and 2.4, we directly obtain the following a priori estimate

for the solution of difference scheme (4.1):

(4.2) ‖z‖
W̃

1,1/2
2 (Qhτ )

6 C
[
‖η2‖L2(Qhτ ) + ‖η̃1‖L2(Qhτ ) + |η̂1|

L2(ωτ ; W
1/2
2 (σh))

+ ‖χ̃‖
W̃

1/2
2 (ωτ ,L2(ωh))

+ ‖χ̂‖
W̃

1/2
2 (ωτ ,L2(σh))

+ ‖µ‖
W̃

1/2
2 (ωτ ,L2(σh))

]
.

Therefore, in order to estimate the rate of convergence of difference scheme
(3.4), it is sufficient to estimate the right-hand side of inequality (4.2).

We decompose ηi = ηi1 + ηi2 + ηi3, where

ηi1 = T+
i T

2
3−iT

−
t

(
ai
∂u

∂xi

)
− (T+

i T
2
3−iT

−
t ai)

(
T+

i T
2
3−iT

−
t

∂u

∂xi

)
,

ηi2 =
[
T+

i T
2
3−iT

−
t ai − 0, 5(ai + a+i

i )
](
T+

i T
2
3−iT

−
t

∂u

∂xi

)
,

ηi3 = −0, 5(ai + a+i
i )

{
T+

i T
2
3−iT

−
t

∂u

∂xi
− uxi

}
.

The term ηi1 is a bounded bilinear functional of the argument (ai, u) ∈ W
1,1/2
4 (e)×

W 2,1
4 (e),

e = e(x, t) = {(x′
1, x

′
2, t

′) : xi < x′
i < xi + h, |x′

3−i − x3−i| < h, t′ ∈ (t− τ, t)},
and for i = 1, x2 6= ξ. Further, ηi1 = 0 whenever ai is a constant or u is a
polynomial of degree one in x1 or x2 or a constant. Applying the Bramble–Hilbert
lemma [6] we get:

(4.3) |ηi1(x, t)| 6 C|ai|W 1,1/2
4 (e)|u|W 2,1

4 (e).
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The term ηi2 is a bounded bilinear functional of the argument (ai, u)∈W 2,1
q (e)×

W
1,1/2
2q/(q−2)(e), q = 2 + ε. Further, ηi2 = 0 whenever ai is a polynomial of degree one

in x1 or x2 or constant or u is constant. Applying the Bramble–Hilbert lemma we
get the following estimate:

(4.4) |ηi2(x, t)| 6 C|ai|W 2, 1
q (e)|u|

W
1, 1/2

2q/(q−2)
(e).

The term ηi3 is a bounded bilinear functional of the argument (ai, u) ∈ C(Qk)×
W

3,3/2
2 (e), k = 1, 2, Further, ηi3 = 0 whenever u is a polynomial of degree two in

x1 or x2 and a polynomial of arbitrary degree in t. Applying the Bramble–Hilbert
lemma, we get the estimate

(4.5) |ηi3(x, t)| 6 C‖ai‖C(Qk)|u|
W

3, 3/2
2 (e).

From estimates (4.3)–(4.5), choosing i = 2, after summation and using the
imbeddings

W
2+ε,1+ε/2
2 ⊂ W

1,1/2
4 , W

3,3/2
2 ⊂ W 2,1

4 ,

W
2+ε,1+ε/2
2 ⊂ W 2,1

q , W
3,3/2
2 ⊂ W

1,1/2
2q/(q−2),(∗)

W
2+ε,1+ε/2
2 ⊂ C, for q = 2 + ε,

we get

‖η2‖L2(Qhτ ) 6 Ch2(
‖a2‖

W
2+ε,1+ε/2
2 (Q1)‖u‖

W
3,3/2
2 (Q1)(4.6)

+ ‖a2‖
W

2+ε,1+ε/2
2 (Q2)‖u‖

W
3,3/2
2 (Q2)

)
.

Let us estimate the term η̃1. At the point x /∈ σh, we have η̃1 = η1 and
estimates (4.3)–(4.5) are valid. At the point x ∈ σh, we decompose

η̃1 =

3∑

k=1

(η−
1,k + η+

1,k),

where η±
1,k are defined at the point x2 = ξ ± 0

η±
1,1 = T+

1 T
2±
2 T−

t

(
a1

∂u

∂x1

)
− 2(T+

1 T
2±
2 T−

t a1)
(
T+

1 T
2±
2 T−

t

∂u

∂x1

)

± h

6

(
T+

1 T
−
t

∂a1

∂x2

)[
2
(
T+

1 T
2±
2 T−

t

∂u

∂x1

)
−

(
T+

1 T
−
t

∂u

∂x1

)]

± h

6

[a1 + a+1
1

2

(
T+

1 T
−
t

∂2u

∂x1∂x2

)
−

(
T+

1 T
−
t a1

∂2u

∂x1∂x2

)]

± h

6

[(
T+

1 T
−
t

∂a1

∂x2

)(
T+

1 T
−
t

∂u

∂x1

)
−

(
T+

1 T
−
t

∂a1

∂x2

∂u

∂x1

)]
,

η±
1,2 =

[
2(T+

1 T
2±
2 T−

t a1) − a1 + a+1
1

2
∓ h

3

(
T+

1 T
−
t

∂a1

∂x2

)]
×

(
T+

1 T
2±
2 T−

t

∂u

∂x1

)
,

η±
1,3 =

a1 + a+1
1

4

[
2
(
T+

1 T
2±
2 T−

t

∂u

∂x1

)
− ux1 ∓ h

3

(
T+

1 T
−
t

∂2u

∂x1∂x2

)]
.
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The term η±
1,1 is a bounded bilinear functional of the argument (a1, u) ∈

W
1,1/2
4 (e±

1 ) ×W 2,1
4 (e±

1 ) where

e+
1 = (x1, x1 + h) × (ξ, ξ + h) × (t− τ, t),

e−
1 = (x1, x1 + h) × (ξ − h, ξ) × (t− τ, t).

Further, η±
1,1 = 0 whenever a1 is a constant or u is a polynomial of degree one in

x1 or x2 or a constant. Applying the Bramble–Hilbert lemma we get

(4.7) |η±
1,1(x, t)| 6 C|a1|

W
1,1/2
4 (e±

1 )|u|W 2,1
4 (e±

1 ).

The term η±
1,2 is a bounded bilinear functional of the argument (a1, u) ∈

W 2,1
q (e±

1 ) × W
1,1/2
2q/(q−2)(e

±
1 ), q = 2 + ε. Further, η±

1,2 = 0 whenever a1 is a poly-

nomial of degree one in x1 or x2 or constant or u is a constant. Applying the
Bramble–Hilbert lemma we get the estimate

(4.8) |η±
1,2(x, t)| 6 C|a1|W 2,1

q (e±

1 )|u|
W

1,1/2

2q/(q−2)
(e±

1 ).

The term η±
1,3 is a bounded bilinear functional of the argument (a1, u) ∈

C(Qk) × W
3,3/2
2 (e±

1 ), k = 1, 2. Further, η±
1,3 = 0 whenever u is a polynomial

of degree two in x1 or x2 and polynomial of arbitraty degree in t. Applying the
Bramble–Hilbert lemma we get

(4.9) |η±
1,3(x, t)| 6 C‖a1‖

C(Qk)|u|
W

3, 3/2
2 (e±

1 ).

From estimates (4.3)–(4.5) and (4.7)–(4.9), after summation and using imbed-
dings (∗), we get

‖η̃1‖L2(Qhτ ) 6 Ch2(
‖a1‖

W
2+ε,1+ε/2
2 (Q1)‖u‖

W
3, 3/2
2 (Q1)(4.10)

+ ‖a1‖
W

2+ε,1+ε/2
2 (Q2)‖u‖

W
3,3/2
2 (Q2)

)
.

Let us estimate the term η̂1. For φ ∈ W
1/2
2 (Σ), the following estimate is valid

|T+
1 φ|

W
1/2
2 (σh) 6 C|φ|

W
1/2
2 (Σ) 6 C‖φ‖W 1

2 (Ωk), k = 1, 2,

wherefrom

|η̂1(·, t)|
W

1/2
2 (σh) 6 Ch2(

‖T−
t ν(·, t)‖W 1

2 (Ω1) + ‖T−
t ν(·, t)‖W 1

2 (Ω2)

)
,

where ν = ν1 + ν2 , and

ν1 = a1
∂2u

∂x1∂x2
, ν2 =

∂a1

∂x2

∂u

∂x1
.

After summation, we have

(4.11) |η̂1|
L2(ωτ ,W

1/2
2 (σh)) 6 Ch2(

‖ν‖W 1,0
2 (Q1) + ‖ν‖W 1,0

2 (Q2)

)
.

Using the Hölder inequality and the imbeddings (∗), we get

(4.12)
‖ν1‖W 1,0

2 (Qk) 6 ‖a1‖
W

2+ε,1+ε/2
2 (Qk)‖u‖

W
3,3/2
2 (Qk),

‖ν2‖W 1,0
2 (Qk) 6 ‖a1‖

W
2+ε,1+ε/2
2 (Qk)‖u‖

W
3,3/2
2 (Qk),

k = 1, 2.
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From (4.11)–(4.12) we obtain

|η̂1|
L2(ωτ ,W

1/2
2 (σh)) 6 Ch2(

‖a1‖
W

2+ε,1+ε/2
2 (Q1)‖u‖

W
3,3/2
2 (Q1)(4.13)

+ ‖a1‖
W

2+ε,1+ε/2
2 (Q2)‖u‖

W
3,3/2
2 (Q2)

)
.

The estimates of terms χ̃, µ and χ̂ are obtained in [11]:

‖χ̃‖
W̃

1/2
2 (ωτ ,L2(ωh))

6 Ch2
√

1/h
(
‖u‖

W
3,3/2
2 (Q1) + ‖u‖

W
3,3/2
2 (Q2)

)
,(4.14)

‖µ‖
W̃

1/2
2 (ωτ ,L2(σh))

6 Ch2
√

1/h ‖u‖
W

3,3/2
2 (Σ×(0,T )),(4.15)

‖χ̂‖
W̃

1/2
2 (ωτ ,L2(σh))

6 Ch2
√

1/h ‖u‖W 2,1
2 (Σ×(0,T )).(4.16)

Finally, from (4.2)–(4.16) we obtain the following result.

Theorem 4.1. The solution of problem (3.4) converges in W̃
1,1/2
2 (Qhτ ) to the

solution of differential problem (3.1), provided c1h
2 6 τ 6 c2h

2. Furthermore,

‖u−v‖
W̃

1,1/2
2 (Qhτ )

6 Ch2(
max

i
‖ai‖W

2+ε,1+ε/2
2 (Q1)+max

i
‖ai‖W

2+ε,1+ε/2
2 (Q2)+l(h)

)

×
(
‖u‖

W
3,3/2
2 (Q1) + ‖u‖

W
3,3/2
2 (Q2) + ‖u‖

W
3,3/2
2 (Σ×(0,T ))

)
,

where l(h) =
√

log 1/h.

Remark 4.1. The previous estimate is “almost" compatible with the smooth-
ness of the coefficients and solution of differential problem (3.1). The compatibility
is spoiled only by the term l(h), which slowly increases when h → 0.

Remark 4.2. Convergence in W̃ 2,1
2 (Qhτ ) is proved in [4].
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