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This study deals with unconventional bearing capacity analysis and the procedure of optimizing a two-cell box girder. The
generalized model which enables the local stress-strain analysis of multicell girders was developed based on the principle of cross-
sectional decomposition. The applied methodology is verified using the experimental data (Djelosevic et al., 2012) for traditionally
formed box girders. The qualitative and quantitative evaluation of results obtained for the two-cell box girder is realized based
on comparative analysis using the finite element method (FEM) and the ANSYS v12 software. The deflection function obtained
by analytical and numerical methods was found consistent provided that the maximum deviation does not exceed 4%. Multicell
box girders are rationally designed support structures characterized by much lower susceptibility of their cross-sectional elements
to buckling and higher specific capacity than traditionally formed box girders. The developed local stress model is applied for
optimizing the cross section of a two-cell box carrier. The author points to the advantages of implementing the model of local
stresses in the optimization process and concludes that the technological reserve of bearing capacity amounts to 20% at the same
girder weight and constant load conditions.

1. Introduction

Typical box girders have rectangular or trapezoidal cross
section and can be open or closed types.The open type is typ-
ically used in composite structures (such as bridges), whereas
closed configurations are mainly used in steel structures. The
traditional rectangular cross section is increasingly replaced
by trapezoidal cross section which is more rational to use and
the form of which is better suited for stresses in the girder [1].
Recognizing this fact, polygonal forms have been developed
which are suitable from the aspect of local stress and loss of
stability [2]. For highly stressed elements of the supporting
structure to be designed rationally multicell box girders are
required [3, 4]. These girder types are formed by integrating
several forms of elements (cells) into a single functional unit
which is characterized by reduced local stress and lower
susceptibility to local loss of stability. The implementation
of multicellular forms of various modifications to carrying
bridge structures ismanifested through high bearing capacity
performances, especially in terms of stability and dynamic

behaviour of the girder’s elements (plates) [5]. The main
reason for the application of multicellular box girders is
reflected in their higher specific bearing capacity (capacity
per unit of weight) compared to conventional solutions with
rectangular cross section.

Traditionally designed box carriers are very susceptible
to the local stress and loss of stability; thus, the impact
of these phenomena is reduced by installing diaphragms
and longitudinal stiffeners [6]. However, even despite these
structural measures, the impacts of local stress and loss
of stability are not completely eliminated; that is, their
interaction has a significant share in the stress state of box
girders.This especially applies to the pressed flange of girders
whose buckling coefficient can be significantly reduced due
to the effects of transverse load [7]. The phenomenon of
stability of compressed plates is a subject of considerable
number of studies; their behaviour is generally modelled by
applying various numerical methods [8]. Studies of elastic
stability of uniform vertical and longitudinally stiffened
girder plates subjected to bending moment and live loads
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Figure 1: Structure and load of the two-cell box girders.

are presented in [9–12]. A significant contribution to this
field is that of the analytical approach to stability analysis
of perforated plates [13] which is based on a mathematical
model, the basic assumptions of which are presented in [14–
16]. The systematic analysis of local stresses in a transversely
loaded box girder of rectangular cross section is provided
in [17]. Developed is unconventional mathematical model of
local stresses on the basis of which are identified influential
parameters of carrying capacity and given guidelines for the
optimal design of girders. It has been deemed consistent with
the numerical method and the presented methodological
approach was verified.The bearing capacity of vertical girder
plates is mainly analyzed using numerical and experimental
methods [18, 19]. The proper identification of stress state
allows for defining the authoritative restrictions necessary
in the process of optimization of elements of supporting
structures. In the context of the above-cited studies especially
important are the studies that analyze the biaxial compressed
plates [20], box girders with diaphragms [21], and two-cell
box girders [22].

2. Problem Definition and Model Assumptions

The bearing capacity of box girders is in functional depen-
dence on geometric parameters of the girder and the active
(external) load. Considering that in most cases the size and
position of the load, as well as the girder length, cannot
be influenced, it is clear that for given stress conditions the
technological capacity reserve depends on the selection of
appropriate (optimal) cross-sectional form. In general, the
design of traditionally formed (rectangular) monocell box

girders of large bearing capacity may be irrational due to
the application of very thick plates. Namely, in order to
meet the requirements regarding the box girder’s bearing
capacity, the flange plates must be at a sufficient distance
from the neutral axis in order to ensure the necessary section
modulus of the surface. This requirement calls for increasing
the girder’s height, while in order to prevent the lateral-
torsional buckling it is also necessary to increase the girder’s
width proportionally. Increasing the girder’s dimensions is
exclusively related to the global bearing capacity condition.

The cross-sectional geometry which is defined by the
global conditions is characterized by slender plates which
are susceptible from the aspect of local stress. Local stresses
cannot be reduced either by installing diaphragms or longitu-
dinal stiffeners, or by increasing the thickness of compressed
girder elements (plates).

However, in case of very slender plates, installing stiff-
eners insufficiently effective and the local bearing capacity
condition can be satisfied only by increasing their thickness.
This reduces the rationality of mass and increases the struc-
ture’s own weight, thus reducing the proportion of useful
load in bearing capacity. The previously defined contradic-
tion can be resolved by using multicellular girders. These
constructive solutions are formed based on the analogy with
the statically indeterminate line girders, and accordingly they
are characterized by better capacity performances and lower
susceptibility to local stresses. This is why in highly stressed
and responsible support structures the use of multicell box
girders is inevitable. The mathematical local stress model of
the two-cell box girder is formed based on the following
assumptions (Figure 1):
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Figure 2: Internal reaction forces and moments of two-cell box girders.

(i) length of the girder segment authoritative for the
analysis is determined in accordance with the recom-
mendations set forth in [17];

(ii) the cross-sectional girder elements are considered as
elastically restrained plates;

(iii) displacements along the joint of girder elements are
negligible compared to their deflection;

(iv) the impact of plane forces is marginalized in relation
to the active load and reaction moments of the elastic
restrain;

(v) compressed girder plates are not susceptible to the
loss of stability.

3. Mathematical Strain Model

Strain in the plate which is directly exposed to the external
(active) load 𝐹 on the other cross-sectional elements is
manifested through the rotation joint zones (nodes). The
slope on the side of panel through which the load is intro-
duced into the monitored node has the same slope value as
the corresponding changes of the other plates in the joint.
This condition corresponds to the stress at which there is
no relative change in the angle of the joint zone and no
destruction of the cross-sectional elements; this condition
should be satisfied during the girder’s operation.The external
load 𝐹 acts symmetrically to the vertical girder axis. Thus,
reactive torques in the elastic restrain can be determined
based on the conditions defined for points A, B, and C
(Figure 2). The impact of axial forces is negligible compared
to the impact of moments through which the transverse
forces manifested (in accordance with assumptions of the
model). Values of moments of elastic restrain are determined

using the principle of continuity of the girder’s cross-sectional
elements as follows.
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The first member, as defined by (1), is the slope at node A
of the directly loaded simply supported plate (plate number
3) of the girder under the force 𝐹. Strain caused by this
slope is the direct cause of stress in the plate of girder
number 2, which has a tendency to reduce the pivoting of
the edge of plate number 3 around the joint A zone. The
physical interpretation of the preceding is reflected through
the existence of a “torsion spring” whose stiffness depends on
the strain of plate number 3, as well as the size of loadwhich is
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Figure 3: Box girder segment authoritative for the analysis of bear-
ing capacity.

transferred to plate number 2.The low stiffness of the torsion
spring corresponds to the high slenderness of plate number 2,
without affecting significantly the behaviour of plate number
3 which is considered as simply supported. Conversely, the
higher thickness of plate number 2 allows for a significant
share of load transferred through a more intense operation
of reaction moments, so that the behaviour of plate number
3 corresponds to that of the fully restrained plate.

According to their characteristics, most of the finished
girders correspond to the variant between the aforemen-
tioned extreme situations, while the mutual interactive rela-
tionship between the cross-sectional elements is regulated by
the procedure of optimal design.

The second member of (2) defines the impact of plate
number 2 through the moments of elastic restrain𝑀

1
oper-

ating along the edges of plate number 3. The third member
of (1) represents the interaction effect of plate number 3, the
moment of elastic restraint which has the same magnitude
and opposite direction of plate number 2.

Deflection of the simply supported plate number 3 due
to the impact of partial external load 𝐹 is defined by the
differential equation [14–16]
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The simplest form of solution (5) is formulated through a
double trigonometric series [14], which is characteristic only
for use in simply supported plates (Figure 3); it is as follows:
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3
is flexural rigidity of plate number 3 and equals
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3

3
/10.92).
The introduction of this term in order to investigate the

bearing capacity of box girders is justified through numerical
analysis and experimental verification [17].

Other girder plates are loaded only by reaction moments
of the elastic restraint, whose role is to redistribute the active
load to the individual cross-sectional elements. Functions of
deflection for each 𝑖th plate of girder 𝑤

𝑖
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(Figure 2) are determined by

the following series, respectively:
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moments as a function of parameterm.
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(6) and (7) into conditions of continuity (1)–(4), whereby the
following equation system is derived:
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Figure 4: Comparative diagram of deflection of the girder’s upper
flange plate.

where 𝑘
𝑖
are cross-sectional geometric parameters (𝑖 =

1, . . . , 10); they are given in Appendix A. 𝑆
𝑚
is stress coeffi-

cient (load intensity and position); it is given in Appendix A.
Resolving the system (12) the required ratios of moments

of elastic restraint 𝐸
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Substituting (13)–(16) into (8)–(11) we obtain the dis-
tribution of moments of elastic restraint which operate in
the joint zones of elements (plates) of the multicell girder.
Defining the reaction moments, the causes of stress in
individual cross-sectional elements were identified and the
correlation dependence between the geometric parameters
and the properties of active load is established. Based on
the developed mathematical model, the following section
contains the results of qualitative and quantitative analysis
focusing on strains (deflections) of girder plates.

4. Analysis and Verification of Results

The methodology used for creating the mathematical model
is based on the principle of decomposition of cross-sectional
elements and was originally used in the analysis of bearing
capacity of monocell box girders [17]. The principle of girder
decomposition is featured by the possibility of its universal
application, which allows for the use of more complex cross
sections and multicell box girders. Studies dealing with
traditional box girders of rectangular cross section have
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Figure 5: Comparative diagram of deflection of the left vertical
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identified the zone of direct load effects (plates under the
operation of active force) as a critical portion of girder from
the aspect of local stress [17]. The width and thickness of
this plate are the key parameters of bearing capacity, the
value of which defines the degree of interaction with the
vertical girder plates (ribs). Higher stress levels in the directly
loaded girder plate (upper flange) are manifested through
the proportional increase in the deflection of vertical plates
(ribs) due tomoments of elastic restraint. Since ribs of the box
girder are generally loaded by biaxial pressure and tangential
(shear) forces, these deflections all represent the initial values
for curves of deflected surfaces and adversely affect the
buckling phenomenon by reducing the critical stress values.
Structural interventions aimed at reducing the deflection of
vertical girder plates include the incorporation of stiffeners
of appropriate form [23] or selecting the appropriate cross
section [17]. The upper flange plate is uniaxially compressed,
while the lower flange plate of the girder is subject to
tension. Incorporating a midplate into traditional box girder
forms two closed plate systems, creating thereby a two-cell
configuration.

These constructive solutions are characterized by smaller
cross-sectional width of the plate than in the case of tra-
ditional forms, which makes them more resistant to stress
and less susceptible to loss of stability. By inserting several
fields inside the box girder multicellular forms are created
which are characterized by high specific bearing capacity
and rational design. Performances of the monocell (tradi-
tional), two-cell (of same dimensions as the traditional form),
and optimized two-cell girder are presented through the
appropriate deflection functions and shown in comparative
diagrams (Figures 4, 5, 6, and 7). Functions of deflection
(Figures 4–7) were obtained by using (7) for the correspond-
ing plates of multicell girder, while the initial and optimized
dimensions of the girder are given in Table 2. Optimization is
carried out according to the objective function (17) with the
fulfillment of constraints (18)–(20). Results of optimization
are the dimensions of the girder whose inclusion in (17)
provides the maximum deformation with minimal use of
materials for the making of the girder. Comparative analysis
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Table 1: Comparative analysis of results of the two-cell box girder.

Plate of two-cell girder
Deformation and stress parameters of two-cell girder

Deflection (mm) Reduction (%) von Mises stress (kN/cm2) Reduction (%)
Figure 1 Optimized Figure 1 Optimized

1∗ 0.30 0.17 76.4 4.8 3.6 33.3
2∗ 1.10 0.27 400.0 13.2 12.1 9.1
3 3.26 1.86 75.3 55.1 45.8 20.0
6 0.09 0.03 300.0 3.6 2.5 44.0
7 0.40 0.28 42.8 7.8 6.4 21.8
∗Values for plates 1 and 2 are identical to those for plates 4 and 5, respectively.

Table 2: Comparative analysis of influential box girder parameters.

Variant The geometrical parameters of the cross section Area Deflection
Dimensions according to 𝐻 𝐻

1
𝐵 𝛿

1
𝛿
2

𝛿
3

𝛿
6

𝛿
7

𝐴 𝑤
3

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (cm2) (mm)
1 Figure 1 1000 600 400 10 10 15 8 8 315 3.26
2 Optimized 1103 900 360 6 15 14.5 6 6 305 2.00
3 Adopted 1100 900 360 6 15 15 6 6 306 1.86
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Figure 6: Comparative diagram of deflection of the girder’s lower
flange plate.

was performed according to the results obtained by applying
the software ANSYS 12.

For generating model quadrangular finite elements of
type SHELL 93 with 6 degrees of freedom per node were
applied, which is the size of 10mm.

The deflection function of the right vertical plate of the
two-cell girder under consideration has the same form but
opposite sign in comparison with the left element (Figure 5).

This study deals with the vertical two-cell box girder
whose main role is to reduce the stress in vertical plates
(ribs). By incorporating a midplate at height 𝐻

1
we split the

vertical plates into two parts and prevent the cross-sectional
“opening” through the reduction of their deflection. The
joint zone between the cross-sectional elements defines the
inflection points of the corresponding deflection functions.
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Figure 7: Comparative diagram of deflection of middle plate.

In the case of the two-cell girder under consideration, the
inflection point of deflection function of the vertical plate
(rib) is situated in the joint zone with the girder’s midplate
(point B). The physical interpretation of the inflection point
refers to the change of sign of the deflection function and
affects its shape, as well as its buckling mode. Namely, if
the observed girder element (such as the vertical plate of
Figure 5) contains an inflection point, the deflection function
is characterized by the S shape.

By removing the midplate we obtain a monocellular
(traditional) box girder, whose deflection function takes a
C shape, regardless of the value of load and the cross-
sectional geometric parameters. The C- or S-shaped deflec-
tion function is characterized by one and two half-waves,
respectively, which are directly dependent on the buckling
mode. The curve C corresponds to the first buckling mode
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Figure 8: Buckling modes of the rib of the monocell (a) and two-cell (b) box girder.

and the critical force at which loss of stability occurs at
substantially lower intensity than that in the S-shaped elastic
surface. This is the main reason of stiffening the vertical
plates and using multicell box girders. Comparative analysis
(see Table 1) of deflection of the cross-sectional elements of
the traditional and two-cell box girder for the same loading
conditions (intensity andposition of the forceF) and the same
cross-sectional area of the girder is graphically illustrated in
Figures 4–7. In order to make the cross-sectional area of
the considered girder types identical, the thickness of cross-
sectional elements of the traditional box girder needs to be
scaled up so that the overall change in their cross-sectional
area corresponds to that of the midplate of the monocell
girder.

Regardless of these measures, as indicated by the analysis
of bearing capacity of the upper and lower flange plates,
from the aspect of these flanges there is no essential differ-
ence between traditional and vertical two-cell box girders.
Deflection of the upper flange plate of the monocell girder is
higher by about 5%, while deflection of the bottom flange has
opposite sign with an increase by about 38% as compared to
the two-cell configuration. These values have great practical
importance, because the difference for the upper flange is
minor, while the bottom flange plate is the least loaded
cross-sectional element, so the given increase of deflection
does not affect the bearing capacity significantly. However,
in case of vertical plates, a significant technological reserve
of bearing capacity has been identified due to the S-shaped
elastic surface.

Behaviour of the vertical plate of the monocellular girder
depends solely on the relationship between the moments of
elastic restraint initiated by the plates (marked red) and the
reaction moments that oppose this strain (marked green,
according to Figure 2). This interaction in the given cross
section results in a concave curve of the elastic surface with
the same sign. For the given load direction (Figure 3), part
of the cross section above the neutral axis is compressed,
while part of the girder beneath this axis is subject to tension.
This suggests that the position of the midplate needs to be
in the upper half of the girder’s cross section (this is one of
the structural-technological constraints in the optimization
process).The largest share in the load acting upon the vertical

girder plates is that of transverse reaction moments (8)–(11)
and the global stressmoment transferred by ribs𝑀

𝑟
(acting in

the plane of plate and is essential for the analysis of stability).
Advantages of two-cell box girders over the traditional form
are manifested through more uniform distribution of the
two-wave deflection function (S-shaped) which corresponds
to the higher value of critical stress (Figure 8).

5. Cross-Sectional Optimization of
the Multicell Box Girder

The mathematical model developed in Section 3 has great
theoretical and practical significance, not only for the capac-
ity analysis but also for the procedure of cross-sectional
optimization of two-cell box girders. The model can be
successfully applied for the optimization according to stress
or strain parameters, depending on the functional use of
the box girder. Although the developed model relates to the
girder’s local behaviour, the compatibility of its application
can be seen in the integration with the global conditions of
capacity, which enables a more systematic approach to cross-
sectional optimization.

Within this section, the author considers the optimization
of a two-cell girder based on the criteria of local-global bear-
ing capacity. Typical examples of the supporting structures to
be optimized according to this criterion include crane rails
and main girders of bridge cranes and the like. The goal
function 𝑓goal involves minimizing the girder’s weight (cross-
sectional area); mathematically it can be expressed through
the following expression:

𝑓goal = min [𝐵
3
𝛿
3
+ 𝐵
1
𝛿
1
+ 2 (

𝐻

2
− 𝛿
3
) 𝛿
2

+2 (
𝐻

2
− 𝛿
6
) 𝛿
1
+ (𝐵
3
− 2𝛿
1
) 𝛿
7
] .

(17)

Constraints that should be satisfied by the goal function
(17) include the local and global conditions of bearing
capacity. Local conditions are related to the limitations
regarding themaximumdeflection values of individual girder
plates. Given that the deflection functions of girder elements
define the local stress intensity, constraints regarding local
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Figure 9: Oscillation of the girder elements due to the moving
wheel.

conditions are indirectly related also to the local stress state.
Practically, this means that in proportion to the reduction
of the local plate deflections it simultaneously influences
the reduction of local stresses in the corresponding cross-
sectional elements.Through the deflection function of plates,
the objective is to limit the intensity of local stress and strains
and reduce the level of the girder elements’ local oscillation
𝑤osc (Figure 9).

Given that the most critical cross-sectional element is
the directly loaded plate (Figure 3) and that the mathe-
matical model establishes a functional dependence between
the deflections of individual plates, it is fully justified for
constraints regarding local conditions to be reduced only
to this plate. In this case, constraints of local nature are
mathematically formulated by (18), wherein local deflection
𝑤
3,max is limited to the value of 𝑤per = 2.0mm. The 𝑤per

parameter has a dual role, that is, from the aspect of

(i) reducing the local dynamic influence manifested
through local oscillations of cross-sectional elements
as a result of changes in the position of the live load
(wheel speed);

(ii) indirect monitoring and managing the local stress
intensity in order to eliminate potentially critical con-
ditions (destruction of individual plate cross sections
that could initiate the failure of girder).

The latter aspect implies that, by limiting the deflection
of the directly loaded plate by force 𝐹 to the value of 𝑤per,
at the same time we reduce the maximum value of the
von Mises stress 𝜎

𝑒
. Specifically, for the given geometric

parameters according to the variant 1 (Table 2) and load
conditions (Figure 3), the maximum value of deflection of
the upper girder flange plate is 𝑤

3,max = 3.26mm and this
deflection corresponds with the equivalent stress of 𝜎

𝑒,max =

55.1 kN/cm2. Upon the optimization of the cross section,
regardless of the fact that the thickness of the upper flange
plate was not increased, the value of deflection is reduced
by 75.2% and amounted to 𝑤

3,opt = 1.86mm (adopted).
This deflection value corresponds to the equivalent stress of

𝜎
𝑒,opt = 45.8 kN/cm2.The value𝑤per is selected so as to enable

the reduction of voltage 𝜎
𝑒
at least by 20%. Consider

𝑤
3,max = 𝑤

3
(𝑥 = 0, 𝑦 = 0) ≤ 𝑤per = 2.0 [mm] . (18)

Constraints that include global conditions are presented
over the stress and strain criteria applicable to the linear
girder model. Performances of the box girder of specific
cross-sectional geometry and length 𝑙 should allow for the
transfer of load F, where maximum stress 𝜎max and deflection
𝑓max values must be within the framework of permissible
values (𝜎per and 𝑓per). On the basis of these two constraints
the global capacity conditions are defined for the case of a
freely supported girder of length 𝑙 (Figure 1).

Variables of the optimization procedure include all geo-
metric parameters (dimensions) of the cross section (width
and thickness of the girder plates). Constraints of local
and global nature can be mathematically expressed by the
following expressions:

𝜎max =
𝐹𝑙

4𝑊
≤ 𝜎per ⇒ 𝑊 ≥

𝐹𝑙

4𝜎per
, (19)

𝑓max =
𝐹𝑙
3

4𝐸𝐼
≤ 𝑓per ⇒ 𝐼 ≥

𝐹𝑙
3

48𝑓per
, (20)

where E is modulus of elasticity of the material
(21000 kN/cm2), W is moment of resistance of the cross-
sectional area (Appendix B), and I is axial moment of the
cross-sectional area (Appendix B).

In addition to the global and local conditions, it is neces-
sary for optimization procedure to include specific structural
and technological solutions relating to plate thickness 𝛿

𝑖
and

the position of the midplate𝐻
1
.

All plates should be thicker than 6mm,while the position
of the midplate should be in the top (compressed) part of the
girder.The optimization process is implemented inMicrosoft
Excel using the Solver Module, while the results are shown in
Table 2.

Studies dealing with the problem of cross-sectional opti-
mization by using deterministic methods are solely based on
the mathematical model of line girders, while constraints, in
addition to global stress components, may include conditions
of local bearing capacity and stability of cross-sectional
elements. The quality of the optimization procedure depends
largely on the number of constraints and the accuracy of their
mathematical formulation, which is a factor that in many
cases limits the proper implementation of this approach.
This especially applies to the expressions defining the local
stress and elastic stability, where mainly semianalytical and
empirical expressions are used.

The above-presented optimization procedure is opposite
to previous approaches, since the optimization procedurewas
based on the developed local stress model. The advantage of
this concept is reflected through the explicit inclusion of local
stress-strain conditions of bearing capacity in constraints of
the goal function. On the other hand, due to the simplicity
of formulation of the line model, the global characteristics of
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bearing capacity were integrated with the other constraints;
thus, their influence was indirectly implemented in the goal
function.

6. Conclusion

This study presented the analysis of bearing capacity and
cross-sectional optimization of the two-cell box girder by
applying an unconventional methodological approach. The
generalizedmathematicalmodel of local stress was developed
based on the principle of decomposition of the cross section.
Implementation of the model is explained using the example
of a vertical two-cell box girder while not diminishing the
general nature of the presented methodology for the other
multicell forms (with three or more cells). Performances of
capacity of the two-cell box girder were evaluated in relation
to the traditional form of the same dimensions and cross-
sectional area. Based on the comparative analysis it was
concluded that the midplate of the two-cell girder does not
affect the capacity of the upper and lower flange plate to
a significant degree, while predominantly influencing the
vertical girder plates (ribs), reducing the values of deflection
by 400%.

In addition, the deflection function of the vertical plate
of the two-cell girder is S-shaped, which is favourable from
the aspect of local stability of this cross-sectional element.
The deflection function of vertical plates of traditional box
girders always takes a C shape, which corresponds to the first
buckling mode with considerable initial curvature. Suscepti-
bility of the S-shaped deflection function to loss of stability
is lower, since the initial deflection of the elastic surface
corresponds to the second buckling mode which allows
for higher values of critical forces. A specific significance
of the presented research is related to the implementation
of the mathematical model of local stress in the process
of optimization of the two-cell box girder. The goal func-
tion represents the mass or cross-sectional area, while the
optimization parameters (geometric variables of the cross
section) include girder heightH, girder width B, thickness of
cross-sectional elements 𝛿

𝑖
(𝑖 = 1, . . . , 7), and the position of

the midplate 𝐻
1
. Constraints of the goal function are man-

ifested through local, global, structural, and technological
conditions.

Based on the implemented optimization significant tech-
nological reserve in bearing capacity has been achieved,
especially in the upper flange and the vertical plates of the box
girder, at the same girder mass and constant load conditions
(the intensity and position of force were unchanged). The
importance of this study has both theoretical and practical
importance in the development and structural optimization
of multicell girders. Through the presented methodology,
the theoretical aspect enables the complete identification
of local-global stress and allows a systematic approach to
analyze the local stability of multicell box girders, which is
important for further researchwork in this field.The practical
implementation of results of this study enables the cross-
sectional optimization of the multicell box girder beams,

contributing to the development and design of the supporting
structures of the high specific bearing capacity.

Appendices

A. Geometric Coefficients of
Elastic Connection
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B. Polar and Axial Moment Cross Section
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