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HARARY INDEX OF THE k-TH POWER OF A GRAPH

Guifu Su, Liming Xiong, Ivan Gutman

The k-th power of a graph G, denoted by Gk, is a graph with the same set

of vertices as G, such that two vertices are adjacent in Gk if and only if their

distance in G is at most k. The Harary index H is the sum of the reciprocal

distances of all pairs of vertices of the underlying graph. Lower and upper

bounds on H(Gk) are obtained. A Nordhaus–Gaddum type inequality for

H(Gk) is also established.

1. INTRODUCTION

In this paper, we consider finite undirected simple connected graphs. Let G
be such a graph with vertex set V = V (G) and edge set E = E(G). Then the order
and size of G are n = |V | and m = |E|, respectively. The degree deg(u) = degG(u)
of a vertex u ∈ V is the number of edges incident to u in G. The maximum degree

in the graph G will be denoted by △ = △(G). The distance dist(u, v) = distG(u, v)
between two vertices u and v of G is the length of a shortest path connecting them
in it. The maximum value of these numbers is said to be the diameter of G, denoted
by diam(G).

The k-th power Gk of a graph G is a graph with vertex set V, such that
two vertices are adjacent in Gk if and only if their distance in G is at most k. In
particular, Gk = G if k = 1. The complement G of G is a simple graph with vertex
set V, in which two distinct vertices are adjacent if and only if they are not adjacent
in G. The join G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2

and edge sets E1 and E2 is the graph union G1 ∪G2 together with all edges joining
V1 and V2. Let Kn, Pn and Sn be respectively the complete graph, the path and
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the star of order n. Other terminology and notations needed will be introduced as
it naturally occurs in the following and we use [3] for those not defined here.

The Harary index H(G) has been introduced in 1993 independently by Plav-

šić et al. [9] and Ivanciuc et al. [6]. For a connected graph G with vertex set
V (G) = {v1, v2, . . . , vn} it is defined as

H(G) =
∑

1≤i<j≤n

1

distG(vi, vj)
.

This index was named in honor of Professor Frank Harary on the occasion of his
70th birthday. Details on the applications of the Harary index can be found in the
survey [7], whereas we can find details on its mathematical properties in [5, 10]
and the references cited therein.

Let I be an invariant of G. We denote by I the same invariant pertaining to
G. The following relations

L1(n) ≤ I + I ≤ U1(n) and L2(n) ≤ I · I ≤ U2(n)

are referred to as Nordhaus–Gaddum type inequalities for the graph invariant I.
Here L1(n) and L2(n) are the lower bounding functions of the order n, and U1(n)
and U2(n) the upper bounding functions of the order n. It were Nordhaus and
Gaddum [8] who first discovered such results for the chromatic number. They
proved:

Theorem 1.1. Let G be a connected graph of order n. Then

2
√
n ≤ χ+ χ ≤ n+ 1 and n ≤ χ · χ ≤

⌊(
n+ 1

2

)2
⌋

where χ denotes the chromatic number of G.

Since then many results of this kind were obtained; for a survey see [2]. We
list here a few, relevant for the present paper.

The Wiener and hyper-Wiener indices of a connected graph G are defined as

W(G) =
∑

1≤i<j≤n

distG(vi, vj)

WW(G) =
∑

1≤i<j≤n

1

2

[
distG(vi, vj) + distG(vi, vj)

2
]

respectively.

Theorem 1.2. (An and Wu [1]) Let G be a connected graph of order n ≥ 5,
having a connected complement G. Then

2

(
n

2

)
≤ W(Gk) +W

(
G

k)
≤ W(P k

n ) +W
(
P

k

n

)
=

(
n

2

)
+

n−1∑

i=1

⌈
i

k

⌉
(n− i).
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Theorem 1.3. (Zhang et al. [12]) Let G be a connected graph of order n ≥ 5,
having a connected complement G. Then

2

(
1 +

⌊1
k

⌋)(
n

2

)
≤ WW(Gk) +WW

(
G

k)
≤ WW(P k

n ) +WW
(
P

k

n

)
.

Theorem 1.4. (Zhou et al. [13]) Let G be a connected graph of order n ≥ 5,
having a connected complement G. If diam(G) = 2, then

1 +
(n− 1)2

2
+ n

n−1∑

i=1

1

i
= H(Pn) +H

(
Pn

)
≤ H(G) +H(G) ≤

3n(n− 1)

4
.

The lower and upper bounds are sharp.

Motivated by the above theorems, in this paper we obtain similar results for
the Harary index of the k-th power of a graph.

2. SOME BOUNDS FOR HARARY INDEX

2.1. Bounds for the Harary index of Gk

Let T be a tree of order n, we start from the fact due to [4]

(1) H(Pn) ≤ H(T ) ≤ H(Sn)

with left equality if and only if T ∼= Pn, and right equality if and only if T ∼= Sn.
Here we present an analogous result for the Harary index of power graphs.

We need the following Lemma:

Lemma 2.1. (An and Wu [1]) Let u, v be two vertices of a connected graph G.
Then distGk(u, v) = ⌈distG(u, v)/k⌉.

Theorem 2.2. For any tree T of order n, H(P k
n ) ≤ H(T k) ≤ H(Sk

n).

Proof. Note that diam(Sn) = 2, so diam(Sk
n) = 1 and then H(Sk

n) =
(
n
2

)
. The

upper bound holds and it is best possible.

Let Pn = vv1v2 . . . vn−1 be a path of order n. We prove that H(P k
n ) ≤ H(T k)

by induction on n. It is obvious that the claim holds for n ≤ 4. Let T be a
tree of order n ≥ 5 and let Pd+1 = uu1u2 . . . ud be a longest path in it. Then
degT (u) = 1 and T − u is a tree of order n − 1. Set V (T ) = {u, u1, . . . , ud} ∪
{ud+1, ud+2, . . . , un−1}. Then distT (u, uj) ≤ d ≤ n−1 for j = d+1, d+2, . . . , n−1.
Hence distT (u, ui) ≤ distPn

(v, vi) for i = 1, 2, . . . , n − 1. By Lemma 2.1, we have
distTk(u, ui) ≤ distPk

n
(v, vi) for i = 1, 2, . . . , n− 1. Thus, by the induction hypoth-

esis, we get
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H(T k) =

n−1∑

i=1

distTk(u, ui) +H((T − u)k)

≥

n−1∑

i=1

distPk
n
(u, ui) +H((Pn − v)k) = H(P k

n ).

This completes the proof.

Corollary 2.3. Let G be a connected graph of order n. Then H(P k
n ) ≤ H(Gk).

Proof. Let T be a spanning tree of G. It is obvious that distG(u, v) ≤ distT (u, v)
for any two vertices u and v of G. By Lemma 2.1, distGk(u, v) ≤ distTk(u, v), and
therefore H(T k) ≤ H(Gk). By Theorem 2.2, H(P k

n ) ≤ H(Gk) as desired.

2.2. Bounds for the Harary index of G

Let (G1 ·G2)(a1 · a2) denote the splice of two connected graphs G1 and G2,
obtained by identifying the vertices a1 ∈ V1 and a2 ∈ V2. Let n and d be two
integers such that n > d. Let Tn,d = (K1,d · Pn−d)(b1 · b2) be the graph obtained
by identifying a leaf b1 of the star K1,d with a leaf b2 of the path Pn−d. It is
immediately seen that the Tn,d has maximum degree d and order n. In particular,
if d = 2, then Tn,d

∼= Pn. By direct computation, the Harary index of Tn,d can be
written as

H(Tn,d) = d+
1

2

(
d− 1

2

)
+

d− 1

n− d+ 1
+ n

n−d∑

i=2

1

i
.

For the sake of simplicity, in what follows we denote H(Tn,d) by Φ(n, d).

Lemma 2.4. For 2 ≤ d ≤ n− 1, Φ(n, d) is an increasing function of d.

Proof. We consider the difference Φ(n, d)−Φ(n, d+1) and verify that it is negative–
valued:

Φ(n, d)− Φ(n, d+ 1) = −1 +
1

2

[(
d− 1

2

)
−

(
d

2

)]

+

[
d− 1

n− d+ 1
−

d

n− d

]
+ n

[
n−d∑

i=2

1

i
−

n−d−1∑

i=2

1

i

]

= −1 +
1

2

[(
d− 1
2

)
−
(
d
2

)]
+

[
d− 1

n− d+ 1
−

d

n− d

]
+

n

n− d

=
d− 1

n− d+ 1
−

d− 1

2
<

d− 1

2
−

d− 1

2
= 0.

The second inequality above holds because 2 ≤ d ≤ n−1, that is 1/(n−d+1) < 1/2.
This completes the proof.
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Lemma 2.5. For i = 1, 2, let Ti be a tree of order ni, and let xi be its specified

vertex. Then H((T1 · T2)(x1 · x2)) is minimized if Ti
∼= Pni

and xi is a leaf of Ti.

Proof. The Harary index of (T1 · T2)(x1 · x2) satisfies

H((T1 · T2)(x1 · x2)) = H(T1) +H(T2) +
∑

x∈V (T1),y∈V (T2)

1

dist(x, y)
.

We complete the proof by recalling the relations (1). �

We now give two auxiliary transformations that decrease the Harary index.

Transformation I. Let T be a tree and v one of its vertex with maximum degree.
Let T0 be a component of T − v. By replacing T0 with a path of the same order
and the same pendent vertex as T0 under the definition of splice, we obtain a new
tree T

′

. By Lemma 2.5, the transformation T → T
′

decreases the Harary index.

Transformation II. Consider the trees T1 and T2 depicted in Fig. 1. Note that:

T1[{v} ∪ V (Pa) ∪ V (Pb)] = Pa+b+1 = T2[{v} ∪ V (Pa) ∪ V (Pb)].

We get distT1
(x, y) = distT2

(x, y) if x ∈ {v} ∪ V (Pa) and y /∈ {v} ∪ V (Pa) ∪ V (Pb);
and distT1

(x, y) ≤ distT2
(x, y) if x ∈ V (Pb) and y /∈ {v} ∪ V (Pa) ∪ V (Pb). This

implies that the transformation T1 → T2 decreases the Harary index.

Figure 1. A transformation that decreases the value of the Harary index.

Theorem 2.6. Let G be a connected graph of order n and ∆(G) ≥ d ≥ 2. Then
H(G) ≥ Φ(n, d), with equality if and only if G ∼= Tn,d.

Proof. By Lemma 2.4, we get Φ(n, d + 1) ≥ Φ(n, d). Without loss of generality,
we may assume that ∆(G) = d. Then it suffices to prove that H(G) ≥ Φ(n, d) and
that the equality holds if and only if G ∼= Tn,d.

Let T be a spanning tree of G with ∆(T ) = ∆(G) = d, then H(T ) ≤ H(G).
Let v be a vertex of T with maximum degree, and x11, x21, . . . , xd1 be its neighbors
in T. Let for each i = 1, 2, . . . , d, Ti be the component of T − v containing xi1. Let
Ti be of order ni. By replacing each component Ti by a path Pni

= xi1xi2 . . . xini

with the same pendent vertex xi1, we obtain a new tree T ∗. By Transformation I,
we know that H(T ∗) ≤ H(T ).
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Without loss of generality, assume that T ∗ 6= Tn,d, since otherwise we are
done. For the sake of simplicity, assume that n1 ≥ n2 ≥ · · · ≥ nd.. Let T ∗∗ =
T ∗ − x21x22 + x22x1n1

. It is easy to show that ∆(T ∗∗) = d and by Transformation
II,H(T ∗∗) ≤ H(T ∗). If the resulting new tree T ∗∗ 6∼= Tn,d, repeating Transformation
II, we must arrive at the tree Tn,d.

3. NORDHAUS–GADDUM TYPE INEQUALITY FOR HARARY
INDEX

Let Sp,q denote the double star , obtained from Sp and Sq by connecting the
center of Sp with that of Sq. The following fact can be found in [11].

Lemma 3.1. (Zhang and Wu [11]) Let G be a connected graph with a connected

complement. Then

(1) if diam(G) > 3, then diam(G) = 2.
(2) if diam(G) = 3, then G has a spanning subgraph which is a double star.

Note that for n = 4 there exists only one connected graph P4 with connected
complement P 4

∼= P4. It is obvious that if k = 1, then H(P4) + H
(
P 4

)
= 26/3.

If k = 2, then H(P 2
4 ) + H

(
P

2

4

)
= 11. If k ≥ 3, then H(P k

4 ) +H
(
P

k

4

)
= 12 since

P k
4
∼= K4

∼= P
k

4
.

In the following we calculate the value of H(P k
n ) + H

(
P

k

n

)
for n ≥ 5. Let

Pn = v1v2 . . . vn. Then for any j , 1 ≤ j ≤ n− 1, we have distPk
n
(vi, vi+j) = ⌈j/k⌉.

Hence,

H(P k
n ) =

n−1∑

j=1

n−j∑

i=1

1

distPk
n
(vi, vi+j)

=

n−1∑

j=1

n−j∑

i=1

1⌈
j

k

⌉ =

n−1∑

j=1

1⌈
j

k

⌉ (n− j).

On the other hand, H(P
k

n) =
(
n
2

)
since diam(P

k

n) = 1 for k ≥ 3. Thus,

(2) H(P k
n ) +H(P

k

n) =

(
n

2

)
+

n−1∑

j=1

1⌈
j

k

⌉ (n− j).

From the above results and Corollary 2.3, we obtain the following result:

Corollary 3.2. Let G be a connected graph of order n ≥ 5. If diam(G) = 2, then

H(P k
n ) +H

(
P

k

n

)
≤ H(Gk) +H

(
G

k)
.

Let E denote the set of even numbers in [n−1] = {1, 2, . . . , n−1} and O that
of odd numbers in [n− 1].

Lemma 3.3. Let G be a connected graph of order n ≥ 9 having a connected

complement G. Then H(P 2
n) +H

(
P

2

n

)
≤ H(G2) +H

(
G

2)
.
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Proof. Let Φ(G) = H(G2) +H
(
G

2)
−

[
H(P 2

n) +H
(
P

2

n

)]
. It is sufficient to show

that Φ(G) ≥ 0. By Lemma 3.1 and Corollary 3.2 we need to consider only the case

diam(G) = diam(G) = 3. In this case, diam(G2) = diam
(
G

2)
= 2. Let ti and ti

be, respectively, the number of vertex pairs at distance i in G and G. Note that

t1 + t1 =
(
n
2

)
, t2 + t3 = t1 and t2 + t3 = t1. Then

H(G2) +H
(
G

2)
=

(
t1 + t2 +

1

2
t3

)
+

(
t1 + t2 +

1

2
t3

)
=

3

2

(
n

2

)
+

1

2
(t2 + t2).

By Lemma 3.1, there exists a spanning subgraph, say Sp,n−p, in G and a spanning
subgraph, say Sq,n−q, in G, respectively. It is easily seen that

t3 + t3 ≤ (p− 1)(n− p− 1) + (q − 1)(n− q − 1) ≤
(n− 2)2

2
.

Hence t2 + t2 =
(
n
2

)
− (t3 + t3) ≥ (3n− 4)/2.

We consider the following two cases depending on parity of order n.

Case 1. n is odd.

By Eq. (2) we have

H(P
2

n) +H(P 2

n) =

(
n

2

)
+

n−1∑

i=1

n− i⌈
i

2

⌉ =

(
n

2

)
+ 2

∑

i∈E

n− i

i
+ 2

∑

i∈O

n− i

i+ 1

=

(
n

2

)
+ 2n

∑

i∈E

1

i
− 2

∑

i∈E

1 + 2n
∑

i∈O

1

i+ 1
− 2

∑

i∈O

i

i+ 1

=

(
n

2

)
+ 4n

∑

i∈E

1

i
− 2

∑

i∈E

1− 2
∑

i∈O

i

i+ 1

=

(
n

2

)
− 2(n− 1) + (4n+ 2)

∑

i∈E

1

i
.

Hence

Φ(G) =
3

2

(
n

2

)
+

1

2
(t2 + t2)−

[(
n

2

)
− 2(n− 1) + (4n+ 2)

∑

i∈E

1

i

]

≥
3

2

(
n

2

)
+

3n− 4

4
−

[(
n

2

)
− 2(n− 1) + (4n+ 2)

∑

i∈E

1

i

]

=
n2 + 10n− 12

4
− (4n+ 2)

∑

i∈E

1

i
.
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If n = 9, then

Φ(G) ≥
92 + 10× 9− 12

4
− (4× 9 + 2)

(
1

2
+

1

4
+

1

6
+

1

8

)
=

1

6
> 0.

If n ≥ 10, then ∑

i∈E

1

i
≤

n

24
+

77

120
,

since

∑

i∈E

1

i
≤

(
1

2
+

1

4
+

1

6
+

1

8
+

1

10

)
+

∑

i∈E−

1

i

≤
137

120
+

∑

i∈E−

1

12
=

137

120
+

1

12
×

n− 12

2
=

n

24
+

77

120
,

where E
− = E \ {2, 4, 6, 8, 10}. Hence

Φ(G) =
n2 + 10n− 12

4
− (4n+ 2)

(
n

24
+

77

120

)
=

5n2 − 9n+ 257

60
> 0.

Case 2. n is even.

By Eq. (2) we have

H(P
2

n) +H(P 2

n) =

(
n

2

)
+

n−1∑

i=1

n− i⌈
i

2

⌉ =

(
n

2

)
+ 2

∑

i∈E

n− i

i
+ 2

∑

i∈O

n− i

i+ 1

=

(
n

2

)
+ 2n

∑

i∈E

1

i
− 2

∑

i∈E

1 + 2n
∑

i∈O

1

i+ 1
− 2

∑

i∈O

i

i + 1

=

(
n

2

)
+ 2n

∑

i∈E

1

i
− 2

∑

i∈E

1 +

[
2n

∑

i∈O−

1

i+ 1
+

2n

(n− 1) + 1

]

−

[
2
∑

i∈O

1 + 2
∑

i∈O−

1

i+ 1
+

2

(n− 1) + 1

]

=

(
n

2

)
+

2

n
+ 2− 2(n− 1) + (4n+ 2)

∑

i∈E

1

i
,

where O
− = O \ {n− 1}. Hence

Φ(G) =
3

2

(
n

2

)
+

1

2
(t2 + t2)−

[(
n

2

)
+

2

n
+ 2− 2(n− 1) + (4n+ 2)

∑

i∈E

1

i

]

≥
3

2

(
n

2

)
+

3n− 4

4
−

[(
n

2

)
+

2

n
+ 2− 2(n− 1) + (4n+ 2)

∑

i∈E

1

i

]
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=
n2 + 10n− 12

4
−

2n+ 2

n
− (4n+ 2)

∑

i∈E

1

i
.

If n = 10, then

Φ(G) ≥
102 + 10× 10− 12

4
−

2× 10 + 2

2
− (4×10+2)

(
1

2
+

1

4
+

1

6
+

1

8

)
=

1

2
> 0.

If n ≥ 12, note that ∑

i∈E

1

i
≤

n

24
+

77

120
.

Hence

Φ(G) ≥
5n2 − 9n+ 257

60
−

2n+ 2

n
> 0.

The inequality above holds because 5n3 − 9n2 − 377n− 120 > 210 for n > 10.

This completes the proof of Lemma 3.3.

Theorem 3.4. Let G be a connected graph of order n ≥ 9, having a connected

complement G. Then

(
n

2

)
+

n−1∑

j=1

n− j⌈
j

k

⌉ = H(P k
n ) +H

(
P

k

n

)
≤ H(Gk) +H

(
G

k)
≤ 2

(
n

2

)
.

Proof. The upper bound is obvious. In order to demonstrate the validity of the
lower bound, we consider the following cases:

Case 1. diam(G) = 1. This is impossible, since in this case G is disconnected,
which contradicts the assumption.

Case 2. diam(G) = 2. Note that diam(G) = diam(G) = 2, then the result
can be verified by Corollary 3.2.

Case 3. diam(G) = 3. By Lemma 3.1 (2), there exists a spanning subgraph
in G which is a double star. This implies that diam(G) = 2. If k = 1, then by
Theorem 1.4, H(Pn) + H(Pn) ≤ H(G) + H(G). If k = 2, then by Lemma 3.3,

H(P 2
n) +H

(
P

2

n

)
≤ H(G) +H(G). If k ≥ 3, then diam(Gk) = diam

(
G

k)
= 1, and

therefore by Corollary 3.2, H(Gk) +H
(
G

k)
= 2

(
n
2

)
.

Case 4. diam(G) > 3. By Lemma 3.1 (1), it is diam(G) = 2. Then by

Corollary 3.2, H(P k
n ) +H

(
P

k

n

)
≤ H(Gk) +H

(
G

k)
.

With this the proof of Theorem 3.4 is completed. �

Note that the bounds in Theorem 3.4 are the best possible. It is obvious
that equality in the lower bound is attained by P k

n . To see that the upper bound
is also the best possible, we construct a sequence of graphs Gn of order n, which
is obtained from C4 by replacing one edge of C4 by 2K1 + Kn−4, as depicted
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in Fig. 2. It is easy to check that diam(Gn) = diam
(
Gn

)
= 2, which implies

diam(Gk
n) = diam

(
G

k

n

)
= 1 and H(Gk

n) +H
(
G

k

n

)
= 2

(
n
2

)
.

Figure 2. (a) The graph Gn and (b) its complement.

4. CONCLUDING REMARKS

From Theorem 2.2 we know that for any tree T of order n, H(Pn) ≤ H(T ) ≤
H(Sn) and H(P k

n ) ≤ H(T k) ≤ H(Sk
n). It is natural to ask if the extension of this

statement holds for other graphs.

Problem 1. Is it true that for any two graphs G1 and G2 of the same order,
H(G1) ≤ H(G2) implies H(Gk

1
) ≤ H(Gk

2
)?

Figure 3. Graphs providing a counterexample for Problem 1.

In fact, the answer is negative. Let G1 and G2 be the graphs depicted in
Fig. 3 (a) and (b), respectively. Note that H(G1) = 89/6 < H(G2) = 94/6, but
H(G2

1
) = 41/2 > H(G2

2
) = 20.

Figure 4. The graphs G∗

1 and G∗

2.
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It is possible to construct an infinite family of counterexamples of order n > 7.
Let G∗

1
and G∗

2
be the graphs depicted in Fig. 4 (a) and (b), respectively. Let G∗

1

be obtained from G1 by adding t(≥ 2) new vertices such that each vertex is only
adjacent to vertices 2, 3 and 4 of G1, cf. Fig. 3. Let G∗

2
be obtained from G2 by

adding t new vertices such that each vertex is only adjacent to vertices 2 and 3 of
G2, cf. Fig. 3. Then

H(G∗
1) =

89

6
+ 5t+

1

2

(
t

2

)
H(G∗

2) =
94

6
+

9

2
t+

1

2

(
t

2

)

H(G∗,2
1

) = 20 + 7t+

(
t

2

)
H(G∗,2

2
) =

41

2
+ 7t+

(
t

2

)
.

We see that for t ≥ 2, H(G∗
1
) > H(G∗

2
), but H(G∗,2

1
) < H(G∗,2

2
).

In view of these counterexamples, we propose the following, evidently much
more difficult problem.

Problem 2. Characterize the graphs that satisfy the condition in Problem 1.
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characterization of chemical graphs. J. Math. Chem., 12 (1993), 235–250.

10. K. Xu, K. C. Das: On Harary index of graphs. Discrete Appl. Math., 159 (2011),
1631–1640.



Harary index of the k-th power of a graph 105

11. L. Zhang, B. Wu: The Nodrhaus–Gaddum—type inequalities for some chemical

indices. MATCH Commun. Math. Comput. Chem., 54 (2005), 189-194.

12. W. Zhang, B. Wu, X. An: The hyper-Wiener index of the k-th power of a graph.

Discr. Math. Algorithms Appl., 3 (2011), 17–23.
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