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THE WEAK AND THE STRONG EQUIVALENCE
RELATION AND THE ASYMPTOTIC INVERSION

D. Djurčić, I. Mitrović and M. Janjić

Abstract

In this paper we discuss the relationship between the weak and the strong
asymptotic equivalence relation and the asymptotic inversion, for positive and
measurable functions defined on a half-axis [a, +∞) (a > 0).

As the main results, we prove a certain characterizations of the functional
class of all rapidly varying functions, as well as some other functional classes.

1 Introduction

A function f : [a, +∞) 7→ (0, +∞) (a > 0) is called O–regularly varying in the
sense of Karamata if it is measurable and

kf (λ) : = lim
x→+∞

f(λx)
f(x)

< +∞ (λ > 0). (1)

Condition (1) is equivalent to the condition

kf (λ) : = lim
x→+∞

f(λx)
f(x)

> 0 (λ > 0). (2)

kf (λ) (λ > 0) is called the index function of f , and kf (λ) (λ > 0) the auxiliary
index function of f . ORV is the class of all O–regularly varying functions defined
on some interval [a,+∞).

A function f ∈ ORV is called regularly varying in sense of Karamata if kf (λ) =
λρ for all λ > 0 and some ρ ∈ R; then, ρ is the general index of variability of f . The
class of all regularly varying functions is denoted RV . This class is the main object
of the Karamata theory of regular variability (e.g. see [14]) and its applications (see
also [1], [2] and [15]).
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A function f ∈ RV is called slowly varying in the sense of Karamata (see e.g.
[14]), if its general index of variability ρ = 0. This class of functions is denoted by
SV (see [2] and [15]).

A measurable function f : [a,+∞) 7→ (0, +∞) (a > 0) belongs to the class PI
if kf (λ0) > 1 for some λ0 > 1 ([5]).

A measurable function f : [a,+∞) 7→ (0, +∞) (a > 0) belongs to the class PI∗

if there is a λ0 ≥ 1 such that

kf (λ) > 1, for all λ > λ0.

For λ0 = 1 we obtain the class ARV (see [11]).
The class PI∗ is a subclass of the class PI (see e.g.[5]) More information about

these classes can be found in [7] and [12].
A function f ∈ ARV is called rapidly varying in the sense of de Haan, with

index ∞ (i.e. belonging to the class R∞) if kf (λ) = +∞ for all λ > 1 (see [2],
[6] and [13]). The class PI∗ contains as a proper subclass, the class of regularly
varying functions whose Karamata index of variability ρ is positive, but it does not
contain any element from the class of slowly varying Karamata functions.

Next, let

A = {f : [a,+∞) 7→ (0, +∞)(a > 0) | f is nondecreasing and unbounded}.

Note that A ∩ PI∗ = A ∩ PI. Next, let A0 be the set of all functions f :
[a,+∞) 7→ (0,+∞) (a > 0). We notice that A  A0. If f ∈ A0, define {f} =
{g ∈ A0 | f(x) ³ g(x), x → +∞}, where f(x) ³ g(x), x → +∞, is the weak
asymptotic equivalence relation defined by

0 < lim
x→+∞

f(x)
g(x)

≤ lim
x→+∞

f(x)
g(x)

< +∞

(see e.g. [2]).
For any function f ∈ A0 put [f ] = {g ∈ A0 | f(x) ∼ g(x), x → +∞}, where

f(x) ∼ g(x), x → +∞, is the strong asymptotic equivalence relation defined by

lim
x→+∞

f(x)
g(x)

= 1.

For any f ∈ A, f←(x) = inf{y ≥ a | f(y) > x} (x ≥ f(a)) is called the
generalized inverse of f (see e.g. [2]).

If f ∈ A is continuous and strictly increasing, then f←(x) = f−1(x) for x ≥ f(a).
Besides, f← ∈ A whenever f ∈ A. For any right continuous function g ∈ A there
is an f ∈ A (f(x) = g←(x), x ≥ g(a)) such that g = f←.

Two arbitrary functions f, g ∈ A0 are called mutually inversely asymptotic
(which is denoted by f(x) ∗∼g(x) as x → +∞), if for every λ > 1, there is an
x0 = x0(λ) ≥ a such that

f(x/λ) ≤ g(x) ≤ f(λx),
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for every x ≥ x0 (see e.g. [1], [2] and [11]).
From a result in [2] we get that for any functions f, g ∈ A we have f(x) ∗∼g(x)

as x → +∞ if and only if f←(x) ∼ g←(x) as x → +∞.
In the next proposition (see e.g. [1] or [2]) a result, which was an initial motiva-

tion for considering similar problems (e.g. see [8], [10],[11], [12]), is obtained. This
result is the main motivation for this paper, too.

Proposition A. Let f, g ∈ A0 and f ∈ RV , where ρ > 0 is the general index of
variability of f . If f(x) ∼ g(x) (x → +∞), then f(x) ∗∼g(x) (x → +∞).

Remark 1. In [3] and [4], several modifications of this proposition are considered.

In [8] and [11] some results which expand Proposition A are proved, and they
are contained in the following proposition.

Proposition B. Let f, g ∈ A0 and f ∈ ARV . If f(x) ∼ g(x) (x → +∞), then
f(x) ∗∼g(x) (x → +∞).

In [11] the following question is posed:

Q1: Is the class ARV the widest possible class for which Proposition B is satisfied?

The answer to this question is affirmative in the case when the functions f and
g in Proposition B are from the class A instead from the class A0 (see [8] and [11]).

Two functions f, g ∈ A0 are called mutually inverse weak asymptotic (denoted
f(x)

∗³g(x) as x → +∞) if there is a λ0 ≥ 1 such that for every λ > λ0 there is an
x0 = x0(λ) > 0 so that

f(x/λ) ≤ g(x) ≤ f(λx),

for all x ≥ x0 (see e.g. [12]).
From a result in [12] it follows that for arbitrary functions f, g ∈ A we have

f(x)
∗³g(x) as x → +∞, if and only if f←(x) ³ g←(x) as x → +∞.

Next result (see [12]) is a modification of Proposition A, i.e. B.

Proposition C. Let f, g ∈ A0 and f ∈ PI∗. If f(x) ³ g(x) (x → +∞), then
f(x)

∗³g(x) (x → +∞).

In [12] the following question is posed:

Q2: Is the class PI∗ the widest possible class for which the Proposition C is satis-
fied?

The answer to this question is affirmative if we replace A0 with A (see [12]).

Remark 2. In [9] the affirmative answer to question Q2 is given, in the case when
we consider only strictly increasing and continuous functions from the class A.
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2 Main results

In the following propositions we shall give the affirmative answers to the questions
Q1 and Q2, so we shall get some characterizations for the classes ARV and PI∗.

Proposition 1. Let f and g be arbitrary measurable functions from the class A0.
If f(x) ∗∼g(x) (x → +∞) whenever f(x) ∼ g(x) (x → +∞), then f ∈ ARV . Every
g satisfying the above condition also belongs to ARV .

Proof. Let f ∈ A0 be an arbitrary measurable function such that f(x) ∗∼g(x)
(x → +∞) whenever f(x) ∼ g(x) (x → +∞), g ∈ A0 and is measurable.

Take g = f . Since f(x) ∼ f(x) as x → +∞ we find that f(x) ∗∼f(x) (x → +∞).
Hence, for every λ > 1, there is an x0(λ) = x0 ≥ a such that f(x/λ) ≤ f(x) ≤ f(λx)
(x ≥ x0). Consequently, f(λx)

f(x) ≥ 1, and so kf (λ) ≥ 1 (λ > 1). Next, we shall prove
that kf (λ) > 1 for every λ > 1.

Contrarily, assume that there is a λ > 1 such that kf (λ) = 1. Now, we distin-
guish between two cases.

10. There is an increasing and unbounded sequence (xn), xn ≥ a (n ∈ N) such
that f(λxn)

f(xn) = 1 (n ∈ N). If we define g(x) = (1 + 1
x ) · f(x) (x ≥ a), we find that

f(x) ∼ g(x) (x → +∞), so that for those λ we have that

f(x/λ) ≤
(

1 +
1
x

)
· f(x) ≤ f(λx),

for every x ≥ x0(λ) = x0 ≥ a.
Hence, for those x and λ we have f(λx)

f(x) ≥ 1 + 1
x > 1, and this also holds if x

equals to some element of the sequence xn which is greater than (or equal) a. But
this obviously contradicts to the assumption from the case 10.

20. There is an increasing and unbounded sequence (xn) (xn ≥ a, n ∈ N) such
that limn→+∞

f(λxn)
f(xn) = 1 and a sequence an > 1 (n ∈ N), where an = f(λxn)

f(xn) .
Notice that in this case, we also have that kf (λ) = 1.

Next, define a function u(x) (x ≥ a) as follows: u(xn) = an (n ∈ N), u(x)
is linear and continuous on every interval [xn−1, xn] (n ∈ N), where x0 = a and
u(a) = a1. Then limx→+∞ u(x) = 1. If we define g(x) = u2(x) · f(x) (x ≥ a)
then g ∈ [f ], and for the considered λ we have f(x/λ) ≤ u2(x) · f(x) ≤ f(λx)
(x ≥ x0(λ) = x0 ≥ a). Hence, for those x and λ we find that f(λx)

f(x) ≥ u2(x),
and this inequality is also true for values x which are equal to the elements of
the sequence xn, which are greater than (or equal) a. Finally, for the same λ and
sufficiently large n it follows that f(λxn)

f(xn) ≥ u2(xn) > u(xn) = an. But this obviously
contradicts the assumption from the Case 20.

Therefore, we have shown that kf (λ) > 1 for every λ > 1, so that f ∈ ARV .
Next, suppose that f ∈ ARV and g ∈ A0 is such that f(x) ∼ g(x) as x → +∞.

Then kg(λ) ≥ kf (λ) > 1 for every λ > 1, so that g ∈ ARV . This completes the
proof.
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Proposition 2. Let f and g be arbitrary measurable functions from the class A0.
If f(x)

∗³g(x) (x → +∞) whenever f(x) ³ g(x) (x → +∞), then f ∈ PI∗. All g
satisfying the above condition also belong to PI∗.

Proof. Let f be an arbitrary measurable function from the class A0 which satisfies
the condition above. We shall prove that f ∈ PI∗. For x ≥ a, define g(x) = 2 ·f(x).
Then g ∈ {f}, so there is a λ0 ≥ 1 such that for every λ > λ0 we have f(x/λ) ≤
2 · f(x) ≤ f(λx) (x ≥ x0(λ) = x0 ≥ a). For those λ and x we obtain f(λx)

f(x) ≥ 2,

so that kf (λ) = limx→+∞
f(λx)
f(x) ≥ 2 > 1. Thus, for every λ > λ0 ≥ 1 we have

kf (λ) > 1 and hence f ∈ PI∗.
Next, let f ∈ PI∗ ∩A0 be an arbitrary function, and g be arbitrary measurable

function from the class A0 with the property g ∈ {f}. Then g(x) = h(x) · f(x)
for x ≥ a, where h(x) (x ≥ a) is a measurable function, and 0 < 1/M ≤ h(x) ≤
M < +∞ for some M > 1 and all sufficiently large x. Consequently, we have

that kg(λ) ≥ 1
M2

· kf (λ) for all λ > λ0 ≥ 1. Since f ∈ PI∗, by a result from

[12] we find that lim
λ→+∞

kf (λ) = +∞. Therefore, for all sufficiently large x (and

for all λ > λ1 ≥ λ0 ≥ 1) we have kf (λ) > M2. This gives kg(λ) > 1 for all
λ > λ1 ≥ λ0 ≥ 1. Hence, g ∈ PI∗. This completes the proof.

Further, we consider two more modifications of Proposition A, and for them
we discuss the appropriate claims related to Propositions 1 and 2. In this way, we
obtain some characterizations of the classes PI∗ and R∞.

Proposition 3. Let f, g ∈ A0 and f ∈ PI∗. If f(x) ∼ g(x) (x → +∞), then
f(x)

∗³g(x) (x → +∞).

Proof. The statement of this proposition is a direct corollary of Proposition C
([12]).

In the next proposition we prove that PI∗ is the widest class of functions f , for
which the previous proposition remains true.

Proposition 4. Let f and g be arbitrary measurable functions from the class A0,
and let f(x)

∗³g(x) (x → +∞) whenever f(x) ∼ g(x) (x → +∞). Then f ∈ PI∗.
All g satisfying the above condition also belong to PI∗.

Proof. The proof of this claim is very similar to the corresponding proof of Propo-
sition 1. The only difference is as follows: in Proposition 1 an arbitrary λ > 1 is
taken, while here any λ > λ0 ≥ 1 for an arbitrary λ0 ≥ 1, is taken.

In the next two propositions we give a characterization of the class R∞, the
well-known de Haan’s class of rapidly varying functions (see e.g. [13], [2], [6] and
[10]).
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Proposition 5. Let f and g be arbitrary functions from the class A0 and f ∈ R∞.
If f(x) ³ g(x) (x → +∞), then f(x) ∗∼g(x) (x → +∞).

Proof. First, note that 1
M ≤ g(x)

f(x) ≤ M , for some M > 1 and every x ≥ x1(M) =

x1 ≥ a. Further, for any λ > 1 we have that f(x)
f(λx) = cf (λ, x) > 0 (x ≥ a), and

limx→+∞ cf (λ, x) = 0. For those λ and x ≥ x1 we find that g(x) ≤ M · f(x) =
M · cf (λ, x) · f(λx). Assuming that M < +∞, then for every λ > 1 we have that
g(x) ≤ f(λx) (x ≥ x∗1(λ) = x∗1 ≥ a), where x∗1 = max{x1, x

′
1} and x′1 = x′1(λ) ≥ a.

Hence, cf (λ, x) ·M ≤ 1 for every x ≥ x′1.

Therefore, g(x) ≥ 1
M · f(x) for x ≥ x1. Since limx→+∞

f(x)
f(x/λ) = +∞ for every

λ > 1, we have f(x)
f(x/λ) = df (λ, x) > 0 for x ≥ a, and limx→+∞ df (λ, x) = +∞,

for every λ > 1. Hence, for every λ > 1 we obtain df (λ, x) · 1
M ≥ 1, for every

x ≥ x′2 = x′2(λ) ≥ a. In other words, for every λ > 1 we have that g(x) ≥
1
M · f(x) = 1

M · df (λ, x) · f(x/λ) ≥ f(x/λ) for every x ≥ x∗2(λ) = x∗2 ≥ a, where
x∗2 = max{x1, x

′
2}. Finally, for every λ > 1 we obtain that f(x/λ) ≤ g(x) ≤ f(λx)

for every x ≥ x0 = x0(λ) = max{x∗1, x∗2} ≥ a. This means that f(x) ∗∼g(x) as
x → +∞.

Proposition 6. Let f and g be arbitrary measurable functions from the class A0.
If f(x) ∗∼g(x) (x → +∞) whenever f(x) ³ g(x) (x → +∞), then f ∈ R∞. All g
satisfying the condition above also belong to R∞.

Proof. The prof of this proposition is mostly similar to the proof of Proposition 2,
but some parts of these proofs differ. Hence, we shall give the entire proof.

Let f be an arbitrary measurable function from the class A0 and let α be an
arbitrary positive number. Next, let g(x) = α · f(x) (x ≥ a). Then g ∈ {f}
and we have that f(x) ∗∼g(x) as x → +∞. Hence, for any λ > 1 we have that
f(x/λ) ≤ g(x) ≤ f(λx), for every x ≥ x0(λ) = x0 ≥ a. For those λ and x we find
that f(x/λ) ≤ α · f(x) ≤ f(λx).

Now, (for the same λ and x) we find that α ≤ f(λx)
f(x) . Hence, for any λ > 1 we

have that kf (λ) ≥ α, where α > 0 is arbitrary. So, for any λ > 1, we have that
limα→+∞ kf (λ) ≥ limα→+∞ α = +∞, thus for these λ we have kf (λ) = kf (λ) =
+∞. Therefore, for any λ > 1, we obtain that limx→+∞

f(λx)
f(x) = +∞, i.e. we have

f ∈ R∞.

Next, let f ∈ R∞ and g ∈ {f}, where g ∈ A0 and is measurable. As in the

proof of Proposition 2 we have that kg(λ) ≥ 1
M2

· kf (λ) = +∞ for every λ > 1 and
arbitrary large number M > 1. But this gives that g ∈ R∞. This completes the
proof.
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[6] D. Djurčić, Lj.D.R. Kočinac, M.R. Žižović, Some properties of rapidly varying
sequences, J. Math. Anal. Appl. 327 (2007), 1297–1306.
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Serbia
E-mail: mjanjic@tfc.kg.ac.rs


