Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке: https://scidar.kg.ac.rs/handle/123456789/18700
Пун извештај метаподатака
Поље DC-а ВредностЈезик
dc.contributor.authorKaplarević-Mališić, Ana-
dc.contributor.authorAndrijevic, Branka-
dc.contributor.authorBojovic, Filip-
dc.contributor.authorNikolić, Srđan-
dc.contributor.authorKrstic, Lazar-
dc.contributor.authorStojanović, Boban-
dc.contributor.authorIvanović, Miloš-
dc.date.accessioned2023-07-31T19:41:20Z-
dc.date.available2023-07-31T19:41:20Z-
dc.date.issued2023-
dc.identifier.urihttps://scidar.kg.ac.rs/handle/123456789/18700-
dc.description.abstractPhysics-Informed Neural Networks (PINNs) are artificial neural networks that encode Partial Differential Equations (PDEs) as an integral component of the ML model. PINNs are successfully used nowadays to solve PDEs, fractional equations, and integral–differential equations, including direct and inverse problems. Just as in the case of other kinds of artificial neural networks, the architecture, including the number and sizes of layers, activation functions, and other hyperparameters can significantly influence the network performance. Despite the serious work in this field, there are still no clear directions on how to choose an optimal network architecture in a consistent manner. In practice, expertise is required, with a significant number of manual trial and error cycles. In this paper, we propose PINN/GA (PINN/Genetic Algorithm), a fully automatic design of a PINN by an evolutionary strategy with specially tailored operators of selection, crossover, and mutation, adapted for deep neural network architecture and hyperparameter search. The PINN/GA strategy starts from the population of simple PINNs, adding new layers only if it brings clear accuracy benefits, keeping PINNs in the population as simple as possible. Since the examination of dozens of neural networks through the evolutionary process implies enormous computational costs, it employs a scalable computational design based on containers and Kubernetes batching orchestration. To demonstrate the potential of the proposed approach, we chose two non-trivial direct problems. The first is 1D Stefan transient model with time-dependent Dirichlet boundary conditions, describing the melting process, and the second is the Helmholtz wave equation over a 2D square domain. The authors found that PINNs accuracy gradually improves throughout the evolutionary process, exhibiting better performance and stability than parallel random search and Hyperopt Tree of Parzen Estimators, while keeping the network design reasonably simple.en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.ispartofApplied Soft Computingen_US
dc.subjectPhysics Informed Neural Netowrksen_US
dc.subjectAutomatic designen_US
dc.subjectEvolutionary strategyen_US
dc.subjectGenetic Algorithmen_US
dc.titleIdentifying optimal architectures of physics-informed neural networks by evolutionary strategyen_US
dc.typearticleen_US
dc.description.versionAccepted for publishingen_US
dc.identifier.doi10.1016/j.asoc.2023.110646en_US
dc.type.versionReviewedVersionen_US
Налази се у колекцијама:Faculty of Science, Kragujevac

Број прегледа

280

Број преузимања

172

Датотеке у овој ставци:
Датотека Опис ВеличинаФормат 
STEFAN_PIN_GA-1.pdf1.38 MBAdobe PDFСличица
Погледајте


Ставке на SCIDAR-у су заштићене ауторским правима, са свим правима задржаним, осим ако није другачије назначено.