Молимо вас користите овај идентификатор за цитирање или овај линк до ове ставке:
https://scidar.kg.ac.rs/handle/123456789/8247
Назив: | Modified PROMETHEE approach for solving multi-criteria location problems with complex criteria functions |
Аутори: | Marković, Goran ![]() ![]() Zdravkovic, Nebojsa ![]() ![]() Karakašić M. Kolarevic, Milan ![]() ![]() |
Датум издавања: | 2020 |
Сажетак: | © 2020, Strojarski Facultet. All rights reserved. The specific problem that occurs in multi-criteria decision-making (MCDM) processes is ranking a number of alternatives using complex criteria functions (the hierarchical structure of criteria) whose values must consider the impacts of all-important characteristics and parameters of alternatives. The problem becomes more complex by increasing the number of levels of sub-criteria functions (degree of decomposition). This paper proposes an extended procedure based on the mean values conversion of the net outranking flow of sub-criterion functions obtained by modified PROMETHEE methods. The actual value of criterion functions is used only at the last level, and transformed values of the net outranking flow for generating a final rank of alternatives are introduced at other levels. This procedure provides a more objective comparison of the impact of various individual criteria to rank the alternatives and easier making of unique solution, where the impact of decision-maker (DM) experience and subjective estimation is minimised in the selection. Applicability and practicability of the presented procedure for solving the selection problem of a logistics warehouse location are demonstrated in the analysis of a case study example. |
URI: | https://scidar.kg.ac.rs/handle/123456789/8247 |
Тип: | article |
DOI: | 10.17559/TV-20190225151515 |
ISSN: | 1330-3651 |
SCOPUS: | 2-s2.0-85079570800 |
Налази се у колекцијама: | Faculty of Mechanical and Civil Engineering, Kraljevo |
Датотеке у овој ставци:
Датотека | Опис | Величина | Формат | |
---|---|---|---|---|
10.17559-TV-20190225151515.pdf | 1.2 MB | Adobe PDF | ![]() Погледајте |
Ова ставка је заштићена лиценцом Креативне заједнице