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ABSTRACT

Bone tissue for transplantation therapies is in high demand
in clinics. Osteodegenerative diseases, in particular, osteo-

porosis and osteoarthritis, represent serious public health
issues affecting a respectable proportion of the elderly pop-

ulation. Furthermore, congenital indispositions from the
spectrum of craniofacial malformations such as cleft palates
and systemic disorders including osteogenesis imperfecta

are further increasing the need for bone tissue. Addition-
ally, the reconstruction of fractured bone elements after

accidents and the consumption of bone parts during surgical
tumor excisions represent frequent clinical situations with
deficient availability of healthy bone tissue for therapeutic

transplantations. Epigenetic reprogramming represents a
powerful technology for the generation of healthy patient-

specific cells to replace or repair diseased or damaged tis-
sue. The recent generation of induced pluripotent stem cells

(iPSCs) is probably the most promising among these
approaches dominating the literature of current stem cell

research. It allows the generation of pluripotent stem cells
from adult human skin cells from which potentially all cell
types of the human body could be obtained. Another tech-

nique to produce clinically interesting cell types is direct lin-
eage reprogramming (LR) with the additional advantage

that it can be applied directly in vivo to reconstitute a dam-
aged organ. Here, we want to present the two technologies
of iPSCs and LR, to outline the current states of research,

and to discuss possible strategies for their implementation
in bone regeneration. STEM CELLS 2011;29:555–563

Disclosure of potential conflicts of interest is found at the end of this article.

INTRODUCTION

The promise of regenerative medicine is to produce healthy
tissues to replace diseased or damaged ones. Thus, it poten-
tially opens new gateways for the treatment of degenerative
diseases like Parkinson’s, Alzheimer’s, or Diabetes which
remain a challenge for current medical practices. Among
those, osteodegenerative diseases are rapidly gaining in im-
portance. In particular, osteoporosis and osteoarthritis are
major public health issues affecting a huge part of the elderly
population. Besides these age-related bone diseases systemic
disorders such as osteogenesis imperfecta or fibrous dysplasia
manifest themselves in weak and fragile bones due to a defec-
tive bone matrix. Other cases require the replacement of large
bone fragments. For example, maxillofacial surgeries of cleft
palates and the loss of bone after surgical tumor excisions
represent a high demand for clinically applicable bone tissue
[1, 2].

To meet these issues, autologous bone grafting, that is,
the replacement of damaged or missing bone tissue with the
patient’s own bone parts from healthy nonessential bones,
which is widely regarded as the ‘‘golden standard’’ for alter-
native therapeutic approaches, has been practiced for decades.
However, the limited availability of the patient’s own bone
tissue and the often accompanied donor site morbidity are in-
evitable drawbacks of the technique. Additionally, the trans-
plantation of bone parts from allogeneic or xenogeneic origins
bears the risks of immunological rejection and transmission of
diseases.

Cell replacement therapies represent an alternative solu-
tion. The use of mature cells such as osteoblasts is associated
with several disadvantages such as the limited availability, do-
nor site morbidity, dedifferentiation, and restricted prolifera-
tion potential. Bone marrow-derived mesenchymal stem cells
(MSCs), which are the developmental precursors of bone cells
(apart from osteoclasts), have been discovered early for bone
regeneration purposes and their therapeutic applicability has
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been assessed in case studies [3–5]. However, surgical bone
marrow aspirations yield very limited numbers of MSCs.
Moreover, the low proliferation rate of adult MSCs limits
their expandability under culture conditions and their capacity
to differentiate into new osteoblasts decreases with aging [6].

The derivation of pluripotent ESCs [7, 8] from the inner
cell mass of preimplantation blastocysts has caused an unprec-
edented excitement among the scientific community. These
cells have the unique character to self-renew indefinitely
while maintaining the ability to give rise to all cells of the
human body, called pluripotency. Thus, they potentially offer
the possibility to produce clinically interesting cell types for
cell replacement therapies. However, the broad excitement
was at the same time followed by a basic ethical controversy
regarding the fact that human embryos have to be destroyed
during the isolation of ESCs.

Therefore, extensive studies over decades on a biological
phenomenon called nuclear reprogramming in which one so-
matic cell type is converted into a different unrelated one
through a switch of the gene expression pattern [9] resulted
recently in the generation of ESC-like pluripotent cells by ec-
topic overexpression of only four genes in human fibroblasts,
called induced pluripotent stem cells (iPSCs, pluripotent
reprogramming) [10–12]. During the following months, an
unparalleled wave of scientific contributions reported on the
versatile advantages of iPSCs not only for regenerative
medicine but also for drug discovery, toxicity testing, and
academic research purposes.

At the same time another example of nuclear reprogram-
ming has increasingly been investigated with therapeutic
intentions. Easily accessible somatic cells such as fibroblasts
or adipocytes could be directly converted to clinically relevant
cell types on ectopic delivery of certain factors which are cru-
cially involved in the embryonic development of the targeted
cell type lineage reprogramming (LR). Thus, it potentially
offers the generation of the addressed cell type directly in
vivo as the absence of a pluripotent transition state excludes
the risk of teratoma formation, the latter in contrast being an
elementary characteristic of pluripotent stem cells [7, 8].

A schematic illustration of different therapeutic strategies
for bone regeneration is shown in Supporting Information
Figure S1.

INDUCED PLURIPOTENT STEM CELLS

Proceeding on the assumption that factors, responsible for the
maintenance of the pluripotent state in ESCs, could induce
pluripotency also in somatic cells upon ectopic overexpres-
sion, Kazutoshi Takahashi and Shinya Yamanaka identified
only four of these factors, namely Oct4, Sox2, Klf4, and c-
Myc, as being sufficient to reprogram mouse embryonic fibro-
blasts (MEFs) into a morphology highly comparable with
ESCs, which they designated iPSCs [11]. The sensation was
complete when the same group around Yamanaka reported
the generation of human induced pluripotent stem cells
(hiPSCs) with the same four factors [10]. Nearly simultane-
ously, James Thomson and coworkers equally reported the
generation of hiPSCs from neonatal foreskin fibroblasts using
another combination of reprogramming factors, by applying
Nanog and Lin28, instead of Klf4 and c-Myc [12]. Global
gene expression profiles and DNA methylation patterns of
iPSCs proved to be nearly indistinguishable from those of
ESCs. They could maintain their self-renewal when cultured
under ESC conditions and could be differentiated to cells of
all three germ layers [13–15]. Moreover, they developed tera-

tomas when injected into immunodeficient mice, and they
could contribute to the development of chimeric mice, a
major criterion for pluripotent stem cells.

After earlier attempts to derive autologous pluripotent
cells by somatic cell nuclear transfer had failed [16], the dis-
covery of iPSCs opened up new avenues to generate patient-
specific pluripotent stem cells, and, in addition, resolved ethi-
cal concerns related to the destruction of human embryos.
iPSCs could possibly be used to study embryonic develop-
ment, to generate models of monogenetic diseases for
research purposes, to design disease-specific cell-based assays
for drug screening and toxicity tests, and not least to derive
autologous tissue for cell replacement therapies.

However, prior to their potential applicability for clinical
therapies, two inevitable impediments had to be surmounted.
iPSCs appeared to evolve from the infected cells of origin
very slowly (initially more than 3 weeks after infection) and
resulted in a very low yield [10], which still could not be
fully understood. Recently, an explanation was proposed by
the hypothesis that iPSC reprogramming is a continuous sto-
chastic process [17, 18]. On the other side, if iPSCs should be
used for therapeutic purposes the cells must be free of
genomic insertions of transgene sequences, which could cause
serious genetic alterations if transplanted into patients.

Small molecule compounds were proposed as a possible
solution to resolve both problems. Thus, a variety of so-called
epigenetic modifiers was applied to support the loosening of
the DNA state in differentiated cells [19, 20], so that silenced
genes, like the pluripotency factors, could be reactivated
faster. It was also found that, for example, inhibitors of the
mitogen-activated protein kinase [21, 22], the glycogen syn-
thase kinase-3b [23, 24], or the type 1 transforming growth
factor (TGFb) receptor [25], could replace some factors or
increase the reprogramming kinetic and efficiency.

Further attempts to generate safer iPSCs by other means
than retro- or lentiviral infections include the transient deliv-
ery of the reprogramming factors by adenoviruses [26], bacte-
rial plasmids [27], piggyBac transposons [28, 29], and episo-
mal vectors [30], with the last attempt resulting in the
generation of hiPSCs free of any detectable genomic integra-
tion. Finally, it was shown that iPSCs could be generated if
the reprogramming factors were delivered as recombinant pro-
teins over a defined period of time, which probably represents
the safest method to date [31, 32].

iPSCs and Drug Discovery

Very early, the broad versatility of iPSCs was discovered
for pharmaceutical drug development and toxicity screening
[33, 34].

Two main problems are associated with the conventional
cell-based assays used in pharmaceutical research and devel-
opment, that is, primary human cells carrying the disease of
interest are often difficult or impossible to isolate, and they
mostly do not proliferate sufficiently to obtain the required
amount of cells for high-throughput screening approaches.
Thus, they have to be cultured in mitogen-rich media, which
force the cell to dedifferentiate to go back into the cell cycle.
Hence, genetically immortalized cells, animal cell models, or
tumor cells with high proliferation rates are applied fre-
quently, which, however, do not imitate the human conditions
optimally.

In contrast to that, iPSCs can be generated from a
patient’s skin sample, carrying a defined genetic mutation.
Subsequently, the so-called disease-specific iPSCs can be
expanded and differentiated to the cells of interest, which will
display the pathological characteristics of the disease. Thus,
numerous disease-specific iPSCs have been generated for
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various clinically highly challenging diseases including Par-
kinson’s disease, amyotrophic lateral sclerosis, and type 1 dia-
betes [35–37].

However, to our knowledge, no iPSC model of a mono-
genetic bone disease has been derived so far. Prominent sys-
temic bone disorders include for example McCune-Albright
syndrome, with a mutation in the GNAS gene, encoding the
guanine nucleotide-binding protein, multiple hereditary exos-
toses, with mutations in the EXT-1 and EXT-2 genes, osteo-
genesis imperfecta, with mutations in the collagen type 1
encoding genes COL1A and COL1B in over 90% of the cases,
or hypophosphatasia, with mutations in the alkaline phospha-
tase encoding gene ALPL. A comprehensive and reliable cata-
loging of genetic bone diseases can be found at the NIH’s
‘‘Genetics Home Reference’’ (http://ghr.nlm.nih.gov/condition-
Category/bones-muscles-and-connective-tissues). These bone
disease-specific iPSCs could not only be used for pharmaceu-
tical high-throughput screening assays and osteotoxicity tests
but would also offer a unique opportunity to study the patho-
logical mechanisms of the diseases.

iPSCs and Cell Replacement Therapy

In the meantime, seminal proof-of-principle studies demon-
strated how iPSC-based therapies could be performed in the
future [38–41]. In these studies, two different strategies were
proposed, one applies healthy iPSC-derived cells, and the
other uses autologous patient-specific cells after the mutation
was repaired by gene technological methods.

Hanna et al. used iPSCs to treat a humanized mouse
model of sickle cell anemia [38]. They reprogrammed fibro-
blasts of the diseased mouse to iPSCs, corrected the mutant
gene by homologous recombination, differentiated the pluri-
potent cells to hematopoietic progenitors, and transplanted
them back into the mouse. The therapy resulted in a substan-
tial improvement of the symptoms. A similar attempt was
reported for the treatment of Fanconi anemia [39]. In this
case, skin fibroblasts were isolated from a human patient suf-
fering from the disease. The mutant gene was replaced, and
subsequently the skin cells were reprogrammed to iPSCs. The
‘‘cured’’ iPSCs could be differentiated to hematopoietic
progenitor cells, which could be cultured in vitro, stably
maintaining the disease-free state.

In two other studies, healthy iPSC-derived dopaminergic
neurons [40] and endothelial cells [41] were used to treat rat
and mouse disease models of Parkinson’s disease and hemo-
philia A. In both cases, the transplanted cells functionally
integrated into the host organisms resulting in clearly
improved disease patterns.

A conceptual model for the use of iPSCs for research pur-
poses and cell replacement therapies is given in Figure 1.

LINEAGE REPROGRAMMING

In principle, the strategy of pluripotent reprogramming is
based on the creation of one ‘‘super-potent’’ cell from which
all somatic cells could be obtained. In contrary to that, LR
differs in its approach basically in two concepts, that is, it
does not require a total epigenetic reset to the pluripotent
state, and it is potentially suited for in vivo cell conversions
(Supporting Information Figure S2).

LR In Vitro

The proof-of-concept that adult cells could be directly con-
verted to other somatic cell types was given when Davis et al.
[42] discovered that MyoD, a key regulatory transcription fac-

tor during muscle development, could convert MEFs to myo-
blasts upon ectopic overexpression.

Many years after the initial reports on MyoD [43, 44], sci-
entists refocused their attention on LR in extensive studies on
the interconversion capabilities of cells within the hematopoi-
etic lineage [45, 46], probably due to the advanced knowledge
about hematopoietic development, the broad diversity of cells
within a common lineage, and the easy accessibility of blood
cells. One outstanding finding in hematopoietic LR was defi-
nitely the generation of macrophage-like cells by transdiffer-
entiation from skin fibroblasts with only two factors [47].
These initial results prompted soon analog attempts to obtain
cell types of acute clinical relevance.

Aiming at the derivation of functional neurons, Kondo et al.
were able to convert oligodendrocyte progenitor cells to a precur-
sor state, similar to that of multipotent central nervous system
stem cells, without genetic manipulations [48]. The converted
cells could self-renew and give rise to neurons, type 1 astrocytes,
and oligodendrocytes. An impressive result was published very
recently, when Vierbuchen et al. reported the generation of func-
tional neurons from fibroblasts by ectopic expression of the three
transcription factors Ascl1, Brn2, and Myt1l [49], which they
termed induced neuronal cells. The group was able to convert
embryonic as well as postnatal fibroblasts.

On the other side, Takeuchi et al. identified the cardiac tran-
scription factors Gata4, Tbx5, and a cardiac-specific subunit of
the Brg/Brahma-associated factors chromatin remodeling com-
plexes, Baf60c, as being capable of inducing transdifferentiation
of mouse mesoderm, including the noncardiogenic posterior
mesoderm and the extraembryonic mesoderm of the amnion, to
beating cardiomyocytes [50]. And only very recently it was
reported that functional cardiomyocytes could even be obtained
from dermal fibroblasts by LR with a similar combination of
only three factors: Gata4, Mef2c, and Tbx5 [51].

LR In Vivo

Two outstanding studies on in vivo LR outline the principles
of the approach. In one attempt, the authors reported the res-
toration of hearing in deaf guinea pigs [52]. A main reason
for the loss of auditory function is the permanent degeneration
of cochlear sensory (hair) cells. Hence, de novo generation of
sensory cochlear cells by forced conversion from nonsensory
epithelial cells of the cochlea by ectopic expression of Atoh1
had been reported in vitro and in vivo [53, 54]. On the basis
of these initial results, Izumikawa et al. demonstrated an
eventual therapeutic potential by showing that hearing could
be improved substantially in mature deaf inner ears of mam-
mals on direct in vivo reprogramming of nonsensory cells by
adenoviral overexpression of Atoh1 [52].

In another approach, the group around Douglas Melton
converted pancreatic exocrine cells to insulin-producing
b-cells in adult mice by injection of an adenoviral pool
containing the pancreatic factors Ngn3, Pdx1, and Mafa, dem-
onstrating the principles of a potential therapy for the rehabil-
itation of insulin production in type 1 Diabetes [55].

IPSCS AND BONE REGENERATION

Clinical demand of healthy bone tissue for transplantation
therapies and reconstructive surgery becomes manifest basi-
cally in two distinct scenarios. First, for the densification and
strengthening of porous, weak, and fragile bone matrix in sys-
temic bone disorders, affecting the entire skeleton. In this
case, the bone-forming cells have to be transplanted system-
atically to reach all bone parts, for example, by intravenous
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www.StemCells.com



injection [56, 57]. In the second case, an acutely affected,
locally defined bone part has to be remodeled completely
because of damage or loss, caused by accidents or surgical tu-
mor excisions [2, 3, 58, 59]. Because of the missing carrier ma-
trix the mechanical stability and structural constitution have to
be ensured by artificial, biocompatible cell delivery scaffolds.

Osteogenic Potential of iPSCs In Vitro

The differentiation of ESCs to bone cells has been adapted from
the protocols for the osteogenic differentiation of MSCs. The ba-
sic components of the commonly used osteogenic medium are
fetal bovine serum, ascorbic acid, b-glycerophosphate, and dexa-
methasone (Dex) [60]. Additional enhancing supplements
include certain bone morphogenetic proteins (BMP) [61, 62], or
the calcium-regulating hormone vitamin D3 (VitD3) [63].

Importantly, the timing of osteogenic supplementation
was shown to be relevant. Dex, for example, was found to
have an increasing osteogenic effect, when added at later
stages of differentiation [64]. If VitD3 was applied instead of
Dex it had to be used after the embryoid body (EB) formation
step [63]. When BMP2 was added during earlier stages of dif-
ferentiation it even decreased osteogenesis [65]. In contrast,
BMP4 was found to be required continuously [61].

Another strategy, probably based on the cell-cell interac-
tions and secretion of supporting factors, is the differentiation
in coculture with primary bone cells [66] or the use of cell
extracts from osteogenic cells [67].

Apart from that, the EB formation step has been a dis-
puted element of many differentiation protocols. Although it
could be shown that the omission of the EB formation
resulted in an accelerated osteogenic differentiation of mouse
ESCs based on marker expression and calcification [68, 69],
it remains unclear whether the EB formation step leads to a
more efficient osteogenic differentiation of human ESCs
(hESCs). In one study, the absence of EB formation resulted
in a slightly delayed calcium deposition [60], whereas Karp

et al. reported an earlier and more efficient osteogenesis with-
out EBs [70]. It is certain, though, that the EB formation step
is not necessarily required during osteogenic differentiation.

On the basis of differentiation protocols for ESCs, recently
the generation of bone matrix-forming osteoblasts has been
reported from mouse and human iPSCs (Fig. 2). In one approach,
exogenous overexpression of the key osteogenic transcription
factor Runx2 by adenoviral transduction enhanced the osteogenic
differentiation of mouse iPSCs [71]. Runx2-transduced iPSCs
exhibited after differentiation more than 50% higher alkaline
phosphatase activity than nontransduced cells, and the level of
calcium was about eightfold higher. The authors suggest adeno
vector-mediated transient delivery of Runx2 as a tool for applica-
tion to safer regenerative medicine using iPSCs. However, they
do not show any evidence that the transgenic sequence did not
permanently integrate into the host genome, like polymerase
chain reaction analysis with genomic DNA, or Southern blot
analysis. In another attempt, resveratrol, a natural polyphenol
antioxidant found largely in skins of red grapes, nuts, and red
wine, was found to have a promoting effect on osteogenic differ-
entiation of mouse iPSCs, based on mineralization, and osteo-
genic marker expression [72]. The group also attempted to evalu-
ate the in vivo bone formation by iPSCs, which were cultured in
osteogenic medium for 7 days prior to transplantation into nude
mice, when the mice were fed with resveratrol. Six weeks after
transplantation they observed a higher expression of osteopontin
in the transplants isolated from the mice, which were fed with
resveratrol, compared with the control mice, and conclude that
resveratrol effectively promotes osteogenic differentiation in
vivo. However, the article does not contain any evidence of min-
eralization within the transplant, and from the provided histo-
logic analyses, neither typical bone histology nor osteoblasts and
osteocytes can be recognized.

Furthermore, the derivation of MSC-like cells from mouse
iPSCs was equally reported [73]. In one study, the authors
emphasized the promoting effect of TGF-b1 and retinoic acid

Figure 1. iPSCs for research purposes and cell replacement therapies. Disease-specific iPSCs, obtained from patients with defined genomic muta-
tions, offer in vitro research models of pathologic tissue formation. Genetic repair of the mutations by homologous recombination before differentia-
tion enables the generation of healthy patient-specific cells for transplantation therapies. Abbreviation: iPSC, induced pluripotent stem cell.
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on MSC differentiation. The derived cells were characterized
by the expression of MSC-specific surface markers and the abil-
ity to further differentiate into adipocytes and osteoblasts upon
exposure to the respective culture conditions. Osteogenic differ-
entiation was assessed by positive von Kossa staining, alizarin
red staining, and the expression of osteogenic markers.

The potential therapeutic relevance of a strategy aiming at
the derivation of MSCs from iPSCs, was demonstrated by
Lian et al. [74], who derived functional MSCs from human
iPSCs, which they could isolate, purify, and maintain under
common MSC culture conditions. A subsequent transplanta-
tion into a mouse model of limb ischemia resulted in a sub-
stantial attenuation of the symptoms by promotion of vascular
and muscle regeneration. Interestingly, they reported that
iPSC-derived MSCs showed better results than adult bone
marrow MSCs, due to their superior survival and engraftment
after transplantation, and a higher capability to differentiate
into the appropriate tissue. Unfortunately, the authors do not
compare the iPSC-derived MSCs to bone marrow-derived
MSCs regarding their potential to form new bone in vivo
upon transplantation.

Toward this end, Bilousova et al. showed only very recently
that mouse iPSC-derived mesenchymal tissue could differentiate
into functional osteoblasts in vitro, which when cultured on a
gelatin scaffold could give rise to mineralized bone tissue with
vascular supply in vivo on transplantation in syngenic mice [75].
However, the iPSC-derived MSCs were not purified and main-
tained separately to be compared with bone marrow-derived
MSCs regarding their osteogenic potential in vivo and analog
results still need to be obtained using human iPSCs.

Osteogenic Potential of iPSCs In Vivo

Until recently, the published data offered only some indica-
tions of bone-like and mineralized tissue formation by hESCs
in vivo [64, 76, 77]. Small, mineralized, von Kossa-positive
patches were observed, where also osteocalcin was expressed.

However, bone histology was missing [77], or very vague
[64, 76], with no evidence of osteocytes and osteoblasts, and
insufficient proof of tissue origin.

More recent investigations, however, support convincingly
the osteogenic potential of hESCs and iPSCs in vivo [78, 79].
Arpornmaeklong and coworkers first derived MSCs from the
hESC line BG01, characterized by the expression of MSC-spe-
cific surface antigens, and the ability to further differentiate into
adipogenic, chondrogenic, and osteogenic tissue [78]. Subse-
quently, they induced osteogenic differentiation of the hESC-
derived MSCs upon culture in osteogenic medium for 28 days.
Before transplantation into calvarial defects of nude mice, osteo-
progenitors were enriched by fluorescence-activated cell sorting
based on the expression of alkaline phosphatase and a previously
transfected green fluorescent protein (GFP)-construct for cell
tracking. Histologic analysis convincingly demonstrated new
bone formation within the cranial defect, and staining of human-
specific nuclear antigen and GFP revealed that the newly formed
bone originated from the transplanted cells.

The by far most extensive in vivo bone formation by
hESC-derived cells was described very recently by Robey and
coworkers [79], who elaborately tested different differentia-
tion conditions in vitro for prolonged periods of time ranging
from 7 to 14 weeks prior to transplantation into immunocom-
promised mice. In vivo development of the transplants was
followed up to 20 weeks after transplantation. Extensive new
bone formation was demonstrated by histologic analyses,
where osteoblasts and osteocytes could be recognized, and
intense green fluorescence of highly mineralized bone matrix.
The human origin of the cells forming new bone was deter-
mined by in situ hybridization for human-specific alu repeti-
tive DNA sequences. Importantly, the group identified a
correlation between certain culture conditions and an accumu-
lated teratoma formation in 12- to 20-week-old transplants,
and despite multiple conditions tested, the group has not
achieved consistent bone formation by hESC progeny.

Figure 2. Derivation of osteoblasts by iPSC-based and lineage reprogramming. Osteoblasts and MSCs have been differentiated from mouse and
human iPSCs. Additionally, osteoblasts could be obtained by direct lineage reprogramming from myoblasts and adipocytes through specific
reprogramming factors. Abbreviations: AC, adipocytes; bFGF, basic fibroblast growth factor; BMP2, bone morphogenetic protein 2; EGF, epider-
mal growth factor; iPSCs, induced pluripotent stem cells; MB, myoblasts; MSCs, mesenchymal stem cells; OB, osteoblasts; PDGF AB, platelet-
derived growth factor AB; SOCS-2, suppressor of cytokine signaling 2; TGF-b1, transforming growth factor beta 1.
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The in vivo bone formation by iPSCs was equally demon-
strated [80]. The authors investigated the capabilities of
human iPSCs for periodontal tissue regeneration in nude
mice. They reported that EMD, a gel containing an enamel
matrix-derived protein complex from the amelogenin family,
substantially promoted new in vivo alveolar bone and cemen-
tum formation with regenerated periodontal ligament between
them, after they transplanted iPSCs on silk scaffolds into a
mouse periodontal fenestration defect model.

LR AND BONE REGENERATION

To propose a general strategy for the derivation of bone cells
by LR, a few key issues have to be addressed.

Cells to Be Derived

Two different methods were proposed, that is, either the gen-
eration of the core cell type, which would directly reconstitute
the function of the organ [49], or the derivation of its progeni-
tor cell [48].

Osteoblasts are progenies of MSCs and constitute the ru-
dimentary bone matrix-secreting cell type, which progres-
sively transform into osteocytes [81]. MSCs, together with
hematopoietic stem cells, are derived from the mesoderm, and
constitute the two main postnatal stem cell populations resid-
ing in the bone marrow [82–84]. MSCs are also the progeni-
tors of myoblasts, chondrocytes, adipocytes, and fibroblasts
[85, 86]. Hence, osteoblasts and MSCs are the core cell types
in osteogenesis, and thus represent the key cell types to focus
on for bone regeneration purposes [87].

Cells to Be Converted

One might assume that developmentally adjacent cell types are
more amenable to reprogramming toward each other because a
shared developmental history would result in a similar epige-
netic state. Thus, it has been shown that mature cells are more
difficult to reprogram to pluripotency than immature cells [88,
89], and initial studies on LR were successfully performed
within the same lineage. Hence, the derivation of osteoblasts is
probably most promising from cells of the MSC lineage, such
as chondrocytes, myoblasts, adipocytes, or fibroblasts [86].

Accordingly, it has been found that myoblasts could be
forced to convert into osteoblasts instead into myocytes, after the
mechanism was elucidated that leads to a split up in differentia-
tion after an initial common development from MSCs [90–93].
Furthermore, it was reported that human adipocytes could be
directly reprogrammed into osteoblasts [94–96] (Fig. 2).

Reprogramming Factors

To identify key developmental regulators of osteogenesis as
potential reprogramming factors considerable understanding
of the alterations in gene expression during osteogenic com-
mitment could be won from gene expression analyses during
ESC differentiation to osteoblasts, particularly because stages
earlier than the MSC phase could be analyzed [87, 97]. hESC
differentiation to osteoblasts has been studied extensively
[98], and crucial transcription factors regulating osteoblast dif-
ferentiation have been identified together with their specific
function [99–103] such as Runx2, Osterix, b-catenin, Foxc1,
Msx1, Msx2, Dlx5, Dlx6, Twist, AP1(Fos/Jun), Knox-20, Sp3,
Atf4, Alx4, etc. Among those supremacy has been awarded to
the early osteogenic marker Runx2 and the late osteogenic
regulator Osterix [104–107], with particularly Runx2 playing
a master regulatory role and being indispensable for osteoblast
differentiation [107]. Additionally, extracellular factors, which

often play important roles in development, and were identified
to promote osteogenic differentiation in vitro, such as TGFb,
BMP, IGF, etc., could potentially be tested as genetically
noninvasive reprogramming factors [108].

Based on these findings, recently, it has been demon-
strated that human adipocytes could successfully be converted
to osteoblasts on lentiviral overexpression of BMP-2 and delta
FBJ murine osteosarcoma viral oncogene homolog B (DFosB)
[94]. The choice of factors was justified by the ability of
BMP-2 to induce Runx2 expression during in vitro differentia-
tion, and the fact that DFosB supported osteoblast maturation
and inhibits adipogenesis [94]. Additionally, a transdifferen-
tiation of human adipocytes to osteoblasts solely through a
defined culture medium was reported, dispensing genetically
invasive methods entirely [95, 96].

It has been known for a while that BMP could also con-
vert the differentiation program of myoblasts to an osteogenic
commitment [90]. Later it was reported that the transdifferen-
tiation from myoblasts to osteoblasts is based on TGFb1- and
BMP-2-induced expression of the key osteogenic transcription
factor Runx2 [92]. Further mechanistic studies revealed that
suppressor of cytokine signaling SOCS-2 potentiates [93], and
that paired-like homeodomain transcription factor Pitx2
inhibits BMP-induced transdifferentiation of myoblasts to
osteoblasts [91]. Thus, an additional alternative to ectopic
overexpression of reprogramming factors is the knockout of
crucial factors that stabilize the state of the initial cell type or
the implementation of both techniques simultaneously.

Bone Regeneration by LR In Vivo

For in vivo LR, on the one side, other cells have to be avail-
able in the same organ that could be reprogrammed to the
cell type of interest, and on the other side, an appropriate
‘‘niche’’ is required for the newly generated cells, particularly,
for progenitor cells [52, 55]. There are several cell types
within the compact bone organ, emerging from the mesoder-
mal lineage, which could possibly be reprogrammed into
osteoblasts, particularly, fibroblasts from the outer fibrous
layer, and adipocytes from the yellow marrow.

As shown above, several studies already reported the suc-
cessful conversion of adipocytes to osteoblasts in vitro [94,
95, 109]. However, also mature osteoblasts could undergo adi-
pocyte transdifferentiation under appropriate culture condi-
tions [110]. Notably, an increased fat tissue amount and
decreased bone tissue volume has been found to correlate
with progressed age [111, 112]. To confront these age-related
loss of bone mass, both, new derivation of osteoblasts from
progenitor cells, and the active functionality of already exist-
ing osteoblasts, are key requirements [95]. Thus, for example,
the age-related limitations of MSC to generate new osteo-
blasts [113], could be improved by artificial ‘‘rejuvenation’’
upon overexpression of human telomerase reverse transcrip-
tase in human MSCs [114, 115].

An alternative approach to cure age-related loss of proper
functioning osteoblasts could be direct reprogramming of the
increased amount of fat tissue to osteoblasts in vivo. For
example, a senescence-accelerated mouse model could be
used for an in vivo screening assay to identify potential osteo-
genic reprogramming factors capable of improving the osteo-
blast/adipocyte-ratio within bones [116, 117].

REMAINING CHALLENGES

IPSCs and LR put themselves forward as promising technolo-
gies for the regeneration of bone tissue. The derivation of
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MSCs and osteoblasts was reported using both methods, and
their capabilities to reconstitute bone tissue in vivo were
equally demonstrated. However, a few remaining challenges
have to be resolved prior to their potential implementation in
clinical therapies.

Cell reprogramming protocols have to be optimized toward
the highest possible kinetic and conversion efficiency. Toward
this end, different methods were applied [118]. Still the con-
version of fibroblasts to iPSCs takes considerably longer than
LR of fibroblasts to cardiomyocytes or neural cells, which
appeared only 3 days after viral induction [49, 51].

Equally, the differentiation protocols of iPSCs to MSCs
and osteoblasts have to fulfill clinical safety standards, which
require high-quality homogenous cell populations without the
risk of remaining teratogenic cells. Therefore, apart from the
expansion of undifferentiated iPSCs in stirred suspension bio-
reactors, additional focus will have to be directed at the large-
scale differentiation, enrichment, and selection protocols for
the generation of homogenous osteoblast populations [119].

Apart from that, viral overexpression of the reprogram-
ming factors has to be replaced by safer, genetically noninva-
sive means, such as proteins, growth factors, cytokines, or
small molecules, as already shown [31, 32, 48, 96]. For exam-
ple, reversine, a small molecule compound, was found to be
able to reprogram myoblasts into a MSC-like state, which
could be subsequently differentiated into osteoblasts [120].

Another major impediment of stem cell therapy is the de-
velopment and optimization of cell delivery scaffolds and the
adjustment of the protocols from tissue culture plastic dishes
to 3D scaffolds. There are several requirements that crucially
determine the efficiency of bone formation, that is, the size
and distribution of pores, the surface appearance, and the me-
chanical properties of the material. Currently proposed scaf-
folds include those made of inorganic materials, organic or
synthetic polymers, or of mixed materials (composite scaf-
folds). Additional issues, such as vascularization, anatomical

shapes, and the delivery of growth factors, will remain chal-
lenges for bone tissue engineering in the future.

Finally, two other questions of immense importance, par-
ticularly for in vivo LR remain open, that is, how should the
reprogramming factors be delivered to the organ of interest,
and how to address certain cells specifically, without harming
other tissues? Local microinjections of either gene expression
vectors or virus suspensions are two proposed techniques [52,
55], which could possibly be optimized to safer solutions.

CONCLUSION

In summary, iPSCs and LR represent two promising technolo-
gies in regenerative medicine, and investigative efforts are
intensively addressing the remaining issues prior to future
therapeutic applications. We believe that here presented stud-
ies are important contributions to the derivation of healthy
bone tissue for therapies in osteoregenerative medicine, and
we are optimistic that they will soon encourage further inves-
tigative efforts in this field.
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