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Fluoranthenes are polycyclic conjugated molecules consisting of two benzenoid fragments, con-
nected by two carbon–carbon bonds so as to form a five-membered ring. Fluoranthenes possessing
Kekulé structures are classified into three types, depending on the nature of the two carbon–carbon
bonds connecting the two benzenoid fragments. Either both these bonds are essentially single (i. e.,
single in all Kekulé structures), or both are essentially double (i. e., double in all Kekulé structures),
or one is essentially single and the other is essentially double. All Kekuléan fluoranthenes have equal
number of bonding and antibonding molecular orbitals (MO), and no non-bonding MO.
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1. Introduction

From a theoretical point of view, benzenoid
molecules are the most thoroughly studied class
of polycyclic aromatic hydrocarbons (PAHs) [1 – 6].
These molecules are assumed to be composed of mu-
tually condensed six-membered rings. Other types of
PAHs have attracted much less attention of theoretical
chemists. Thus, in spite of the fact that fluoranthene
and its congeners are structurally very similar to ben-
zenoids (see below), the systematic elaboration of their
theory has started only quite recently [7].

For theoretical considerations of PAHs, the fact that
they have a large number of Kekulé structural formulas
is of profound importance [1, 2, 6].

Until now, Kekulé structures in fluoranthenes have
not been systematically analyzed. The aim of the
present work is to contribute towards filling this gap.

2. Fluoranthenes and their Molecular Graphs

In Figure 1 are depicted fluoranthene (1) and a few
of its congeners. From these examples the readers will
immediately get an idea of their general structure. A
fluoranthene is a conjugated π-electron system, con-
sisting of two benzenoid fragments which are joined
so as to form a five-membered ring. From the clas-
sical point of view [2 – 4, 6], the π-electrons in fluo-
ranthenes behave as two disconnected conjugated sys-
tems, with two disconnected sets of conjugated cir-
cuits, each set lying completely inside one of the ben-
zenoid fragments.
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Fig. 1. Fluoranthene (1) and examples of its congeners. Note
that these PAHs are obtained by joining two benzenoid frag-
ments, so as to form a new five-membered ring. The general
structure of fluoranthenes is depicted in Figure 2.
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Fig. 2. General form of a fluoranthene-type system (F) and
its construction from two benzenoid fragments X and Y .

In what follows we will represent the fluoranthenes
by means of their molecular graphs [7, 8]. This, in
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particular, means that the carbon atoms are represented
by vertices, and the carbon–carbon bonds by edges.

The molecular graphs of fluoranthenes are then de-
fined in the following manner (see Fig. 2). Let X be a
benzenoid system [2]. Let r and s be two vertices of X
whose degrees are two, and which both are adjacent to
a vertex t of degree 3.

Let Y be another benzenoid system. Let p and q be
two adjacent vertices of Y whose degrees are two.

The fluoranthene-type system F is obtained by join-
ing (with a new edge) the vertices p and r, and by join-
ing (with a new edge) the vertices q and s, see Figure 2.
The vertices p,q,r,s,t of F form a five-membered ring.
By definition, each fluoranthene-type system possesses
exactly one five-membered ring.

3. Kekuléan Fluoranthenes

The number of Kekulé structures of a fluoranthene
F will be denoted by K{F}. Fluoranthenes having
Kekulé structures (i. e., having the property K{F}> 0)
are said to be Kekuléan (cf. [2]). All chemically rele-
vant fluoranthene congeners are necessarily Kekuléan.

In the molecular-graph formalism, Kekulé struc-
tures are represented by perfect matchings [8], i. e., by
selections of mutually non-touching edges which cover
all vertices.

In what follows the edge connecting the vertices u
and v will be denoted by uv. If an edge belongs to a
perfect matching, it is said to be a “double bond” (of
the respective Kekulé structure). Otherwise it is a “sin-
gle bond” (of the respective Kekulé structure).

An edge which is single in all Kekulé structures is
said to be an “essentially single bond”. Analogously,
an edge which is double in all Kekulé structures is said
to be an “essentially double bond” [9 – 12].

The existence and number of Kekulé structures
in a fluoranthene F is determined by the two ben-
zenoid fragments (X and Y in Fig. 2), from which
F is composed. Therefore, in order to establish the
basic regularities for K{F} , we need to recall some
well-known properties of benzenoid systems and their
Kekulé structures [2, 13].

Benzenoid systems are bipartite graphs and there-
fore their vertices can be colored by two colors, say
black and white, so that no two adjacent vertices have
the same color. We denote the number of black and
white vertices of a (bipartite) molecular graph G by
nb(G) and nw(G), respectively. For an example see
Figure 3.

x 5
Fig. 3. Benzenoid system X with nb(X) = 10 black and
nw(X) = 9 white vertices. Since nb(X) �= nw(X), this ben-
zenoid system has no Kekulé structures. Nevertheless, there
exist Kekuléan fluoranthenes (for instance 5), in which X is
one of the two benzenoid fragments; for details see text.

The condition nb = nw is necessary (but not suffi-
cient) for the existence of Kekulé structures of a ben-
zenoid hydrocarbon [2, 13].

In order to simplify our considerations, we will as-
sume that the vertices of the benzenoid fragments X
and Y (as shown in Fig. 2) are colored as follows: The
vertices r and s of X are black (in which case vertex t
white). Further, vertex p of Y is black (in which case
vertex q is white).

With regard to the coloring of vertices in the ben-
zenoid fragments X and Y , and with regard to the
Kekulé structures of the respective fluoranthene F , four
cases need to be distinguished.

Case 1. nb(X) = nw(X) and nb(Y ) = nw(Y ). This is
the regular case embracing the majority of Kekuléan
fluoranthenes (e. g., all examples depicted in Fig. 1).
Because of nb(X) = nw(X), in all Kekulé structures of
F , all double bonds ending at vertices r and s lie in
the fragment X . Consequently, in all Kekulé structures
the edges pr and qs are single, i. e., these edges are
essentially single bonds. Therefore,

K{F} = K{X} ·K{Y}. (1)

In Case 1 the fluoranthene F is Kekuléan if and only if
both benzenoid systems X and Y are Kekuléan.

Case 2. nb(X) = nw(X)+1 and nb(Y ) = nw(Y )+1.
Because nb �= nw for both X and Y , neither X nor Y can
have Kekulé structures. However, the fluoranthene F
may nevertheless be Kekuléan, as shown by example 5
in Figure 3.
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Indeed, since the vertices r and p are black, the
subgraphs X − r and Y − p have equal number of
black and white vertices, nb(X − r) = nw(X − r) and
nb(Y − p) = nw(Y − p), and therefore X − r and Y − p
may be Kekuléan. If so, then in the corresponding flu-
oranthene pr is an essentially double bond whereas qs
is essentially single. Then

K{F} = K{X − r} ·K{Y − p}.
In Case 2 the fluoranthene F is Kekuléan if and only
if both benzenoid subgraphs X − r and Y − p are
Kekuléan.

Case 3. nb(X) = nw(X) + 2 and nb(Y ) = nw(Y ).
This time the benzenoid system X cannot have Kekulé
structures, but its subgraph X −r−s may be Kekuléan.
If so, then both pr and qs are essentially double bonds,
and therefore

K{F} = K{X − r− s} ·K{Y}.
In Case 3 the fluoranthene F is Kekuléan if and only
if the benzenoid fragment Y as well as the benzenoid
subgraph X − r− s are Kekuléan.

An example of a Kekuléan fluoranthene pertaining
to Case 2 is the species 5, depicted in Figure 3. Further
examples, for both Cases 2 and 3 are 6, 8, and 9 in Fig-
ure 4. In these diagrams only the essentially single and
essentially double bonds are indicated. Those parts of
the fluoranthene molecule in which the carbon–carbon
bonds have intermediate double- and single-bond char-
acters are indicated by gray shading.

It is worth noting that the π-electron content
[12, 14 – 17] of the five membered ring in the Case 1, 2,
and 3 fluoranthenes differs significantly. In Case 1 its
value is between 0 and 2, in Case 2 is between 2 and 3,
and in Case 3 it is always equal to 4.

Cases 1 – 3 exhaust all possibilities for fluoranthenes
being Kekuléan. In view of this, what remains is:

Case 4. If the colouring of the vertices of the ben-
zenoid systems X and Y does not satisfy any of the
conditions required in Cases 1 – 3, then the respective
fluoranthene F is non-Kekuléan, K{F} = 0.

An example of a fluoranthene-type species to which
Case 4 applies is 10 in Figure 4.

4. Kekuléan Fluoranthenes are Closed-Shell
Systems

In the previous section we demonstrated that in all
Kekuléan fluoranthenes the two carbon–carbon bonds
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Fig. 4. Molecules 5 (in Fig. 3) and 6 are examples of Case
2 Kekuléan fluoranthenes. Molecules 8 and 9 are examples
of Case 3 Kekuléan fluoranthenes. Case 2 applies also to the
species 7, which is non-Kekuléan because of K{Y − p} = 0.
The species 10 is non-Kekuléan because nb(X) = nw(X)−2.
For more details see text.

(pr and qs) which connect the two benzenoid frag-
ments (X and Y ) are either essentially single or es-
sentially double. Now, if a carbon–carbon bond is es-
sentially double, then all carbon–carbon bonds inci-
dent to it must be essentially single. Thus, all Kekuléan
fluoranthenes possess essentially single carbon–carbon
bonds.

Within the tight-binding Hückel molecular orbital
(HMO) model, the bonding, non-bonding, and an-
tibonding molecular orbitals pertain, respectively, to
positive, zero, and negative eigenvalues of the adja-
cency matrix of the molecular graph [18 – 20]. As
a consequence, conjugated π-electron systems have
equal number of positive and negative eigenvalues, and
no zero eigenvalues are predicted to have a closed-shell
electron configuration.

We now show that all Kekuléan fluoranthenes sat-
isfy this condition.

Let F be a fluoranthene and A(F) its adjacency
matrix. As well known, the determinant of the adja-
cency matrix is equal to the product of the graph eigen-
values.
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The determinant of the adjacency matrix of a graph
G with n vertices can be calculated by using the Sachs
theorem, whose details can be found in [8, 18 – 20].
We only recall that a Sachs graph consists of disjoint
edges and/or disjoined cycles. The determinant of the
adjacency matrix of G is expressed as a sum of terms,
each pertaining to a Sachs graph with n vertices. Edges
that are essentially single may be contained only in
odd-membered cycles of n-vertex Sachs graphs. If a
molecular graph is Kekuléan, then it must possess an
even number of vertices. In this case, each n-vertex
Sachs graph possesses either no odd-membered cy-
cle or possesses an even number of odd-membered
cycles. Since fluoranthenes have no two disjoint odd-
membered cycles, none of their n-vertex Sachs graphs
contain odd-membered cycles. Consequently, none of
their n-vertex Sachs graphs contain the essentially sin-
gle edges. Therefore, we may associate an arbitrary
weight [21] to the essentially single edges of F , with-
out influencing the value of det A(F).

In what follows we consider only Case 1 Kekuléan
fluoranthenes. However, the precisely same reasoning
applies also in Cases 2 and 3.

Thus, let F be a Case 1 Kekuléan fluoranthene, in
which the edges pr and qs are essentially single (see
Figure 2). Let F(w) be the weighted molecular graph

[21], in which the edges pr and qs have weights w.
Then F(1) is the usual molecular graph, whereas F(0)
is the graph consisting of disconnected benzenoid sys-
tems X and Y . Recall that in view of (1), X and Y must
be Kekuléan. Therefore,

detA(F(0)) = detA(X)×detA(Y )

= K{X}2 ×K{Y}2 > 0.

For w = 0 we have two benzenoid graphs, which being
bipartite necessarily have equal number of positive and
negative eigenvalues, and being Kekuléan have no zero
eigenvalues. Since detA(F(w)) is independent of w,
we may continuously change w from zero to one, with-
out changing the value of the determinant. This means
that the number of positive and negative eigenvalues
of A(F(w)) are independent of w, and that A(F(w))
has no zero eigenvalues. Applying this argument to the
case w = 1 we arrive at the conclusion that (within
the HMO approximation) the Case 1 Kekuléan fluoran-
thenes have equal number of bonding and antibonding
MOs, and no non-bonding MO, i. e., have a closed shell
π-electron configuration.

The proof of the same property for Case 2 and Case
3 Kekuléan fluoranthenes is analogous, yet slightly
more complicated.
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[6] M. Randić, Chem. Rev. 103, 3449 (2003).
[7] I. Gutman and J. Durdević, MATCH Commun. Math.
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