NPC Natural Product Communications

Studies on the Antimicrobial and Antioxidant Activity and Chemical Composition of the Essential Oils of *Kitaibelia vitifolia*

2013 Vol. 8 No. 5 667 - 670

Pavle Mašković^{a*}, Marija Radojković^b, Mihailo Ristić^c and Slavica Solujić^d

^aFaculty of Agronomy, University of Kragujevac, 32000 Čačak, Cara Dušana 34, Serbia ^bFaculty of Technology, University of Novi Sad, 21000 Novi Sad, Bulevar cara Lazara 1, Serbia ^cInstitute for Medicinal Plant Research Dr. Josif Pančić, 11000 Belgrade, Tadeuša Košćuška 1, Serbia ^dFaculty of Science, University of Kragujevac, 34000 Kragujevac, Radoja Domanovića 12, Serbia

pavlem@tfc.kg.ac.rs

Received: December 28th, 2012; Accepted: March 13th, 2013

The objective of this study was to evaluate the potential use of the essential oil of *Kitaibelia vitifolia* Willd. in the pharmaceutical and food industries. Antimicrobial and antioxidant activities of essential oil of *K. vitifolia* isolated by hydrodistillation using a Clevenger-type apparatus were assessed. GC/FID and GC/MS analyses were used to determine the major components of the essential oil as sclareoloxide (*cis* A/B) 17.9%, sclaral 10.9%, labda-7,13,14-triene 10.6% and sclareol 9.5%. The antimicrobial activity of the essential oil was evaluated against the bacterial strains: *Staphylococcus aureus* ATCC 25923, *Klebsiella pneumoniae* ATCC 13883, *Escherichia coli* ATCC 25922, *Proteus vulgaris* ATCC 13315, *P. mirabilis* ATCC 14153, and *Bacillus subtilis* ATCC 6633; and fungal strains: *Candida albicans* ATCC 10231 and *Aspergillus niger* ATCC 16404. Antimicrobial activity was tested using a broth dilution procedure for determination of minimum inhibitory concentration (MIC). The essential oil of *K. vitifolia* showed strong antimicrobial activity. Antioxidant activity were compared with control antioxidants, ascorbic acid, galic acid, α -tocopherol and BHT. Results showed that the essential oil possesses antioxidant activity, with total antioxidant capacity of 95.4±0.7 µg AA/g and IC₅₀ values of 5.45±1.45 µg/mL for DPPH free radical scavenging activity, 26.5±1.6 µg/mL for inhibitory activity against lipid peroxidation, 79.4±0.4 µg/mL for hydroxyl radical scavenging activity, and 39.9±0.7 µg/mL for metal chelating activity.

Keywords: Kitaibelia vitifolia, Essential oil, Antimicrobial activities, Antioxidant activities.

The use of traditional medicinal plants for primary health care and other purposes has progressively increased worldwide in recent years. Many plant secondary metabolites and essential oils have antimicrobial properties that make them successful in the treatment of bacterial, fungal and viral infections [1-3]. The different parts of plants are used to treat effectively a number of diseases. Their antioxidant and antimicrobial properties affect a range of physiological processes in the human body, thus providing protection against both free radicals and growth of undesirable microorganisms. Free radicals, as highly reactive intermediaries, lead to oxidative tissue damage and, therefore, potential damage. The accumulation of these radicals causes serious health problems, including cardiovascular diseases, premature aging, cancer, and inflammatory diseases [4-9]. However, synthetic antioxidants, such as butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA), widely known for their ability to terminate the chain reaction of lipid peroxidation, have been proved to be carcinogenic and cause liver damage [10]. Both bacterial resistance to a large number of antibiotics and the capacity of plants to synthesize biologically active substances are reasons for the increasing importance given to the use of plant-derived products in bacterial control. The use of plants in the food industry to replace synthetic preservatives, antioxidants and other food additives has increased significantly over the last years [11] No previous studies on the biological activity, chemical constituents and traditional uses of Kitaibelia vitifolia Willd. (Malvaceae) have been reported.

Results on the qualitative and quantitative chemical composition of the essential oil of *K. vitifolia* are given in Table 1. A total of 41 components, accounting for 96.6% of the oil, were identified.

Analysis showed that 82.3% of the oil characterized (96.6%) was made up of 15 components present in the sample at a concentration higher than 1%, and that more than half of the sample fraction characterized (48.9%) contained as few as four dominant components, sclareol-oxide (*cis*-A/B) (17.9%), sclaral (10.9%), labda-7,13,14-triene (10.6%) and sclareol (9.5%). The essential oil sample is extremely diterpenic in character, with the diterpenes present being predominantly of the labdane type.

The antimicrobial results obtained by the dilution method (MIC) are given in Table 2. Minimum inhibitory concentrations were determined for 8 selected indicator strains. The results presented in Table 2 reveal antimicrobial activity of the essential oil of *K. vitifolia* within the concentration range of 15.6 µg/mL to 62.5 µg/mL. The highest susceptibility to *K. vitifoila* essential oil among the bacteria tested was exhibited by *B. subtilis* ATCC 6633 (MIC = 15.6 µg/mL), followed by *S. aureus* ATCC 25923, *E. coli* ATCC 25922 (MIC = 31.2 µg/mL), *K. pneumoniae* ATCC 13883, *P. vulgaris* ATCC 13315 and *P. mirabilis* ATCC 14153 (MIC = 62.5 µg/mL). Among the fungi, *A. niger* ATCC 16404 (MIC = 31.2 µg/mL) showed the highest susceptibility, and *C. albicans* ATCC 10231 (MIC = 62.5 µg/mL) the lowest.

The results show that the essential oil of *K. vitifolia* possesses antioxidant activity, with total antioxidant capacity of $95.4\pm0.7 \ \mu g$ AA/g. IC₅₀ values were determined for each measurement (Table 3).

Antioxidant and antimicrobial properties of essential oils and various extracts of many plants are of great interest in both fundamental science and food industry, since their potential use as

Table 1: Chemical composition of the essential oil tested.

Linalcol 1091.6 1095 0.3 Lilac aldehyde C 1134.0 n/a 0.8 Eugenol 1351.2 1356 0.3 la2,2,5,5-Tetramethyl-cix-la,4a,5,6,7,8-hexahydro-y-chromene 1376.3 1370 0.3 stopatcolula-3,5-diene 1378.5 1377 0.3 4-(2,6,6-Trimethylcyclohexa-1,3-dienyl) but-3-en-2-one 1405.9 1440 0.7 Geranyl acetone 1443.3 1453 0.5 <i>trans</i> -β-Ionone 1441.2 1502 0.5 11- <i>nor</i> -Drim-7-en-9-one 1568.4 n/a 0.4 Silphiperfol-5-en-3-one A 1568.4 1575 0.3 ciz-birdycromayurone 1583.2 1595 0.7 Scleina-3,11-dien-6α-01 1631.0 1642 0.8 Cyperotundone 1769.4 1762 0.7 3-Acetoxy-β-ionone 1772.8 1792 0.6 Fukianolide 1790.5 1798 0.4 Khusinolacetate 1832.6 n/a 1.1 Sclareoloxide<	Constituents	KIE	KIL	%
Lilac aldehyde C 1134.0 n/a 0.8 Eugenol 1351.2 n/a 0.8 Eugenol 1351.2 1356.7 1370 0.5 trans-β-Damascenone 1373.3 1383 0.8 Isopatchoula-3,5-diene 1370.5 1377 0.3 4(2,6,6-Timethyleciohexa-1,3-dienyl) but-3-en-2-one 1443.3 1453 0.5 trans-β-Donone 1443.3 1453 0.5 trans-β-Ionone 1475.4 1487 0.4 γ-Patchoulene 1491.2 1502 0.5 11-aro-Drim-7en-9-one 1563.4 n/a 0.4 Silphigherfol-5-en-3-one A 1568.4 1575 0.3 Cyperotundone 1691.6 1695 0.7 S-Accradienol 1763.4 1752 0.7 S-Accradienol 1764.4 1762 0.3 Drimenone 1772.8 1792 0.6 8-a-Actoxylemol 1783.6 1792 2.6 Fukinanolide 1790.5 1788 0.4 Khusinol acetate 1824.6 1823 5.1 </td <td>Linalool</td> <td>1091.6</td> <td>1095</td> <td>0.3</td>	Linalool	1091.6	1095	0.3
Eugenol 1351.2 1356 0.3 1a,2,5,5-Tetramethyl-cis-1a,4a,5,6,7,8-hexahydro- γ -chromene 1367.3 1383 0.8 Isopatchoula-3,5-diene 1373.3 1383 0.8 Isopatchoula-3,5-diene 1378.5 1377 0.3 4-(2,6,6-Trimethylcyclohexa-1,3-dienyl) but-3-en-2-one 1405.9 1440 0.7 Geranyl acetone 1443.3 1453 0.45 y-Patchoulene 1475.4 1487 0.4 y-Patchoulene 1491.2 1502 0.5 11-nor-Drim-7-en-9-one 1563.4 n/a 0.4 Silphiperfol-5-en-3-one A 1568.4 1575 0.3 Cyperotundone 1691.6 1695 0.7 Scinabildyro-pionone 1753.4 1752 0.7 S-Acetoxy-pi-ionone 1772.8 1792 0.6 S-a-cetoxy-pionone 1772.8 1792 0.6 S-a-cetoxyelenol 1783.6 1792 2.6 Fukinanolide 1790.5 1798 0.4 Khusino	Lilac aldehyde C	1134.0	n/a	0.8
la2,5,5-Tetramethyl-cis-la,4a,5,6,7,8-hexahydro-y-chromene 1366.7 1370 0.5 trans-β-Damascenone 1373.3 1383 0.8 lsopatchoula.3,5-dinen 1373.3 1425.3 0.7 Geranyl acetone 1445.3 1445.3 0.4 trans-β-Ionone 1447.4 1487 0.4 Y-Patchoulene 1491.2 1502 0.5 11-nor-Drim-7-en-9-one 1563.4 n/a 0.4 Silphiprofol-5-en-3-one A 1568.4 1575 0.3 cstin-3)1-dime-6a-ol 1631.0 1642 0.8 Cyperotundone 1691.6 1695 0.7 3-Acetoxy-fi-ionone 1773.4 1752 0.7 Scharal (min-6a-ol) 1761.4 1762 0.3 Drimenone 1772.8 1792 0.6 8-a-Acetoxy-fi-ionone	Eugenol	1351.2	1356	0.3
trans-β-Damascenone1373.313830.8Isopatchoula-3,5-diene1378.513770.34(2,6,6-Trimethyleyclohexa-1,3-dienyl) but-3-en-2-one1475.914400.7Geranyl actone1443.314530.5trans-β-Ionone1475.414870.4γ-Patchoulene1491.215020.511-aro-Drim-7-en-9-one1563.4n/a0.4Silphiperfol-5-en-3-one A1568.415750.3cis-Dihydro-mayurone1583.215950.7Selina-3, 11-dien-6α-ol1691.616950.73-Acetoxy-β-ionone1753.417520.7β-Acoradienol1763.417620.3Drimenone1772.817920.68-α-Acetoxy-β-ionone1778.817922.6Fukianolide1790.517980.4Khusinol acetate1824.61823.8s.1Sclaral (sclareolide lactol)1833.8n/a1.0Sclaral (sclareolide lactol)1833.8n/a1.1Sclaracloxide199.31.8971.1s,13-Cedranediol1892.11.8971.1cis-r-Curcumenyl isobutyrate1971.019202.2Sclareoloxide1991.0n/a1.3S,7-octattien-2-one1971.019781.02Labda-7,12(E),14-triene2001.02036.33.0Manool oxide1990.81.9872.8ni.*n/a-0.6Jabda-7,14-Gien-1-3ol <td< td=""><td>1a,2,5,5-Tetramethyl-cis-1a,4a,5,6,7,8-hexahydro-γ-chromene</td><td>1366.7</td><td>1370</td><td>0.5</td></td<>	1a,2,5,5-Tetramethyl-cis-1a,4a,5,6,7,8-hexahydro-γ-chromene	1366.7	1370	0.5
Isopatchoula-3,5-diene 1378,5 1377 0.3 4-(2,6,6-Trimethylcyclohexa-1,3-dienyl) but-3-en-2-one 1405,9 1440 0.7 Geranyl acetone 1443,3 1453 0.5 trans-β-loone 1443,3 1453 0.4 γ-Patchoulene 1491,2 1502 0.5 11-nor-Drim-7-en-9-one 1563,4 n/a 0.4 Silphiperfol-5-en-3-one A 1583,2 1595 0.7 Selina-3,11-dien-6a-ol 1631.0 1642 0.8 Cyperotundone 1763,4 1752 0.7 β-Accotay-pionone 1763,4 1752 0.7 β-Accotay-pionone 1769,4 1762 0.3 Drimenone 1772,8 1792 0.6 8-α-Acetoxy-pionone 1772,8 1792 0.6 Sclareolodie latol) 1833,8 n/a 10.5 Sclareoloxide 1824,6 1823 5.1 Sclareoloxide (sta-A/B) 1880,2 1869 1.1 r/4(3-rydroxyproypl)-5,5,8a-trimethyldecahyd	trans-β-Damascenone	1373.3	1383	0.8
4-(2,6,6-Trimethylcyclohexa-1,3-dienyl) but-3-en-2-one 1405.9 1440 0.7 Geranyl acetone 1443.3 1453 0.5 <i>rans</i> -β-Ionone 1475.4 1487 0.4 γ-Patchoulene 1491.2 1502 0.5 11-nor-Drim-7-en-9-one 1563.4 n/a 0.4 Silphiperfol-5-en-3-one A 1568.4 1575 0.3 cstra-Dihydro-mayurone 1583.2 1595 0.7 Selina-3,11-dien-6α-01 1691.6 1695 0.7 3-Acetoxy-β-ionone 1753.4 1752 0.7 β-Acoradienol 1763.4 1752 0.3 Drimenone 1772.8 1792 0.6 8-a-Acetoxy-glemol 1783.6 1792 0.6 Sclaral (sclareolide lactol) 1783.6 1792 0.6 Sclaral (sclareolide lactol) 1833.8 n/a 10.5 Sclareoloxide 1826.6 n/a 3.7 Flourensadiol 1802.1 1897 1.1 <i>cslaral</i> (sclareolide lactol) 1883 1.1 2.2 Sclareoloxide (cis-A/B)	Isopatchoula-3,5-diene	1378.5	1377	0.3
Geranyl acetone 1443.3 1453 0.5 trans-P-lonone 1475.4 1487 0.4 -P-Patchoulene 1491.2 1502 0.5 11-nor-Drim-7-en-9-one 1563.4 1/4 0.4 Silphiperfol-5-en-3-one A 1568.4 1575 0.3 cis-Dihydro-mayurone 1631.0 1642 0.8 Cyperotundone 1691.6 1695 0.7 3-Accetoxy-β-ionone 1753.4 1752 0.3 Drimenone 1769.4 1762 0.3 B-accadienol 1769.4 1762 0.3 Drimenone 1772.8 1792 2.6 Fukinanolide 1790.5 1798 0.4 Khusinol acetate 1824.6 1823 5.1 Sclaraeloxide 1882.2 1869 1.1 Sclaraeloxide 1880.2 1869 1.1 Stardoroxide 1993.3 1897 1.8 Sclaraeloxide (cis-A/B) 1931.0 n/a 17.3	4-(2,6,6-Trimethylcyclohexa-1,3-dienyl) but-3-en-2-one	1405.9	1440	0.7
trans-β-lonone 1475.4 1487 0.4 γ-Patchoulene 1491.2 1502 0.5 11-nor-Drim-7-en-9-one 1563.4 n/a 0.4 Silphiperfol-5-en-3-one A 1568.4 1575 0.3 cis-Dihydro-mayurone 1583.2 1595 0.7 Selina-3,11-dien-6α-ol 1631.0 1642 0.8 Cyperotundone 1763.4 1752 0.7 β-Accotay-je-inone 1763.4 1752 0.7 β-Accotay-je-inone 1769.4 1762 0.3 Drimenone 1772.8 1792 0.6 8-α-Acetoxy-lemol 1783.6 1792 2.6 Fukinanolide 1790.5 1798 0.4 Khusinol acetate 1824.6 1823 5.1 Sclaral (sclareolide lactol) 1833.8 n/a 10.5 Sclaraoloxide 1860.2 1869 1.1 8,13-Cedranediol 1909.3 1897 1.1 6,25.E7,E9-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 3,7	Geranyl acetone	1443.3	1453	0.5
γ -Patchoulene1491.215020.511-nor-Drim-7-en-9-one1563.4n/a0.4Silphiperfol-5-en-3-one A1568.415750.3cis-Dihydromewytone1583.215950.7Selina-3,11-dien-6a-ol1631.016420.8Cyperotundone1691.616950.73-Acetoxy-β-ionone1753.417520.7β-Acoradienol1769.417620.68-a-Acetoxy-glemol1783.617922.6Fukinanolide1790.517980.4Khuisnol acetate1824.618235.1Sclaral (sclareolide lactol)183.8n/a10.5Sclaral (sclareolide lactol)183.8n/a10.5Sclareoloxide1880.218691.18,13-Cedranediol1909.318971.1cis-y-Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a0.8(3E,57,E)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 3,5,7-octatrine-2-one1959.2n/a0.7Labda-7,13,14-triene1971.0197810.2Manool oxide1990.819872.80.3n.i*2020.020363.00.4Manool2038.92.112.70.5I.abda-7,12(E),14-triene2026.020363.0Manool2038.92.122.70.5sclareoloxide1990.819872.80.5n.i*n/a-	trans-β-Ionone	1475.4	1487	0.4
11-nor-Drim-7-en-9-one1563.4n/a0.4Silphiperfol-5-en-3-one A1568.415750.3cis-Dihydro-mayurone1583.215950.7Selina-3, 11-dien-6a-ol1631.016420.8Cyperotundone1691.616950.73-Acetoxy- β -ionone1753.417520.7 β -Accotadienol1769.417620.6 β -ac-Acetoxyelemol1783.617922.6Fukinanolide1790.517980.4Khusinol acetate1824.618235.1Sclareolide lactol)1833.8n/a0.3Sclareoloxide1862.6n/a3.71-(3-Hydroxpropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol1874.1n/a0.3Flourensadiol1903.318971.1 $\epsilon_i - \gamma$ -Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a0.72-Furoic acid, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8 $(3E_5E_7E_7)$ -6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3,5,7-octatrime-2-one1959.2n/a0.7Jada-7,13,14-triene1971.0197810.210.41.7Manool oxide1990.819872.80.1n.i*n/a-0.31.41.5I.abda-7,12(E),14-triene2011.9-0.61.7Isobienol**2085.92.122.70.5n.i*n/a-0.31.41.7 <t< td=""><td>γ-Patchoulene</td><td>1491.2</td><td>1502</td><td>0.5</td></t<>	γ-Patchoulene	1491.2	1502	0.5
Silphiperfol-5-en-3-one A1568.415750.3 $cis-Dihydro-mayurone1583.215950.7Selina-3,11-dien-6a-ol1631.016420.8Cyperotundone1691.616950.73-Acetoxy-β-ionone1753.417520.7\beta-Acoradienol1769.417620.3Drimenone1772.817920.68-\alpha-Acetoxy-lemol1783.617922.6Fukinanolide1790.517980.4Khusinol acetate1824.618235.1Sclaraelokide1824.6n/a3.7I-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol1874.1n/a0.3Flourensadiol1880.218691.1k_3.3-Cetranediol18971.11.1cis-\gamma-Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a17.32-Furoic acid, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8(25, E7, E7)-6-Methyl-8-(2, 6, 6-trimethyl-1-cyclohexen-1-yl)-3, 5, 7-octatrien-2-one2.8Labda-7, 13, 14-triene1971.0197810.2Manool oxide1990.819872.81.7I.i*201.9-0.61.7Labda-7, 12, (E), 14-triene2020.020363.0Manool2038.920560.41.7I.i*126-0.51.7Isoabienol**2085.721240.5I.i*n/a$	11-nor-Drim-7-en-9-one	1563.4	n/a	0.4
cis -Dihydro-mayurone1583.215950.7Selina-3,11-dien- $6a$ -ol1631.016420.8Cyperotundone1691.61691.60.73-Acetoxy- β -ionone1753.417520.7 β -Acoradienol1769.417620.3Drimenone1772.817920.6 ϵ -ac-Acetoxyelenol1783.617922.6Fukinanolide1790.51798.00.4Khusinol acetate1824.618235.1Sclarael (sclareolide lactol)1833.8n/a10.5Sclareoloxide1862.6n/a3.71-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol1874.1n/a0.3Flourensadiol1890.318971.1 $cis-\gamma$ -Curumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a1.7.32-Furoic acid, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8 $(3E,5E,7E)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3,5,7-octartien-2-one1959.2n/a0.7Labda-7,13,14-triene1971.0197810.2Manool oxide1990.819872.81.7I.*2019.9-0.63.0Manool2038.920560.41.7Isoabienol**2068.020961.71.7Isoabienol**2085.721240.51.7Isoabienol**2085.721240.51.7Isoabienol**2085.72124$	Silphiperfol-5-en-3-one A	1568.4	1575	0.3
Selina-3,11-dien-6 α -ol 1631.0 1642 0.8 Cyperotundone 1691.6 1695 0.7 3-Acetoxy- β -ionone 1753.4 1752 0.7 β -Acoradienol 1762.4 1762 0.3 Drimenone 1772.8 1792 2.6 8- α -Acetoxyelemol 1783.6 1792 2.6 Fukinanolide 1790.5 1798 0.4 Khusinol acetate 1824.6 1823 5.1 Sclareoloxide 1882.6 n/a 3.7 1-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol 1874.1 n/a 0.3 Flourensadiol 1890.2 1869 1.1 8,13-Cedranediol 1909.3 1897 1.1 cis-y-Curcumenyl isobutyrate 1917.0 1920 2.2 Sclareoloxide (cis-A/B) 191.0 n/a 0.8 2,5,5,7E)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 3,5,7-octatrien-2-one 1995.2 n/a 0.7 Labda-7,13,14-triene 1990.2 197.0 192 2.8 1.1 Amool oxide 1990.8	cis-Dihydro-mayurone	1583.2	1595	0.7
Cyperotundone 1691.6 1695 0.7 3-Acetoxy-β-ionone 1753.4 1752 0.7 β-Acoradienol 1769.4 1762 0.3 Drimenone 1772.8 1792 0.6 8-ac-Acetoxyelenol 1783.6 1792 2.6 Fukinanolide 1790.5 1798 0.4 Khusinol acetate 1824.6 1823 5.1 Sclareoloxide 1833.8 n/a 10.5 Sclareoloxide 1842.6 1823 5.1 Sclareoloxide 1874.1 n/a 0.3 Flourensadiol 1890.2 1869 1.1 s.1-C3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol 1874.1 n/a 0.3 Flourensadiol 1909.3 1897 1.1 1.1 cis-y-Curcumenyl isobutyrate 1917.0 1920 2.2 Sclareoloxide (cis-A/B) 1931.0 n/a 0.7 3,5,7-octatrien-2-one 1944.0 n/a 0.8 Labda-7,13,14-triene 1990.	Selina-3,11-dien-6a-ol	1631.0	1642	0.8
3-Acetoxy-β-ionone 1753.4 1752 0.7 β-Acoradienol 1769.4 1762 0.3 Drimenone 1772.8 1792 0.6 8-α-Acetoxyelemol 1783.6 1792 2.6 Fukinanolide 1790.5 1798 0.4 Khusinol acetate 1823.6 1.72 5.1 Sclaral (sclareolide lactol) 1833.8 n/a 10.5 Sclareoloxide 1862.6 n/a 3.7 1-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol 1874.1 n/a 0.3 Flourensadiol 1880.2 1869 1.1 8,13-Cedranediol 1990.3 1897 1.1 cis-γ-Curcumenyl isobutyrate 1971.0 1920 2.2 Sclareoloxide (cis-A/B) 1931.0 n/a 0.7 3,5,7-octatrien-2-one 1971.0 1978 10.2 Labda-7,13,1-4-triene 1971.0 1978 2.8 n.i.* 2011.9 - 0.6 Labda-7,12(E),14-triene 2020.0 2036 3.0 Manool 2038.9 2056 </td <td>Cyperotundone</td> <td>1691.6</td> <td>1695</td> <td>0.7</td>	Cyperotundone	1691.6	1695	0.7
β -Acoradienol1769.417620.3Drimenone1772.817920.68- α -Acetoxyelemol1783.617922.6Fukinanolide1790.51798.00.4Khusinol acetate1823.61.1823.85.1Sclaral (sclareolide lactol)1833.8n/a10.5Sclareoloxide1862.6n/a3.71-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol1874.1n/a0.3Flourensadiol1880.218691.18,13-Cedranediol1903.318971.1cis- γ -Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a17.32-Furoic acid, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8 $(3E,5E,7E)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3,5,7-octatrien-2-one1959.2n/a0.7Labda-7,13.1-triene1971.0197810.2Manool oxide1990.819872.8n.i.*2011.9-0.6Labda-7,12(E),14-triene2020.020363.0Manool2038.920560.4n.i.*2156.5-0.5n.i.*2156.5-0.5n.i.*1/a-0.5sclareol/4+201.9-0.5sclareol213.5-0.6Labda-7,12-(E),14-triene205.721240.5scareoloxie205.9211.22.7n.i.*1.4$	3-Acetoxy-β-ionone	1753.4	1752	0.7
Drimenone1772.817920.68- α -Acetoxyelemol1783.617922.6Fukinanolide1790.517980.4Khusinol acetate1823.61.11833.8n/a10.5Sclaral (sclareolide lactol)18338n/a0.31Sclaracloxide1862.6n/a3.71.(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol1874.1n/a0.3Flourensadiol1890.218691.18,13-Cedranediol1909.318971.1s,13-Cedranediol1909.318971.11.12.52.2Sclareoloxide (cis-A/B)1911.01920.22.2Sclareoloxide (cis-A/B)1931.0n/a1.7.32-Furcic acid, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8($3E_5E_7E_7$)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 3,5,7-octatrien-2-one1959.2n/a0.7Labda-7,13,14-triene1971.0197810.2Manool oxide1990.819872.81.1n.i.*2011.9-0.61.4Labda-7,14-diene-13-ol2068.020961.7Isoabienol**2085.721240.5 <i>trans</i> -Phytol2055.5-0.5n.i.*n/a-0.4n.i.*n/a-0.4n.i.*213.5-0.6n.i.*219.2-0.5Sclareol (labd-14-ene-8,13-diol)2228.1222.29.1Labda-7,13-dien-15-o	β-Acoradienol	1769.4	1762	0.3
$8-\alpha$ -Acetoxyelemol1783.617922.6Fukinanolide1790.517980.4Khusinol acetate1824.618235.1Sclaral (sclareolide lactol)1833.8n/a10.5Sclareoloxide1862.6n/a3.71-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol1874.1n/a0.3Flourensadiol1880.218691.1 $8,13$ -Cedranediol1909.318971.1 $cis-\gamma$ -Curcumenyl isobutyate1917.019202.2Sclareoloxide (cis-A/B)1914.0n/a0.82-Furoiz acid, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8(3E,5E,7E)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 3,5,7-octatrien-2-one1959.2n/a0.7Labda-7,13,14-triene1990.819872.8n.i.*2011.9-0.6Labda-7,12(E),14-triene2038.920560.4n.i.*2038.920560.4n.i.*2045.721240.5trans-Phytol2095.921122.7n.i.*213.5-0.6n.i.*1/a-0.4n.i.*1/a-0.4n.i.*213.5-0.6n.i.*213.5-0.6n.i.*2219.2-0.5sclareol (labd-14-ene-8,13-diol)2228.12222124.02.1213.5-0.6n.i.*2219.2-0.5Sclareol (labd	Drimenone	1772.8	1792	0.6
Fukinanolide1790.517980.4Khusinol acetate1824.618235.1Sclaral (sclareolide lactol)1833.8n/a10.5Sclareoloxide1833.8n/a0.3I-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol1874.1n/a0.3Flourensadiol1880.218691.18,13-Cedranediol1909.318971.1 $cis-\gamma-Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a0.825-Furcia cai, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8(3E,5E,7E)-6-Methyl-62,6,6-trimethyl-1-cyclohexen-1-yl)-3,5,7-octatrien-2-one1959.2n/a0.7Labda-7,13,14-triene1971.0197810.2Manool oxide1990.819872.83.0Manool2038.920560.41.7Labda-7,12(E),14-triene2020.020363.0Manool2038.920560.41.7Labda-7,14-diene-13-ol2085.721240.5trans-Phytol2095.921122.71.1n.i.*n/a-0.41.1n.i.*n/a-0.51.5n.i.*n/a-0.51.5n.i.*n/a-0.51.5n.i.*102-0.51.5n.i.*102-0.51.5n.i.*102-0.51.7Isoabienol**2$	8-α-Acetoxyelemol	1783.6	1792	2.6
Khusinol acetate1824.618235.1Sclaral (sclareolide lactol)1833.8n/a10.5Sclareoloxide1862.6n/a3.71-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol1874.1n/a0.3Flourensadiol1890.218691.1 $sl,13-Cedranediol$ 1909.318971.1 $cis-\gamma-Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a17.32-Furoic acid, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8(3E,5E,7E)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3,5,7-octatriner2-one1959.2n/a0.7Labda-7,13,14-triene1971.0197810.2Manool oxide1990.819872.8n.i.*2011.9-0.6Labda-7,12(E),14-triene2020.020363.0Manool2038.920560.4n.i.*2045.721240.5trans-Phytol2095.921122.7n.i.*2156.5-0.5n.i.*213.5-0.6n.i.*213.5-0.6n.i.*213.5-0.5n.i.*213.5-0.5n.i.*2213.5-0.5n.i.*2213.5-0.5n.i.*2213.5-0.5Sclareol (ladb-14-ene-8,13-diol)222.8222.9Labda-7,13-dien-15-ol226.622916.3Tric$	Fukinanolide	1790.5	1798	0.4
Sclaral (sclareolide lactol)1833.8n/a10.5Sclareoloxide1862.6n/a3.71-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol1874.1n/a0.3Flourensadiol1880.21860.21860.18,13-Cedranediol1909.318971.1 $cis-\gamma-Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a0.82is-\gamma-Curcumenyl isobutyrate1917.0n/a0.82is-\gamma-Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a0.82is-\gamma-Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a0.82is-\gamma-Curcumenyl isobutyrate1917.0197810.2Labda-7,13,14-triene1971.0197810.2Manool oxide1990.819872.8n.i.*2011.9-0.6Labda-7,12(E),14-triene2020.020363.0Manool2038.920560.4n.i.*n/a-0.3Labda-7,14-diene-13-ol2068.020961.7Isoabienol**2095.921122.7n.i.*n/a-0.5n.i.*n/a-0.4n.i.*n/a-0.4n.i.*213.5-0.6Labda-7,12-dien-13-ol2213.5-0.6n.i.*2213.5-0.5n.i.$	Khusinol acetate	1824.6	1823	5.1
Sclareoloxide1862.6n/a3.71-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol1874.1n/a0.3Flourensadiol1880.218691.18,13-Cedranediol1909.318971.1 $cis-\gamma$ -Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a17.32-Furoic acid, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8 $(3E,5E,7E)$ -6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 3,5,7-octatrien-2-one1959.2n/a0.7Labda-7,13,14-triene1971.0197810.2Manool oxide1990.819872.8n.i.*2011.9-0.6Labda-7,12(E),14-triene2020.020363.0Manool2038.920560.4n.i.*2045.721240.5trans-Phytol2095.921122.7n.i.*2156.5-0.5n.i.*n/a-0.4n.i.*n/a-0.4n.i.*n/a-0.4n.i.*n/a-0.5sclareol (labd-14-ene-8,13-diol)2228.122229.1Labda-7,13-dien-15-ol2262.622916.3Tricosane2279.225000.3	Sclaral (sclareolide lactol)	1833.8	n/a	10.5
1-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol1874.1n/a0.3Flourensadiol1880.218691.1 $8,13$ -Cedranediol1909.318971.1 $cis-\gamma$ -Curcumenyl isobutyate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a17.32-Furcic acid, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8 $(3E,5E,7E)$ -6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 3,5,7-octatrien-2-one1959.2n/a0.7Labda-7,13,14-triene1971.0197810.2Manool oxide1990.819872.8n.i.*2011.9-0.6Labda-7,12(E),14-triene2020.020363.0Manool2038.920560.4n.i.*104-0.3Labda-7,14-diene-13-ol2068.020961.7Isoabienol**2085.721240.5trans-Phytol2095.921122.7n.i.*n/a-0.4n.i.*n/a-0.4n.i.*n/a-0.6n.i.*213.5-0.6n.i.*2213.5-0.5n.i.*2213.5-0.6n.i.*2213.2-0.5Sclareol (labd-14-ene-8,13-diol)2228.12222Labd-7,13-dien-15-ol226.622916.3Tricosane279.123000.7	Sclareoloxide	1862.6	n/a	3.7
Flourensadiol1880.218691.1 $8,13$ -Cedranediol1909.318971.1 $cis - \gamma$ -Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a17.32-Furoic acid, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8 $(3E,5E,7E)$ -6-Methyl-st-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1959.2n/a0.7 $1_2,5_7$ -octatrien-2-one1990.819872.8 $1_2,5_7$ -octatrien-2-one1990.819872.8 $1_2,5_7$ -octatrien-2-one2011.9-0.6Labda-7,13,14-triene1991.019970.6Labda-7,12(E),14-triene2020.020363.0Manool2038.920560.4 $n.i^*$ n/a-0.3Labda-7,14-diene-13-ol2065.721240.5Labda-7,14-diene-13-ol2095.921122.7 $1.i^*$ n/a -0.41.i.* $n.i^*$ n/a -0.4 $n.i.*$ n/a -0.6 $n.i.*$ n/a -0.4 $n.i.*$ n/a -0.5 $n.i.*$ n/a -0.6 $n.i.*$ n/a -0.5 $n.i.*$ n/a -0.5 $n.i.*$ n/a -0.6 $n.i.*$ n/a -0.5 $n.i.*$ n/a -0.5 $n.i.*$ n/a -0.6 $n.i.*$ n/a -0.6 <t< td=""><td>1-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol</td><td>1874.1</td><td>n/a</td><td>0.3</td></t<>	1-(3-Hydroxypropyl)-5,5,8a-trimethyldecahydronaphthalen-2-ol	1874.1	n/a	0.3
8,13-Cedranediol 1909.3 1897 1.1 $cis - \gamma$ -Curcumenyl isobutyrate 1917.0 1920 2.2 Sclareoloxide (cis-A/B) 1931.0 n/a 17.3 2-Furoic acid, 2-methyloct-5-yn-4yl ester** 1944.0 n/a 0.8 (3E,5E,7E)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 3,5,7-octatrien-2-one 1959.2 n/a 0.7 Labda-7,13,14-triene 1971.0 1978 10.2 Manool oxide 1990.8 1987 2.8 n.i.* 2011.9 - 0.6 Labda-7,12(E),14-triene 2020.0 2036 3.0 Manool 2038.9 2056 0.4 n.i.* n/a - 0.3 Labda-7,14-diene-13-ol 2068.0 2096 1.7 Isoabienol** 2085.7 2124 0.5 <i>trans</i> -Phytol 2055 - 0.4 n.i.* n/a - 0.4 n.i.* 213.5 - 0.6 sabienol** 2213.5 - 0.5 n.i.* 213.5 - 0.5	Flourensadiol	1880.2	1869	1.1
cis-γ-Curcumenyl isobutyrate1917.019202.2Sclareoloxide (cis-A/B)1931.0n/a17.32-Furoic acid, 2-methyloct-5-yn-4yl ester**1944.0n/a0.8 $(3E,5E,7E)$ -6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 3,5,7-octatrine-2-one1959.2n/a0.7Labda-7,13,14-triene1971.0197810.2Manool oxide1990.819872.8n.i.*2011.9-0.6Labda-7,12(E),14-triene2020.020363.0Manool2038.920560.4n.i.*2068.020961.7Isoabienol**2085.721240.5trans-Phytol2055.921122.7n.i.*2156.5-0.5n.i.*174196.5-n.i.*174213.5-0.6n.i.*125.5-0.5n.i.*213.5-0.6n.i.*2213.5-0.6n.i.*2213.5-0.5Sclareol (labd-14-ene-8,13-diol)2228.122229.1Labd-7,13-dien-15-ol2262.622916.3Tricosane279.123000.7	8,13-Cedranediol	1909.3	1897	1.1
Sclareoloxide (cis-A/B) 1931.0 n/a 17.3 2-Furoic acid, 2-methyloct-5-yn-4yl ester** 1944.0 n/a 0.8 $(3E,5E,7E)$ -6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 3,5,7-octatrien-2-one 1959.2 n/a 0.7 Labda-7,13,14-triene 1971.0 1978 10.2 Manool oxide 1990.8 1987 2.8 n.i.* 2011.9 - 0.6 Labda-7,12(E),14-triene 2020.0 2036 3.0 Manool 2038.9 2056 0.4 n.i.* n/a - 0.3 Labda-7,14-diene-13-ol 2068.0 2096 1.7 Isoabienol** 2095.9 2112 2.7 n.i.* 2156.5 - 0.5 n.i.* 17.3 2156.5 - 0.4 n.i.* n/a - 0.4 1.1 n.i.* 213.5 - 0.6 1.1 Isoabienol** 2213.5 - 0.6 1.1 n.i.*	cis-y-Curcumenyl isobutyrate	1917.0	1920	2.2
2-Furoic acid, 2-methyloct-5-yn-4yl ester** 1944.0 n/a 0.8 $(3E,5E,7E)$ -6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 1959.2 n/a 0.7 $3,5,7$ -octatrien-2-one 1971.0 1978 10.2 Labda-7,13,14-triene 1971.0 1978 10.2 Manool oxide 1990.8 1987 2.8 n.i.* 2011.9 - 0.6 Labda-7,12(E),14-triene 2020.0 2036 3.0 Manool 2038.9 2050 0.4 n.i.* 2048.0 2096 1.7 Labda-7,14-diene-13-ol 2068.0 2096 1.7 Isoabienol** 2085.7 2124 0.5 <i>trans</i> -Phytol 2095.9 2112 2.7 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* n/a - 0.5 n.i.* n/a - 0.6 n.i.* n/a - 0.4 n.i.* n/a - 0.5 scabatenol*4 2213.5	Sclareoloxide (cis-A/B)	1931.0	n/a	17.3
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2-Furoic acid, 2-methyloct-5-yn-4yl ester**	1944.0	n/a	0.8
3,5,7-octatrien-2-one 199.2 10.4 0.7 Labda-7,13,14-triene 1971.0 1978 10.2 Manool oxide 1990.8 1987 2.8 n.i.* 2011.9 - 0.6 Labda-7,12(E),14-triene 2020.0 2036 3.0 Manool 2038.9 2056 0.4 n.i.* n/a - 0.3 Labda-7,14-diene-13-ol 2068.0 2096 1.7 Isoabienol** 2085.7 2124 0.5 <i>trans</i> -Phytol 2095.9 2112 2.7 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* n/a - 0.5 sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 2279.1 2300 0.7	(3E,5E,7E)-6-Methyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-	1050.2	n /o	0.7
Labda-7,13,14-triene 1971.0 1978 10.2 Manool oxide 1990.8 1987 2.8 n.i.* 2011.9 - 0.6 Labda-7,12(E),14-triene 2038.9 2056 0.4 n.i.* n/a - 0.3 Labda-7,14-diene-13-ol 2068.0 2096 1.7 Isoabienol** 2085.7 2124 0.5 <i>trans</i> -Phytol 2055.9 2112 2.7 n.i.* n/a - 0.4 n.i.* 176.5 - 0.5 n.i.* 174 2156.5 - 0.4 n.i.* n/a - 0.4 - n.i.* n/a - 0.4 - n.i.* 213.5 - 0.6 - n.i.* 221.9 - 0.5 - sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 226.6 2291 6.3 Tricosane 279.1 2300 0.7 Pentacosane 248.19<	3,5,7-octatrien-2-one	1939.2	n/a	0.7
Manool oxide 1990.8 1987 2.8 n.i.* 2011.9 - 0.6 Labda-7,12(E),14-triene 2020.0 2036 3.0 Manool 2038.9 2056 0.4 n.i.* n/a - 0.3 Labda-7,14-diene-13-ol 2068.0 2096 1.7 Isoabienol** 2085.7 2124 0.5 trans-Phytol 2095.9 2112 2.7 n.i.* 2156.5 - 0.5 n.i.* 2156.5 - 0.4 n.i.* n/a - 0.4 n.i.* 2213.5 - 0.6 n.i.* 2219.2 - 0.5 Sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 279.1 2300 0.7	Labda-7,13,14-triene	1971.0	1978	10.2
n.i.*2011.9-0.6Labda-7,12(E),14-triene2020.020363.0Manool2038.920560.4n.i.*n/a-0.3Labda-7,14-diene-13-ol2068.020961.7Isoabienol**2085.721240.5trans-Phytol2095.921122.7n.i.*2156.5-0.4n.i.*n/a-0.4n.i.*n/a-0.4n.i.*213.5-0.6n.i.*2213.5-0.5Sclareol (labd-14-ene-8,13-diol)2228.122229.1Labd-7,13-dien-15-ol2262.622916.3Tricosane279.123000.7Pentacosane248.1925000.3	Manool oxide	1990.8	1987	2.8
Labda-7,12(E),14-triene 2020.0 2036 3.0 Manool 2038.9 2056 0.4 n.i.* n/a - 0.3 Labda-7,14-diene-13-ol 2068.0 2096 1.7 Isoabienol** 2085.7 2124 0.5 trans-Phytol 2095.9 2112 2.7 n.i.* 2156.5 - 0.4 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* 213.5 - 0.6 n.i.* 2213.5 - 0.6 n.i.* 2219.2 - 0.5 Sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 279.1 2300 0.7	n.i.*	2011.9	-	0.6
Manool 2038.9 2056 0.4 n.i.* n/a - 0.3 Labda-7,14-diene-13-ol 2068.0 2096 1.7 Isoabienol** 2085.7 2124 0.5 trans-Phytol 2095.9 2112 2.7 n.i.* 2156.5 - 0.5 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* 213.5 - 0.6 n.i.* 219.2 - 0.5 Sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 279.1 2300 0.7 Pentacosane 248.19 2500 0.3	Labda-7,12(E),14-triene	2020.0	2036	3.0
n.i.* n/a - 0.3 Labda-7,14-diene-13-ol 2068.0 2096 1.7 Isoabienol** 2085.7 2124 0.5 trans-Phytol 2095.9 2112 2.7 n.i.* 2156.5 - 0.5 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* n/a - 0.6 n.i.* 219.2 - 0.5 Sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 2279.1 2300 0.7 Pentacosane 248.19 2500 0.3	Manool	2038.9	2056	0.4
Labda-7,14-diene-13-ol 2068.0 2096 1.7 Isoabienol** 2085.7 2124 0.5 trans-Phytol 2095.9 2112 2.7 n.i.* 2156.5 - 0.5 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* 213.5 - 0.6 n.i.* 2213.5 - 0.6 n.i.* 2219.2 - 0.5 Sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 2279.1 2300 0.7 Pentacosane 248.19 2500 0.3	n.i.*	n/a	-	0.3
Isoabienol** 2085.7 2124 0.5 trans-Phytol 2095.9 2112 2.7 n.i.* 2156.5 - 0.5 n.i.* n/a - 0.4 n.i.* n/a - 0.6 n.i.* 2213.5 - 0.6 n.i.* 2219.2 - 0.5 Sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 279.1 2300 0.7 Pentacosane 248.9 2500 0.3	Labda-7,14-diene-13-ol	2068.0	2096	1.7
trans-Phytol 2095.9 2112 2.7 n.i.* 2156.5 - 0.5 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* 2213.5 - 0.6 n.i.* 2219.2 - 0.5 Sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 2279.1 2300 0.7 Pentacosane 248.19 2500 0.3	Isoabienol**	2085.7	2124	0.5
n.i.* 2156.5 - 0.5 n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* 2213.5 - 0.6 n.i.* 2219.2 - 0.5 Sclared (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 279.1 2300 0.7 Pentacosane 248.19 2500 0.3	trans-Phytol	2095.9	2112	2.7
n.i.* n/a - 0.4 n.i.* n/a - 0.4 n.i.* 2213.5 - 0.6 n.i.* 2219.2 - 0.5 Sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 279.1 2300 0.7 Pentacosane 248.19 2500 0.3	n.i.*	2156.5	-	0.5
n.i.* n/a - 0.4 n.i.* 2213.5 - 0.6 n.i.* 2219.2 - 0.5 Sclared (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 2279.1 2300 0.7 Pentacosane 248.19 2500 0.3	n.i.*	n/a	-	0.4
n.i.* 2213.5 - 0.6 n.i.* 2219.2 - 0.5 Sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 2279.1 2300 0.7 Pentacosane 248.19 2500 0.3	n.i.*	n/a	-	0.4
n.i.* 2219.2 - 0.5 Sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 2279.1 2300 0.7 Pentacosane 248.9 2500 0.3	n.i.*	2213.5	-	0.6
Sclareol (labd-14-ene-8,13-diol) 2228.1 2222 9.1 Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 2279.1 2300 0.7 Pentacosane 2481.9 2500 0.3	n.i.*	2219.2	-	0.5
Labd-7,13-dien-15-ol 2262.6 2291 6.3 Tricosane 2279.1 2300 0.7 Pentacosane 2481.9 2500 0.3	Sclareol (labd-14-ene-8,13-diol)	2228.1	2222	9.1
Tricosane 2279.1 2300 0.7 Pentacosane 2481.9 2500 0.3	Labd-7,13-dien-15-ol	2262.6	2291	6.3
Pentacosane 2481.9 2500 0.3	Tricosane	2279.1	2300	0.7
	Pentacosane	2481.9	2500	0.3

KIE=Kovats (retention) index experimentally determined (AMDIS, uncorrected values) KIL=Kovats (retention) index - literature data [14]

**=tentative identification; n.i*=not identified; n/a=not available

Table 2: Minimum inhibitory concentrations (MIC) of essential oil of K. vitifoli	ia
--	----

MIC µg/mL							
Microbial strains	Essential oil	Amracin	Ketokonazol				
Staphylococcus aureus ATCC 25923	31.3	1.0	/				
Klebsiella pneumonia ATCC 13883	62.5	0.5	/				
Escherichia coli ATCC 25922	31.3	1.0	/				
Proteus vulgaris ATCC 13315	62.5	0.5	/				
Proteus mirabilis ATCC 14153	62.5	0.5	/				
Bacillus subtilis ATCC 6633	15.6	0.3	/				
Candida albicans ATCC 10231	62.5	/	2.0				
Aspergillus niger ATCC 16404	31.3	/	1.0				

natural additives has emerged from a growing tendency to replace synthetic antioxidants with natural ones. The obtained results show that the essential oil of Serbian *K. vitifolia* has good antimicrobial and antioxidant activity under the experimental conditions used.

Experimental

Chemicals: All chemicals and reagents were of analytical grade and purchased from Sigma Chemical Co. (St Louis, MQ, USA), Aldrich Chemical Co. (Steinheim, Germany) and Alfa Aesar (Karlsruhe, Germany).

	$^{a}IC_{50} (\mu g/mL)$				
Sample	Total antioxidant capacity (µg AA/g)	DPPH scavenging activity	Inhibitory activity against lipid peroxidation	Metal chelating activity	Hydroxyl radical scavenging activity
Essential oil	95.5±0.7	5.5±1.5	26.5±1.6	39.9±0.7	79.4±0.4
GA		3.8±0.7	255.4±11.7	-	59.1±1.1
AA		6.1±0.3	> 1000	-	160.6±2.3
BHT		15.6±1.3	1.0±0.2	-	33.9±0.8
α-tocopherol		-	0.5±0.1	-	-

 $^a\mathrm{IC}_{50}$ values were determined by nonlinear regression analysis. Results are mean values \pm SD from three experiments

Spectrophotometric measurements: Spectrophotometric measurements were performed using a UV-VIS spectrophotometer MA9523-SPEKOL 211 (ISKRA, Horjul, Slovenia).

Plant material: The test plant was collected at Ilijak Hill (Central Serbia) in May/June 2009. The species was identified and the voucher specimen deposited at the Department of Botany, Faculty of Biology, University of Belgrade (16350 BEOU, Lakušić Dmitar).

Isolation of essential oils: Thirty g of air-dried plant material was subjected to hydrodistillation for 3 h using a Clevenger-type apparatus, according to the standard procedure reported in the European Pharmacopoeia [12].

Analytical gas chromatography (GC/FID): GC/FID analysis of the oil was carried out using a HP-5890 Series II GC apparatus [Hewlett-Packard, Waldbronn (Germany)], equipped with a split-splitless injector and an automatic liquid sampler (ALS) attached to a HP-5 column (25 m x 0.32 mm, 0.52 µm film thickness) and fitted to a flame ionization detector (FID). Carrier gas flow rate (H₂) was 1 mL/min, split ratio 1:30, injector temperature 250°C, detector temperature 300°C, while column temperature was linearly programmed from 40-260°C (at rate of 4°/min). Solutions of plant extracts in methanol (~1%) were consecutively injected by ALS (1 µl, split mode). Area percent reports, obtained as a result of standard processing of chromatograms, were used as the basis for quantification purposes.

Gas chromatography/mass spectrometry (GC/MS): The same analytical conditions as those mentioned for GC/FID were employed for GC/MS analysis, along with a HP-5MS column (30 m 0.25 mm, 0.25 µm film thickness), using the HP G1800C Series II GCD system [Hewlett-Packard, Palo Alto, CA (USA)]. Instead of hydrogen, helium was used as the carrier gas. The transfer line was heated at 260°C. Mass spectra were acquired in EI mode (70 eV), in the m/z range 40-450. Solutions of plant extracts in methanol (~1%) were injected by ALS (200 nL, split mode). The constituents were identified by comparison of their mass spectra with those from Wiley 275 and NIST/NBS libraries, using different search engines. The experimental values for retention indices were determined using calibrated Automated Mass Spectral Deconvolution and Identification System software [13] compared with those from available literature [14] and used as an additional tool to approve MS findings.

Test microorganisms: The antimicrobial activity of the essential oil was tested *in vitro* against the following bacteria: *Staphylococcus aureus* ATCC 25923, *Klebsiella pneumoniae* ATCC 13883, *Escherichia coli* ATCC 25922, *Proteus vulgaris* ATCC 13315, *Proteus mirabilis* ATCC 14153, and *Bacillus subtilis* ATCC 6633, and fungi: *Candida albicans* ATCC 10231 and *Aspergillus niger* ATCC 16404. The fungi were cultured on potato-glucose agar for 7 days at 20°C under alternating light and dark conditions. They were

recultured on a new potato-glucose substrate for another 7 days. The culturing procedure was performed 4 times until pure culture was obtained. The identification of the test microorganisms was confirmed by the Laboratory of Mycology, Department of Microbiology, Institute Torlak, Belgrade, Serbia.

Minimum inhibitory concentration (MIC): The minimum inhibitory concentrations (MIC) of the extract and cirsimarin against the test bacteria were determined by the microdilution method in 96 multi-well microtiter plates [17]. All tests were performed in Muller-Hinton broth (MHB) with the exception of the yeast, in which case Sabouraud dextrose broth was used. A volume of 100 µL stock solutions of oil (in methanol, 200 µL/mL) and cirsimarin (in 10% DMSO, 2 mg/mL) was pipetted into the first row of the plate. Fifty µL of Mueller Hinton or Sabouraud dextrose broth (supplemented with Tween 80 at a final concentration of 0.5%, v/v, for analysis of oil) was added to the other wells. A volume of 50 µL from the first test well was pipetted into the second well of each microtiter line, and then 50 µL of scalar dilution was transferred from the second to the twelfth well. Ten μL of resazurin indicator solution (prepared by dissolving a 270 mg tablet in 40 mL of sterile distilled water) and 30 µL of nutrient broth were added to each well. Finally, 10 μ L of bacterial suspension (10⁶ CFU/mL) and yeast spore suspension (3×10⁴ CFU /mL) was added to each well. For each strain, the growth conditions and the sterility of the medium were checked. The standard antibiotic amracin was used to control the sensitivity of the tested bacteria, whereas ketokonazol was used as a control against the tested yeast. Plates were wrapped loosely with cling film to ensure that bacteria did not become dehydrated and prepared in triplicate, and then they were placed in an incubator at 37°C for 24 h for the bacteria and at 28°C for 48 h for the yeast. Color change was then assessed visually. Any color change from purple to pink or colorless was recorded as positive. The lowest concentration at which color change occurred was taken as the MIC value. The average of 3 values was calculated, and the obtained value was taken as the MIC for the tested compounds and standard drug.

Determination of total antioxidant capacity: The total antioxidant activity of the essential oil of *K. vitifolia* was evaluated by the phosphomolybdenum method [16]. The assay is based on the reduction of Mo (VI) – Mo (V) by antioxidant compounds and subsequent formation of a green phosphate/Mo (V) complex at acid pH. A total of 0.3 mL of sample extract was combined with 3 mL of reagent solution (0.6 M sulfuric acid, 28 mM sodium phosphate and 4 mM ammonium molybdate). The tubes containing the reaction solution were incubated at 95°C for 90 min. Then, the absorbance of the solution was measured at 695 nm using a spectrophotometer against the blank after cooling to room temperature. Methanol (0.3 mL) in place of extract was used as the blank. Ascorbic acid (AA) was used as the standard and total antioxidant capacity was expressed as mg of ascorbic acid per g of dry extract.

Determination of DPPH free radical scavenging activity: The method used by [17] was adopted with suitable modifications from [18]. DPPH (2,2-dephenyl-1-picrylhydrazyl) (8 mg) was dissolved in MeOH (100 mL) to obtain a concentration of 80 μ g/mL. Serial dilutions were carried out with the stock solution (1 mg/mL) of the extract. Solutions (2 mL each) were then mixed with DPPH (2 mL) and allowed to stand for 30 min for any reaction to occur, and the absorbance was measured at 517 nm. Ascorbic acid (AA), gallic acid (GA) and butylated hydroxytoluene (BHT) were used as reference standards and dissolved in methanol to make the stock solution with the same concentration (1 mg/mL). Control sample was prepared containing the same volume without test compounds

or reference antioxidants. Ninety-five % methanol was used as a blank. The DPPH free radical scavenging activity (%) was calculated using the following equation:

% inhibition=
$$((A_c - A_s)/A_c)*100$$

The IC₅₀ value, defined as the concentration of the test material that leads to 50% reduction in the free radical concentration, was calculated in μ g/mL through a sigmoidal dose-response curve.

Determination of inhibitory activity against lipid peroxidation: Antioxidant activity was determined by the thiocyanate method [19]. Serial dilutions were carried out with the stock solution (1 mg/mL) of the extracts, and 0.5 mL of each solution was added to linoleic acid emulsion (2.5 mL, 40 mM, pH 7.0). This was prepared by mixing 0.2804 g linoleic acid, 0.2804 g Tween-20 as emulsifier in 50 mL 40 mM phosphate buffer and the mixture was then homogenized. The final volume was adjusted to 5 mL with 40 mM phosphate buffer, pH 7.0. After incubation at 37°C in the dark for 72 h, a 0.1 mL aliquot of the reaction solution was mixed with 4.7 mL of ethanol (75%), 0.1 mL FeCl₂ (20 mM) and 0.1 mL ammonium thiocyanate (30%). The absorbance of the mixture was measured at 500 nm and the mixture was stirred for 3 min. Ascorbic acid, gallic acid, α -tocopherol and BHT were used as reference compounds. To eliminate the solvent effect, the control sample, which contained the same amount of solvent added to the linoleic acid emulsion in the test sample and reference compound, was used. Inhibition percent of linoleic acid peroxidation was calculated using the equation above.

Measurement of ferrous ion chelating ability: The ferrous ion chelating ability was measured by the decrease in absorbance at 562 nm of the iron (II)-ferrozine complex [19, 20]. One mL of 0.125 mM FeSO₄ was added to 1.0 mL sample (with different dilutions), followed by 1.0 mL of 0.3125 mM ferrozine. The mixture was allowed to equilibrate for 10 min before the absorbance was measured. The ability of the sample to chelate ferrous ion was calculated relative to the control (consisting of iron and ferrozine only) using the equation above.

Determination of hvdroxvl radical scavenging activity: The ability to inhibit non site-specific hydroxyl radical-mediated peroxidation was carried out according to the method described by [21]. The reaction mixture contained 100 µL of extract dissolved in water, 500 µL of 5.6 mM 2-deoxy-D-ribose in KH₂PO₄-NaOH buffer (50 mM, pH 7.4), 200 µL of premixed 100 µM FeCl₃ and 104 mM EDTA (1:1 v/v) solution, 100 μ L of 1.0 mM H₂O₂ and 100 μ L of 1.0 mM aqueous ascorbic acid. Tubes were vortexed and incubated at 50°C for 30 min. Thereafter, 1 mL of 2.8% TCA and 1 mL of 1.0% TBA were added to each tube. The samples were vortexed and heated in a water bath at 50°C for 30 min. The extent of oxidation of 2-deoxyribose was estimated from the absorbance of the solution at 532 nm. The percentage inhibition values were calculated from the absorbance of the control (Ac) and of the sample (As), where the controls contained all the reaction reagents except the extract or positive control substance. The values are presented as the means of triplicate analyses. The IC₅₀ value, defined as the concentration of the test material that leads to 50% reduction in the free radical concentration, was calculated as µg/mL through a sigmoidal dose-response curve.

Acknowledgments - This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (project No. III 43004 and OH 172057).

References

- [1] Gottschling M, Hilger HH, Wolf M, Diane N. (2001) Secondary structure of the ITS1 transcript and its application in a reconstruction of the phylogeny of *Boraginales*. *Plant Biology*, *3*, 629-636.
- [2] Zhou RH, Duan JA. (2005). Plant Chemotaxonomy. 1028. Shanghai Scientific & Technical Publishers, Shanghai.
- [3] Iqbal K, Nawaz SA, Malik A, Riaz N, Mukhtar N, Mohammad P, Choudhary MI. (**2005**) Isolation and lipoxygenase-inhibition studies of phenolic constituents from *Ehretia obtusifolia*. *Chemistry & Biodiversity*, **2**, 104-111.
- [4] Bauerova K, Bezek A. (1999) A role of reactive oxygen and nitrogen species in pathogenesis of rheumatoid disease. *General Physiology and Biophysics*, 18, 15–20.
- [5] Finkel T, Holbrook NJ. (2000) Oxidants, oxidative stress and biology of ageing. *Nature*, 408, 239–2479.
- [6] Halliwell B, Gutterdge JMC. (1992) Cross CE free-radicals, antioxidants and human diseases: Where are we now? *Journal of Laboratory and Clinical Medicine*, 119, 598–620.
- [7] Knight JA. (1995) Diseases related to oxygen-derived free radicals. Annals of Clinical & Laboratory Science, 25, 111–121.
- [8] Petrone WF, English DK, Wong K, Mccord JM. (1980) Free-radicals and inflammation: superoxide dependent activation of a neutrophil activating factor in plasma. Proceedings of the National Academy of Sciences USA, 77, 1159–1163.
- [9] Visioli F, Kearey JF, Halliwell B. (2000) Antioxidants and cardiovascular diseases: panaceas or tonics for tired sheep? *Cardiovascular Research*, 47, 409-410.
- [10] Nobuyuki I, Shoji F, Hiroyuki T. (1985) Carcinogenicity and modification of the carcinogenic response by BHA, BHT and other antioxidants. *Critical Reviews in* Toxicology, 15, 109–150.
- [11] Al-Bakri GA, Afifi UF. (2007) Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. *Journal of Microbiological Methods*, 68, 19–25.
- [12] European Pharmacopoeia (**2008**) 6th ed., Strasbourg, Council of Europe.
- [13] Automated Mass Spectral Deconvolution and Identification System software (AMDIS ver.2.1.), National Institute of Standards and Technology (NIST), Standard Reference Data Program, Gaithersburg, MD (USA).
- [14] Adams RP. (2007) *Identification of essential oil components by gas chromatography /mass spectrometry*, 4th ed., Allured Publishing Corporation, Carol Stream, Illinois, USA.
- [15] Satyajit DS, Lutfun N, Yashodharan K. (2007) Microtitre plate-based antibacterial assay incorporating resazurin as indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. *Methods*, 42, 321-324.
- [16] Prieto P, Pineda M, Aguilar M. (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341.
- [17] Takao T, Watanabe N, Yagi I, Sakata K. (1994) A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. *Bioscience Biotechnology & Biochemistry*, 58, 1780-1783.
- [18] Kumarasamy Y, Byres M, Cox PJ, Jaspars M, Nahar L, Sarker SD. (2007) Screening seeds of some Scottish plants for free-radical scavenging activity. *Phytotherapy Research*, 21, 615-621.
- [19] Hsu ČK, Čhiang BH, Chen YS, Yang JH, Liu CL. (2008) Improving the antioxidant activity of buckwheat (*Fagopyrum tataricm* Gaertn) sprout with trace element water. *Food Chemistry*, 108, 633-641.
- [20] Carter P. (1971) Spectrophotometric determination of serum iron at the submicrogram level with a new reagent ferrozine. Analytical Biochemistry, 40, 450-458.
- [21] Hinneburg I, Dorman HJD, Hiltunen R. (2006) Antioxidant activities of extracts from selected culinary herbs and spices. *Food Chemistry*, 97, 122–129.