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In this paper the stopping power was calculated, representing the electrons of the target atom
as an assembly of quantum oscillators. It was considered that the electrons in the atoms have
some velocity before interaction with the projectile, which is the main contribution of this pa-
per. The influence of electron velocity on stopping power for different projectiles and targets
was investigated. It was found that the velocity of the electron stopping power has the great-
est influence at low energies of the projectile.
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INTRODUCTION

The interaction of ions with matter is the subject of
investigation in many areas of physics such as: atomic
and nuclear physics, plasma physics, solid state physics,
radiation physics, astrophysics, and other [1]. There are
open problems for investigation of interactions of low
energy ions with target atoms [2, 3] as well as passing of
low-energy photons through the matter [4].

The study of the mechanisms where an ion (in
further text projectile) losses its energy while interact-
ing with matter has great significance. The stopping
power, S, is one of the most important variables in that
field and it is defined as the ratio of energy, d£, lost on
some distance, dx, and that distance is: .S = —dE/dx.

By using the quantum-mechanical treatment in
the first Born approximation, Bethe has obtained the
following expression for stopping power [5]
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where N is the number of atoms , v— the projectile ve-
locity, z; and z, are atomic numbers of the projectile
and the target, and / — the mean ionisation potential of
the target atom.

For calculation of stopping power, the states of
the projectile and electrons in target atom before and
after interaction must be known. The states of the pro-
jectile were presented as plane waves, but for states of
electrons in the target atom some approximations were
used in literature. Bohr [6] has modelled electrons in
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target atom as a set of classical harmonic oscillators.
Similar approach was applied by Sigmund and
Haagerup [7], who modelled target electrons as as-
semble of quantum harmonic oscillators. Stevanovic
and Nikezic [8, 9] extended the model presented in [7]
and applied for the projectile that contains bounded
electrons and must be treated as partially stripped ion.
It was shown that the projectile excitation contributes
up to 20% to the total energy loss in the lower energy
region.

Cabrera-Trujillo [10] also treated electrons in
target atom as quantum oscillators, where total stop-
ping power was presented as a sum of orbital stopping
powers. It was shown that orbital ionizing potential /;
is equal to energy of the oscillator, /; = 7w, [10].

These models were developed for fast projec-
tiles, where the velocity of electron in the target atom
can be neglected. But, for low-energetic projectiles
(ions) this assumption is not justified.

In this paper stopping power was calculated by
modelling electrons in the target atoms as assemble of
quantum oscillators where the velocity of target electrons
was taken into account. Influence of the electron velocity
on stopping power was considered in this paper.

METHODOLOGY

According to quantum-mechanical model, the
stopping power can be calculated as [5-10]

O
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where E,, and E,, , are eigenvalues of electron energy
in the target atom energy for excited and ground states,
respectively; do,, is differential cross-section of inter-
action projectile and target electrons. Qp, and On.x are
minimal and maximal transferred energies of the pro-
jectile. The summation goes over all energetic states,
m;, of the target atom. In developed form the stopping
power can be expressed as
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where M, is the molar mass of target atom, m, — the
mass of electron, v — the projectile velocity, Ny — the
Avogadro number, z; and z, are the atomic numbers of
projectile and target atoms, respectively; j denotes the
electrons in target atom. Matrix element M m/moffor
harmonic oscillator is equal to [7-10]
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By using energy conservation for collision pro-
jectile with electron in target atom, the maximal trans-
ferred energy of the projectile is

O =2mV* -2m Vv, (5)

where v and v ; are velocities of the projectile and tar-
get electron before collision. Lower boundary of inte-
gration Oy, has a form [5-10]
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Upper boundary for summation over energetic

states in eq. (3) can be determined from the condition

that maximal transferred energy is transformed for
transition to state m,,,, as

(mmax hwj )2
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From eq. (7) it can be obtained

2
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This must be an integer because quantum num-
ber m denotes energy levels from 1 to m_,,.

Using egs. (4)-(7), the solution of eq. (3) can be
presented by gamma function
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The expression for stopping power, eq. (8), ob-
tained in this paper is different in respect to stopping
power calculated in [5-10] because the velocity of tar-
get electron v, is introduced here.

The electron’s velocity in a given orbital can be
evaluated using virial theorem [10]. The virial theo-
rem formulates a general relation between mean value
of'the kinetic energy ‘f‘ ‘ and potential V. Inthe case of
stationary states and spherically symmetric potential
V(r) o« ", above mentioned relation takes simple form
2| ‘ =n ‘17‘ . For harmonic potential, n =2, electron’s
kinetic energy is equal to its potential energy, i. e. ion-
isation energy of a given electron’s orbital is
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The projection of electron velocity v to projec-

tile velocity Vv is p,, then the following expression is
valid v cos(0) =vv; p,.
According to these considerations, eq. (8) be-

hwj =1j =

comes
2m, v, (vz—vv/-pz)
S _ 21264 NO 1 Zzz 11 1
dnelmyt M, 25w (my —1)!
2 2
mjlj 2m, (v - Py)
1Gl m; -,—\-Gm, -1,——— "~
. 2 J 7
2myv £

(10)
The projection p, = cos € can take values be-
tween p,; =—1 (the projectile and the electron have op-
posite velocity directions before interaction) and p,, =
+1 (the projectile and the electron have the same ve-
locity directions before interaction). The condition for
interaction is that projection of electron’s velocity is
smaller than velocity of the projectile, v;p,, > v. In the
opposite case, the projectile can not reach electron and
interaction will not occur. Hence, for a given projectile
and electron velocity, the upper values of projection
must be equal to

1, if v> v
= A% .
Pz —,1fv<vj
V.

J
According to these considerations, upper
boundary of sum in the eq. (10), as integer number, has

values between 5
2mvy[v: —wv; p,,
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1
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Therefore, there are Nj; = N,; — N;; +1 values of
the upper boundary of the sum, i. e., N; groups of elec-
trons which interact with projectile. Because the direc-
tions of electrons’ velocities are equally possible, the
probability that the projectile interacts with some sub-
groups of electrons is 1/N,;. The eq. (10) becomes
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z 2,4 Ny 1 2 1 Ny Nyt 12) is giV?l’l in fig. 1 and pres.ented by solid line.
S=—7— > Dash-dot line presents the stopping power calculated
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The projection p’,, inthe second term ofeq. (11),
is changed from the p,, to p,, with the step of
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It can be written
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Finally, the eq. (11) can be written in the form
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RESULTS

In this paper, the stopping power was derived,
where motion of target electrons before interaction
with the projectile was taken into account, and the ob-
tained expression was presented by eq. (12). The
stopping power given by eq. (12) is a function of pro-
jectile energy (or velocity v). The stopping power for
the following projectile-target pairs was calculated:
H-H, He-C, and He-O. To apply eq. (12) it is needed
to determine ionizing potentials for all the target atom
orbitals, /; and velocities of electrons v; in given
orbitals. The ionizing potentials /; were determined in
[10] and their values for H, He, and C atoms are: for
H, Iy;; =15 eV; for He atom, Iy, ,=38.83 ¢V; and for
O atom, /5, ==729.41 ¢V, [, =56.86 eV, and [, =
=46.64 ¢V. The electron velocity v; in a given orbital
J is calculated by eq. (9). The expression for the stop-
ping power, given by eq. (12), can be applied for
point-like projectile with velocity v > z,%3v, [9, 10]
(vo = 2.16:10° m/s is Bohr velocity) where electron
capture is neglected.

The stopping power of hydrogen target for hy-
drogen ion as a function of the projectile energy (eq.

according to the formula given in [7], while dashed
line presents stopping power calculated in [10]. Scat-
ter circle presents data obtained from SRIM2006 [11].

A good agreement has been found between all
groups of data for the larger projectile energy. The re-
sults were presented for the projectile energy larger
than 25 keV where electron capture is neglected and
projectile can be treated as point like particle. It can be
seen that influence of the electron velocity is larger for
slower projectile, where projectile velocity has similar
value as target electron. The stopping power calcu-
lated in this paper, eq. (12), is lower than that in [7, 10]
because target electron has some energy before inter-
action, and projectile can loose a smaller amount of en-
ergy than in the case of interaction with electron at rest.
Due to electron motion in the target before interaction
with projectile, the stopping power is lower for about
25% for H-H interaction.

Figure 2 presents the stopping power for He-C
interaction. The notation is the same as in fig. 1. The
eq. (12) is valid for the projectile with energy larger
than 250 keV. The behaviour of stopping power curves
is similar as in fig. 1 and for lower projectile energy
stopping power by eq. (12) is smaller for 10%, espe-
cially in Bragg peak region.
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Figure 1. The stopping power of hydrogen for hydrogen
projectile
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Figure 2. The stopping power of carbon for helium
projectile
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Figure 3 represents the stopping power of oxy-
gen for helium projectile as a function of energy. The
projectile energy is larger than 250 keV where electron
capture is neglected. The influence of electron veloc-
ity is largest for the lower projectile energy, where the
stopping power is smaller for 28%.
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Figure 3. The stopping power of oxygen for helium
projectile

For considered projectile-target interactions, it
was shown that when electron velocity is taken into ac-
count, the calculated stopping power data (eq. 12) are
close to data obtained by SRIM [11] and must be con-
sidered in further investigation.

CONCLUSIONS

In this work analytical expression for stopping
power was obtained, where it was taken into account
that target’s electrons have non-negligible veloci-
ties before interaction with projectiles takes place.
On the basis of (quantum) virial theorem, the veloc-
ity of each electron in a given atomic orbital is deter-
mined. Influence of the electron’s velocities in the
atoms of the target has been examined whereby the
following results stands: (1) stopping power magni-
tude is lesser because of non-zero velocities of tar-
get electrons and (2) velocities of target electrons

have the ultimate impact on stopping power at lower
projectile’s energies.
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Henag CTEBAHOBWH, Baagumup M. MAPKOBUh,
Momup APCEHUJEBWH, [dparocias HUKE3Wh

YTULIAJ KPETABA EJEKTPOHA Y ATOMY METE HA
3AYCTABHY MOh 3A HUCKO EHEPTETCKE JOHE

Y oBoM papy je pauyHaTa 3aycTaBHA MOh, TpeficTaBibajyhil eJIeKTpOHE y aTOMIMa MeTe aHCAMOIIOM
KBaHTHUX ocumiaTopa. IIlpum ToMe je pa3maTpaHO fia ce eNeKTPOHM y aToMuMa MeTe Kpehy opipebeHoM
OGp3MHOM Mpe MHTEPAKIHje ca MPOjEKTUIIOM, IIITO je TIIaBHU IONPUHOC OBOora pajia. MicnutrBaH je ytuiaj Op3nHa
TUX eJIEKTPOHA Ha BPEHOCT 3aycTaBHEe MOhM 3a pa3nuyuTe NpOjeKTUlIe U MeTe. Y CTAHOBJbEHO je fa Op3uHe
€JIEKTPOHA Ha 3aycTaBHy Moh uMajy HajBehu yTHIlaj IpH HIDKAM €Heprujama IpojeKkTHIa.

Kmwyune peuu: 3aycitiasna moh, Zyouitiak enepzuje, K8AHIIHU XAPMOHUJCKU OCUUAATHOD



