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Abstract We investigate dynamical stability of a single propeller-like
shaped molecular cogwheel modelled as the fixed-axis rigid rotator. In the
realistic situations, rotation of the finite-size cogwheel is subject of the envi-
ronmentally-induced Brownian-motion effect that we describe by utilizing the
quantum Caldeira-Leggett master equation. Assuming the initially narrow
(classical-like) standard deviations for the angle and the angular momentum
of the rotator, we investigate dynamics of the first and second moments de-
pending on the size, i.e., on the number of blades of both the free rotator
as well as of the rotator in the external harmonic field. The larger the stan-
dard deviations, the less stable (i.e. less predictable) rotation. We detect
the absence of the simple and straightforward rules for utilizing the rotator’s
stability. Instead, a number of the size-related criteria appear whose com-
binations may provide the optimal rules for the rotator dynamical stability
and possibly control. In the realistic situations, the quantum-mechanical cor-
rections, albeit individually small, may effectively prove non-negligible, and
also revealing subtlety of the transition from the quantum to the classical
dynamics of the rotator. As to the latter, we detect a strong size-dependence
of the transition to the classical dynamics beyond the quantum decoherence
process.

1. Introduction

The standard theory of the translational Brownian motion can be formu-
lated without making any reference to the Brownian particle’s spatial shape
and size. Often, the Brownian particle is imagined as a material point with
the phenomenologically modeled external noise and friction [1-3]. Interest-
ingly enough, this extremely idealized model has a remarkable history of
success regarding various tasks in physics, chemistry and applications.

Introducing the Brownian-particle’s size typically leads to considerations
of spherical/ellipsoid objects, in which case the rotational motion also must
be accounted, see e.g. [4, 5]. As a geometrical limit of the ellipsoid-like
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Brownian particle, most often is regarded a rod-like rotator [5] (and refer-
ences therein). Those idealized geometrical models may be useful for the
sufficiently large particles–of the diameter of the order of 100nm. However,
for the smaller particles, these models may not be reliable anymore.

The functional parts of the desired nano-machines, such as the molecular
nano-rotators (molecular cogwheels) [6-9], are purposefully designed–their
function strongly depends on their geometrical shape and size, which is typ-
ically of the order of 1 − 10nm. These spatial dimensions are such that the
molecule geometrical shapes can be seen by the environmental particles so
much that the standard approximations of the Brownian particle, e.g. by
the spherical-like models, may not in general be viable. Furthermore, when
immersed in a solution or even resting on surfaces (as it might be in prac-
tice), significant thermally driven, i.e. random, molecular rotations may be
expected. Interestingly enough, in some cases, thermal noise can assist di-
rected rotation [10], thus revealing subtleties, and possibly unexpected falls
of our classical intuition regarding the spatially structured microscopic sys-
tems. That is, macroscopic analogies do not necessarily go far in predicting
function in nanoscale environments. The analogies may break due to the en-
vironmental influence (such as Brownian motion) or various kinds of quantum
effects or both [11, 12].

Following the existing candidates for the really geared and possibly con-
trollable molecular nano-rotators, in this paper, we consider the propeller-like
shaped molecular species [6-9] that we model as Brownian rotators. For sim-
plicity, we assume one-dimensional (fixed axis) rigid rotator. Spatial size of

the rotator is introduced by the number N of the blades, where the average
moment of inertia, denoted I◦, and the average damping rate, denoted γ◦,
serve as the physical units for the model. In order to tackle the possibly
realistic situations [6-9], we consider the number of blades 1 ≤ N ≤ 10.

Our objective is to investigate the rotational stability, i.e. predictability
of rotation (and therefore rotation controllability), depending on the rota-
tor’s size and shape. Quantitatively, we investigate the dynamics of the first
and second moments for a free and harmonic rotator modeled by the stan-
dard Caldeira-Leggett (CL) master equation [13, 14] and follow the standard
rule [15]: the smaller the standard deviations, the more stable (i.e. more
predictable) dynamics.

The use of the CL master equation is motivated by both, the well-defined
classical limit as well as by the explicit quantum-mechanical corrections in
the weak-coupling limit. Therefore our main focus is placed on both the
underdamped and non-underdamped regimes [below precisely to be defined];
extensions of these considerations are discussed in Section 4.

We find the absence of the straightforward recipes for utilizing the relative
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stability of the rotation. The choice of the optimal conditions for the desired
control of the rotation depends on a number of criteria, notably of: (i) the
standard deviations of the angle and the angular momentum exhibit the
opposite dependencies on the size (the number of blades) of the rotator; (ii)
the significantly different magnitudes of the change for the angle- and the
angular-momentum standard deviations; (iii) the shorter relaxation times
for larger propellers; (iv) the value of the tunable damping rate γ◦; (v) [in
conjunction with the point (iv)] the time scale of the allowed/desired external
actions on the rotator. Expectably, quantitatively, those criteria depend on
(a) the presence/absence of the external harmonic field for the rotator as
well as on (b) the underdamped/non-underdamped regime. Intuitively, the
optimal choice of the conditions for appropriate function of the molecular
cogwheels is a reminiscence of the standard engineering optimization [16]
already at the microscopic scale. However, here disappears analogy with the
classical counterparts [17].

Our results reveal the possible accumulation and therefore increase of the
quantum-mechanical, individually negligible, effects. The absence of those
effects in the classical domain emphasizes a limited use of the classical (or
semi-classical) theory of the Brownian rotation [6-9]. Going beyond such
treatment is provided in this paper by utilizing the full Caldeira-Leggett
master equation [13, 14]. Hence also the size-dependent transition to the
classical dynamics that goes beyond the decoherence process.

In Section 2, we introduce the model of interest, with an emphasis on the
subtleties of the transition from the translational to the rotational model. In
Section 3 we provide the quantitative results, which are discussed in Section
4 with an emphasis on relaxing the assumptions of the weak coupling and
high temperature of the bath. Section 5 is conclusion.

2. Quantum Brownian rotator

The shaded areas in Figure 1 depict the average effective surface for a set
of blades exposed to the environmental influence; depending on the blades
geometry, the surfaces may be only partly exposed to the environmental
influence. The length L and the height d uniquely determine the moment
of inertia, denoted I◦, and the strength of interaction, denoted α◦, of the
typical blade of a propeller rotating around the fixed axis z–in analogy with
the, often addressed [17], macroscopic models [18].

Both I◦ and α◦ are subjects of free choice in our considerations. On
the one hand, the average moment of inertia, I◦, of the typical (”averaged”)
blade regards the different chemical species and local geometric deformations
(e.g. twisted blades) that define the molecules of different (local) configu-
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Figure 1: A pair of blades illustrating the average effective size of a set of
blades; the shaded areas depict the surfaces that may be exposed to the
environmental influence.

rations, which include the molecules conformations [6]. On the other hand,
the strength of interaction can be externally tuned (even by several orders of
magnitude) by appropriate choice of the rotator’s environment [19] and the
only assumption is that the strength of the interaction with the environment
allows for the use of the weak-coupling limit [14, 20].

From Fig.1 it is obvious that for a propeller with N blades, the total
moment of inertia I = NI◦. Now assuming that the strength of the inter-
action with the environment is proportional to the average effective surface
of one blade [14], the strength of interaction for N blades α = Nα◦, where
α◦ is the average strength of interaction for a set of N blades. Therefore the
assumption of the weak coupling limit requires Nmaxα◦ = 10α◦ ≪ 1.

Transition from the translational to the rotational Brownian model is
formally straightforward [21]: the position operator x is exchanged by the
angle of rotation ϕ, momentum p by the angular momentum Lz, and the mass
m by the rotator’s moment of inertia I. Adopting the basic assumptions of
the weak interaction and high temperature in the microscopic derivation of
the translational model [13, 14] directly gives rise to the Caldeira-Leggett
(CL) master equation for the Brownian rotator (in the Schrödinger picture)
[21]:

dρR(t)

dt
= −

ı

h̄
[HR, ρR(t)]−

ıγ

h̄
[ϕ, {Lz, ρR(t)}]−

2IγkBT

h̄2
[ϕ, [ϕ, ρR(t)]], (1)

where γ is the damping rate for the rotator and the rotator’s self Hamiltonian
HR = L2

z/2I + V (ϕ). Eq.(1) has a well-defined classical counterpart in the
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form of the Langevin equation for the angle variable ϕ [6, 9], in the full formal
analogy with the Langevin equation for the Descartes position variable x.

The spectral density, denoted J , for the Brownian motion model is pro-
portional to α2 [14] while, on the other hand, J ∝ Iγ (see eq.(3.392) in [14]).
Then for one blade α2

◦
∝ I◦γ◦ while for N blades, from (Nα◦)

2 ∝ NI◦γ, we
obtain e.g. γ = Nγ◦. Therefore the linear proportionality of both I and γ
with the size (with the number N of blades) of the rotator.

We adopt eq.(1) without modifications with an emphasis on the well-
defined classical counterpart. However, analogy between the translation and
rotation breaks in the quantum-mechanical context when it comes to the
meaning of the standard deviations and the validity of the uncertainty rela-
tion for the angle and the angular-momentum observables [22-24]. On the
one hand, the standard deviation ∆ϕ =

√

〈ϕ2〉 − 〈ϕ〉2 can be used as a
measure of uncertainty of the angle ϕ only for sufficiently small values [22].
On the other hand, for very small values of ∆ϕ, even for the finite interval
ϕ ∈ [0, 2π], the rotational model becomes formally analogous to the transla-
tional model. Bearing in mind that the uncertainty relation for ϕ and Lz is
not well defined, the analogy with the translational motion is lost as we do
not use the uncertainty relation as a constraint of our considerations. On the
other hand, the use of the standard deviation ∆ϕ as a measure of uncertainty
is provided by assuming the small initial value ∆ϕ(0).

Now, taking the small initial ∆ϕ(0) and ∆Lz(0) makes the whole picture
very close to the classical counterpart; in this regard, the details are given
below. Here we just want to emphasize that the classical-like rotational dy-
namics is fully in the spirit of the original CL-dynamics, which assumes the
extremely high temperature T of the thermal bath (reservoir)–the under-
damped regime. Nevertheless, wide applicability of the CL master equation
[14, 15], i.e. of eq.(1), allows for the considerations in the non-underdamped
regime–toward the more general scenarios discussed in Section 4.

Denoting by E the rotator’s self-energy and by T the bath’s temperature,
the underdamped and the non-underdamped regimes of interest [14, 20] are
here defined by the following non-equalities: Nmaxh̄γ◦ ≪ E < kBT and
Nmaxh̄γ◦ ≪ kBT < E, respectively. For the free rotator, E = h̄2/2NmaxI◦,
and for the harmonic rotator, E = h̄ω; ω is the frequency of the external
harmonic field and kB is the Boltzmann constant.

In analogy with the standard procedure for the translational Brownian
motion (cf. eqs.(3.426)-(3.430) in Ref. [14]), from eq.(1) easily, and un-
conditionally, follow the equations for the first and second moments for the
(fixed-axis) rotational Brownian motion:
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d〈ϕ(t)〉

dt
=

1

I
〈Lz(t)〉,

d〈Lz(t)〉

dt
= −〈V ′(ϕ(t))〉 − 2γ〈Lz(t)〉,

d〈ϕ2(t)〉

dt
=

1

I
〈Lz(t)ϕ(t) + ϕ(t)Lz(t)〉,

d〈L2

z(t)〉

dt
= −〈Lz(t)V

′(ϕ(t)) + V ′(ϕ(t))Lz(t)〉 − 4γ〈L2

z(t)〉+ 4IγkBT

d

dt
〈ϕLz + Lzϕ〉 =

2

I
〈L2

z〉 − 2〈ϕV ′(ϕ)〉 − 2γ〈ϕLz + Lzϕ〉. (2)

In eq.(2), V ′(ϕ(t)) ≡ dV (ϕ(t))/dϕ(t), while the mean values 〈∗〉 = tr(∗ρR(t)).
Eq.(2) is general–it applies for every kind of the external field V (ϕ). In this
paper we will consider only the free rotator (V = 0) and the rotator in the
external harmonic field (V (ϕ) = Iω2ϕ2/2) for small values of the angle of
rotation. A proper series of small rotations can effect in the finite rotation
of the molecule [6-8].

Our task in this and the next section is to investigate dependence on
the number N of blades of the moments in eq.(2) for both, the free and
harmonic rotator, in the underdamped and non-underdamped regimes. The
only constraints come from the assumptions of the very small initial ∆ϕ and
small angle of rotation as well as from the requirement of the weak-coupling
and high temperature limit [14, 20].

2.1 Free rotator

For the free rotator, V = 0, the solutions of eq.(2) can be directly taken
over from the solutions for the free translational motion, eqs.(3.438)-(3.440)
in Ref. [14], from which easily follows also the solution for the variance
function, σϕL = 〈ϕLz+Lzϕ〉−2〈ϕ〉〈Lz〉, which in the classical limit takes the
form σϕL = 〈ϕLz〉 − 〈ϕ〉〈Lz〉. Dividing by I◦γ◦, we obtain the dimensionless
quantities σL ≡ ∆Lz/I◦γ◦, σ ≡ σϕL/I◦γ◦ and τ ≡ γ◦t:
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σ2

ϕ(τ) = σ2

ϕ(0) +

(

1− e−2Nτ

2N2

)2

σ2

L(0) +
1− e−2Nτ

2N2
σ(0)

+
kBT

N3I◦γ2
◦

[

Nτ − (1− e−2Nτ ) +
1

4
(1− e−4Nτ )

]

,

σ2

L(τ) = e−4Nτσ2

L(0) +N
kBT

I◦γ2
◦

(1− e−4Nτ ),

σ(τ) = σ(0)e−2Nτ +
e−2Nτ

N2
(1− e−2Nτ )σ2

L(0) +
kBT

NI◦γ2
◦

(1− e−2Nτ )2.(3)

In the asymptotic limit (τ → ∞), from eq.(3):

lim
τ→∞

σϕ =

√

kBT

I◦γ2
◦

τ

N2
, lim

τ→∞

σL =

√

NkBT

I◦γ2
◦

, lim
τ→∞

σ =
kBT

NI◦γ2
◦

. (4)

The classical counterparts of eq.(3) are given in Appendix I. The classical
variance is identical with the quantum-mechanical expression, while the clas-
sical expressions for σL and σϕ follow from placing σL(0) = σϕ(0) = σ(0) = 0
in eq.(3). Therefore the clear distinction between the classical and quantum-
mechanical contributions in eq.(3).

2.2 Harmonic rotator

Solutions to eq.(2) for the harmonic rotator are obtained in the full anal-
ogy with Section 2.1, for the case V (ϕ) = Iω2ϕ2/2. To this end, we borrow
the solutions from [25], again presented via the dimensionless quantities:

σ2

ϕ(τ) = e−2Nτ

(

σ2

ϕ(0) cos
2
ω

γ◦
τ +

σ(0)

2N
sin 2

ω

γ◦
τ +

σ2

L(0)

N2
sin2

ω

γ◦
τ

)

+
kBT

NI◦ω2
(1− e−2Nτ ) +O

(γ

ω

)

,

σ2

L(τ) = e−2Nτ

(

σ2

L(0) cos
2
ω

γ◦
τ +N2σ2

ϕ(0) sin
2
ω

γ◦
τ −

N

2
σ(0) sin 2

ω

γ◦
τ

)

+
NkBT

I◦ω2
(1− e−2Nτ ) +O

(γ

ω

)

σ(τ) = e−2Nτ

(

4N
γ◦kBT

I◦ω3
sin2

ωτ

γ◦
−Nσ2

ϕ(0) sin
2ωτ

γ◦
+ σ(0) cos

2ωτ

γ◦
+

σ2

L(0)

N
sin

2ωτ

γ◦

)

+O
(γ

ω

)

. (5)
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In the asymptotic limit (τ → ∞), from eq.(5) with neglecting the terms
proportional to γ/ω:

lim
τ→∞

σϕ =

√

kBT

NI◦ω2
, lim

τ→∞

σL =

√

NkBT

I◦ω2
, lim

τ→∞

σ = 0. (6)

Eq.(6) reduces to eq.(3.424) in [14] that follows from an approximate treat-
ment of the one-dimensional translational Brownian particle in the external
harmonic field.

The classical expressions are shown in Appendix I to follow from eq.(5)
for σL(0) = σϕ(0) = σ(0) = 0. Therefore the clear distinction between the
classical and quantum-mechanical contributions in eq.(5).

3. Results

In this section, we utilize equations (3) and (5) to investigate the rota-
tor’s stability as a function of the rotator’s size (i.e. of the number N of the
blades), and also directly compare the exact quantum-mechanical expres-
sions with their classical counterparts. Of course, the larger the standard
deviations the less stability (and hence the less control) of the system.

The results presented below are givenfor the initial values σϕ = σ =
0.1 ≪ 2π and σL = 1. Bearing in mind that the typical values of the
moment of inertia I◦ ∼ 10−46 − 10−44, for the choice γ◦ < 108 [in the SI
units], ∆Lz < 10−2h̄. Hence ∆ϕ · ∆Lz < 10−3h̄, which is the very classical
initial condition, in accordance with ignoring the uncertainty relations for
the angle and the angular momentum observables (cf. Section 2).

In eq.(3) appears the constant A ≡ kBT/I◦γ
2

◦
, while in eq.(5) appear

the constants B ≡ kBT/I◦ω
2 and C = γ◦B/ω. The weak-coupling limit

allows for the choice γ◦/ω ∼ 10−3. For the free rotator, whose self-energy
H = L2

z/2I, we obtain the same value of the A for both regimes:

A =
kBT

h̄γ◦
·

h̄

I◦γ◦
(7)

while kBT/h̄γ◦ ≫ 1 and h̄/I◦γ◦ ≫ 200. Without loss of generality, we choose
the value A = 2 · 105.

The values of B and C depend on the regime–underdamped or non-
underdamped regime for the rotator. Similar to the free rotator, we use:

B =
kBT

h̄ω
·

h̄

I◦ω
. (8)

The constant kBT/h̄ω > 1 for the underdamped, and kBT/h̄ω < 1 for the
non-underdamped regime. Now, assuming that h̄ω ∼ 〈H〉 = 〈L2

z〉/2I◦ +
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I◦ω
2〈ϕ2〉/2 ∼ I◦ω

2, i.e. that h̄/I◦ω ∼ 1 , we take for the underdamped
regime, B ∼ 10, C ∼ 10−2, and for the non-underdamped regime, B ∼
0.1, C ∼ 10−4.

The characteristic time scale of (Nγ◦)
−1 is the ”relaxation time”, for

which the rotator’s dynamics becomes essentially classical, i.e. properly de-
scribed by the classical Langevin equation for the angle of rotation ϕ [6] that
is presented in Appendix I. Nevertheless, in this section we utilize the ad-
vantage of the full Caldeira-Leggett model in that we can describe dynamics
also for shorter time intervals. Physically, ”shorter”/”longer” time intervals
in the units of (Nγ◦)

−1 is a relative concept–as we emphasize in Section 4,
it depends on the desired and available operations on the rotator system so
much that even e.g. t ∼ (Nγ◦)

−4 may not describe the physically noninter-
esting ”transient” processes. For this reason, below, we present the results
for the time scale τ = γ◦t = 0.01.

With the use of those values for the parameters, we investigate the equa-
tions (3) and (5) and obtain the results as presented in the rest of this
section. Qualitatively, the choice of the initial values as well as the values of
the parameters do not change the results to be presented below. The general
findings are as follows. For every size of the rotator (the number of blades N),
we observe relatively fast transition to the classical dynamics. For certain
shorter time intervals, quantum corrections to the purely classical dynamics
are easily detectable–the ”quantum domain” of the rotators behavior that is
discussed in Section 4–and relatively quickly decrease to reach the classically
predicted values with the common asymptotic values for the moments.

In all figures, the surfaces presenting the classical cases are below the
quantum-mechanical counterparts–the quantum corrections make the dy-
namics less stable.

3.1 Underdamped regime

From Figure 2 we can learn about fast transition to the classical dynamics
for both ϕ and Lz . Regarding the angle, we find the larger propellers more
stable than the smaller ones–in contrast to the angular momentum. The
magnitudes of change of the initial values are remarkably larger for the an-
gular momentum, for which also a significantly faster increase of the standard
deviation appears for larger propellers.

For the chosen time scale, the transition to the classical dynamics is
not as fast as for the case of the free rotator, especially for the less-stable
propellers, such as the smaller propellers for ϕ and the larger propellers
for Lz. Hence the role of the external field that, in principle, may be a
control-field for the rotator system. Regarding ϕ, the oscillations due to the
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(a) (b)

Figure 2: Free rotator, underdamped regime: (a) angle, (b) angular momen-
tum, where for the chosen time scale, the quantum and classical plots are
very close to each other. τ ∈ [0, 0.01], N ∈ [1, 10].

(a) (b)

Figure 3: Harmonic rotator, underdamped regime: (a) angle, (b) angular
momentum. τ ∈ [0, 0.01], N ∈ [1, 10].

harmonic potential are larger both in magnitude and the duration for smaller
than for the larger propellers. Regarding the angular momentum, initially,
the oscillations are larger for larger propellers. The magnitude of change for
the angular momentum is smaller than for the case of the free rotator. On
average, it’s larger than the magnitude of change for the angle observable.

The results regarding the covariance function are qualitatively similar
with the results for the angle-observable.

3.2 Non-underdamped regime

Regarding the free rotator, the underdamped and non-underdamped regimes
are practically indistinguishable.

From Figure 4 we can learn that, as distinct from the underdamped
regime, the classical values exhibit the constant increase, while the quan-
tum corrections exhibit the constant decrease with the oscillations; this is
obvious for the larger values of τ that is not presented here. The less stable
dynamics is found for the angle-observable for smaller rotators–in contrast

10



(a) (b)

Figure 4: Harmonic rotator, non-underdamped: (a) angle, (b) angular mo-
mentum. τ ∈ [0, 0.01], N ∈ [1, 10].

with the angular momentum. Quantum corrections are more pronounced and
last longer than for the underdamped regime. The magnitudes of change for
the angular momentum are larger than for the angle-observable, but with
the lower values than for the underdamped regime.

The results regarding the covariance function are qualitatively similar
with the results for the angle-observable.

4. Discussion

The Langevin equation for the rotation angle ϕ , cf. e.g. equation (1)
in Ref. [6], is a classical-theoretical model and a precursor for aiming at the
desired molecular rotators (e.g. cogwheels). To this end, our starting point,
equation (1), can be regarded as a proper quantum mechanical counterpart
that assumes the weak-coupling limit and high temperature of the thermal
bath as well as the constraint 1 ≤ N ≤ 10 for the number N of the blades.
Weak interaction (small damping factor γ) and high temperature are the
basic assumptions of the microscopic derivation of the equation (1) that are
adopted in Sections 2 and 3. Relaxing some of those assumptions may be
justified for certain situations and also to lead to extensions of our consider-
ations. Nevertheless, this should be performed with caution. Let us briefly
emphasize some directions and the possible pitfalls.

A more general model going beyond the model eq.(1) accounts for both
reorientation of the rotation axis as well as arbitrary angle of rotation [26].
Adding the ”minimally invasive” term to the Caldeira-Leggett equation leads
to a Markovian (Lindblad-form) dynamics of the rotator [27]. Nevertheless,
this way the microscopic basis for the equation is abandoned as well as ques-
tioned appearance and the microscopic origin of the quantum dissipation
term for the thermal bath consisting of the set of mutually independent
modes (harmonic oscillators) [28]. The Caldeira-Leggett equation (1) may
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also be regarded as a phenomenological equation, in which case the values of
both the damping constant γ and the bath’s temperature T may be consid-
ered unrestricted [28]. On the other hand, respecting the microscopic context
for arbitrary strength of interaction and temperature is known to be allowed
for the restricted set of states–the Gaussian states (cf. Section 4.6 in Ref.
[14]). Therefore, going beyond the small γ and/or large T comes at the price
of the questionable microscopic origin or of a restriction to a special set of
states of the Brownian particle.

In Fig.1 we assume the blades are connected via the central atom. For
the case of the central disc or a ring [6], the total moment of inertia I =
Idisc + NI◦ = (κ + N)I◦, and analogously for the strength of interaction α,
thus numerically reducing this situation to the situations considered in Sec-
tion 3 while assuming κ < Nmax. It is worth emphasizing that the choice of
Nmax > 10 does not qualitatively change our conclusions. Nevertheless, our
restriction to the number of blades satisfying 1 ≤ N ≤ 10 is two-fold. First,
it aims at the expected realistic chemical molecular species (including the
artificially produced ones) [6]. Second, large values of N drive the consider-
ations out of the basic assumptions of our considerations. On the one hand,
for some large N > 10, according to Fig.1, the blades become close to each
other and thus their environments become rather small, in contrast to the
basic assumption of the Caldeira-Leggett model [13, 14]. On the other hand,
in the limit N → ∞, a propeller takes the form of a homogeneous disc–which
is a new kind of the rotator’s geometry (shape) that requires an independent
analysis to be presented elsewhere.

Certain directions of generalization of our starting point eq.(1) exhibit
limitations of our considerations. Assuming non-Markovian environment in
the microscopic derivation leads to a generalization of equation (1) that is the
exact (and completely positive) master equation for the microscopic model
of the quantum Brownian motion [29]. The possibility of the free choice of
the strength of interaction and the temperature of the harmonic bath as well
as a freedom in the choice of the spectral density go beyond the limitations
imposed by the original equation (1) adopted in Section 3 of this paper.
On the other hand, going beyond the microscopic modelling opens the door
for the more general stochastic processes, such as the Lévy processes that
represent a natural extension of the standard Brownian processes [14, 30].
However, for certain Lévy processes, the use of the mean values and standard
deviations is not a reliable tool for statistical analysis [14, 30]. Therefore this
kind of generalizations is basically complementary to our considerations and
requires a separate analysis, see e.g. [31].

Importance of the relation between the open system’s geometry (struc-
ture) and ”function” (dynamics) has already been emphasized in the similar
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contexts [30-34]. There, the damping coefficient γ and the temperature T
are recognized to characterize the role of the environmental fluctuations to
the open system’s dynamics. For the sake of comparison, without further
ado, below we give the results that do not presuppose any restrictions of the
values of γ or T that include also the overdamped regime for the rotator. To
this end, in analogy with Section 3, we use the exact results for σϕ and σL

that are presented in Appendix II.
The standard deviations generally increase with the increase of the tem-

perature. A slight discrepancy of the classical and quantum results are found
only for the angle observable for short time (here not presented); this dis-
crepancy disappears for the longer time intervals and for the larger values of
both γ and T . Below, the results regarding the exact quantum expressions
are given. For all figures we use the following values: t = 0.01, ω = 10, I =
1, σϕ(0) = σ(0) = 0.1, σL(0) = 1, h̄ = 1 (in their respective SI units).

Figure 5a depicts the results for the angle observable of the free rotator.
For the harmonic rotator (Fig.5b) for shorter times (t=0.01), we can see
decrease of the standard deviation for lower temperatures like in Fig.5a and,
first some increase and then decrease of the standard deviation for larger
values of T . This interplay between the roles of γ and T , Fig.5b, does not
appear for any other (quantum or classical) case.

Figure 6 depicts the results for the angular momentum for both short
and longer times. As distinct from the case of the free rotator (Fig.6a), there
is a saturation of the standard deviation for the harmonic rotator (Fig.6b)
for larger γ. Compared to Figure 5, we can see the faster and much larger
increase of σL.

(a) (b)

Figure 5: Dependence of the angle-standard-deviation on the damping factor,
γ ∈ [1, 200] and temperature, kBT ∈ [0.01, 300]. (a) Free rotator, and (b)
Rotator in the external harmonic field.

Increase of the temperature leads to the increase of the standard de-
viations, generally, that is, leads to the decrease of the rotator’s stability.

13



(a) (b)

Figure 6: Dependence of the angular-momentum standard deviation on the
damping factor, γ ∈ [1, 200] and temperature, kBT ∈ [0.01, 300]. (a) Free
rotator, and (b) Rotator in the external harmonic field.

On the other hand, we find monotonic (the absence of the local maxi-
mums/minimums) dependence of the standard deviations on γ in all cases,
except for the case presented in Fig.5b. For larger γ, we find better stabil-
ity (smaller the standard deviation) for the angle observable–in contrast to
the angular momentum observable. Better stability of the angle due to the
stronger interaction with the environment may be regarded analogous to the
”noise-enhanced stability (NSE)” effect [32-34] (and the references therein).
That is, the environmental fluctuations may enhance stability of the open
system’s dynamics [10, 32-34]. The presence of non-monotonic dependence
on γ and T in the NSE effect appears for the nonzero, nonquadratic potentials
[32-34] that are beyond the models considered in this paper.

Experience with the isolated quantum systems may seem to impose the
requirements of the rotational symmetry, A(ϕ) = A(ϕ + 2π), for relevant
quantities of the model, such as those in eq.(2). However, the absence of
the rotational symmetry for the total system’s Hamiltonian as well as of
the master equation (1) [21] reject the symmetry requirement–typical for the
open systems, whose symmetries are open issue in the foundations of the
theory. In any case, rotational symmetry is irrelevant for our considerations,
which are constrained (Section 2) by the requirements of the small individual
rotation and small initial ∆ϕ.

From Section 3 we expectably learn about the essentially classical-like
dynamics for the time intervals larger than (Nγ◦)

−1. Transition from the
exact quantum to the classical-like dynamics goes beyond the decoherence
process, which is described by the third term on the rhs of eq.(1) and is
known to be much faster than the processes on the time scale of (Nγ◦)

−1 [14,
35]. The ”pure decoherence” (also known as the ”recoilless”) limit of eq.(1)
[13, 14] assumes sufficiently large moment of inertia I = NI◦, for N ≫ 1,
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independently of the damping rate γ. In this limit, [irrespective of the above
remarks regarding large N ], the second (the dissipation) term on the rhs of
eq.(1) becomes negligible compared to the third (the decoherence) term. In
Appendix III, we provide the results regarding the ”pure decoherence” limit
of eq.(1) that both qualitatively as well as quantitatively departure from the
equations (3) and (5), which follow from the exact equation (1), even for the
small time intervals Nτ ≪ 1. Hence transitions to the classical-like dynamics
for eqs.(3) and (5), that are provided in Section 3 and Appendix I, cannot
be either reduced to or built solely on the decoherence process.

Therefore we find, that the spatial size and shape matter on the nano-scale
even for the simplest possible one-dimensional rotator. That is, transition to
the classical dynamics for the realistic finite-size, N ∼ 10, rotators (described
by the full eq.(1)) is qualitatively different from the case of (physically un-
achievable) N ≫ 1, which regards the pure decoherence limit of eq.(1), even
for the small time intervals (Nτ ≪ 1).

Ever since Hund [36] it is clear that quantum-mechanical nature of molecules
does not obviously support the phenomenological existence of a definite spa-
tial shape of the molecules; consequently, the moment of inertia, I, should
be a dynamical variable rather than a c-number appearing in eq.(1). In the
history of quantum theory and its applications, different proposals have been
used to resolve this riddle, see e.g. [35] (and the reference therein). Nowa-
days, it is a common position that the process of quantum decoherence is
responsible for the effective classical behavior of certain degrees of freedom
of open quantum systems [14, 35]. That is precisely the basis of our consid-
erations in which the moment of inertia is a time-independent real number,
not a dynamical degree of freedom or a variable of the (rigid) rotator system.
More precisely, we deal with the spatial shape and size of a molecule as with
a quasi-classical (environment-induced) characteristic [37], which provides a
basis of the treatment of the moment of inertia as a real, time-independent
classical parameter for a rigid rotator as appearing in eqs.(1) and (2) as well
as in the results presented in this paper. A microscopic model that would
describe the shape-inducing decoherence [35, 37] as well as decoherence de-
scribed by eq.(1) or regarded in Refs. [26, 27] might significantly improve
our understanding of the emergence of classical from the quantum level [35].

As distinct from the classical counterparts [6-9, 17], the molecular cog-
wheels suffer from the quantum mechanical corrections for short time inter-
vals; those corrections make the rotation even less stable (less predictable)
than in the classical case. While individually small (and monotonically de-
creasing in time), those corrections, for every number N of the blades, may
uncontrollably accumulate due to a series of repeated external actions, which
are not taken into account by equations (3) and (5). That is, unless some
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kind of ”error correction” is performed, the final value of a standard deviation
for one action becomes the initial value for the next one and hence accumu-
lation of the quantum-mechanical contributions is unavoidable. That is, a
series of classical actions (e.g. of 40 − 100 ”kicks” [38]) may uncontrollably
increase the quantum contributions and in principle give rise to the relatively
large final values of the standard deviations. Hence a departure from, i.e. a
limited use of, the standard semi-classical treatment [6-12, 39]–that is valid
on the time scales larger than (Nγ◦)

−1–where the quantum contributions are
effectively lost.

The results of Section 3 reveal the absence of the simple rules for utiliz-
ing the stability and the desired control of the molecular Brownian rotators.
That is, there is not such thing as conditions for ”the most stable rotation”.
Instead, ”relative stability” appears as a combination of a number of criteria
stemming from Section 3. We may say that this reminds us of the reasoning
typical for the engineering optimization methods [16]–already at the micro-
scopic scale. Below, we emphasize and briefly comment those criteria, all of
them stemming from Section 3.

(A) The choice of the observable to be acted on.
Comments. Application of the external electric field on the polar molecules
exerts an action on the rotator’s angle, while for the magnetic molecules,
application of the magnetic field exerts an action on the molecule’s angular-
momentum. The actions may be practically free choice only in the deep-
classical domain, which is defined in the point (C) below. The choice is
additionally laden by the point (B) below as well as by the observation that
the angle and the angular momentum exhibit the opposite dependence on
the size N of the rotator.

(B) The magnitude of change of the standard deviations.
Comments. The magnitudes of change of the standard deviations for ϕ and
Lz differ by several orders for the free rotator, and for about one order for the
harmonic rotator. Those magnitudes are larger for the angular momentum
than for the angle of rotation. Nevertheless, the quantitative details are
sensitive to the size of the rotator as well as of the criteria below described
in (C) and (D).

(C) The rate of the external operations and the time-scale of ”relaxation”
of rotation.
Comments. The ”relaxation” times in eqs.(3) and (5) are of the order of
(Nγ◦)

−1. For the time intervals much longer than (Nγ◦)
−1, the rotator

dynamics is practically indistinguishable from the classically predicted dy-
namics. However, for the time-intervals shorter than (Nγ◦)

−1, the rotator
dynamics is subject of the quantum-mechanical corrections, which, albeit in-
dividually negligible, may still be of interest in certain situations. For the
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damping rate γ◦ ≤ 108 (e.g. for the value 1.3 ·106Hz for the nonpolar solvent
as the environment for the internal rotation regarding the toluene molecule
[21]), the typical rates of operation of the order of 10−12s [40-43] deeply fall

in the quantum mechanical domain. That is, such operations are by 103 (i.e.
by 105) times faster than the relaxation rate (10γ◦)

−1. Then a series of the
external actions described above, in the time-window shorter than (10γ◦)

−1,
may lead to the non-negligible increase of the quantum contributions and
therefore to less predictable (less stable) rotation dynamics. The choice of
the faster/slower operations is a matter of both the desired functioning of the
molecular cogwheels as well as of the available techniques. Quantitatively,
the domain (quantum or classical) of the behavior depends on the regime as
emphasized in the point (E) below.

(D) The presence/absence of the external field(s).
Comments. Free rotator exhibits fast transition to the classical dynamics.
Rotator in the external harmonic field is subject of fast oscillations in the
quantum domain. Observability of these oscillations depends on both the
rate of the external actions as well as on the time-resolutions of the available
measurement techniques. E.g., if the measurement cannot resolve between
the adjacent maxima/minima, the results will generally provide the time-
averaged data, even in the quantum domain, which is more pronounced for
the non-underdamped regime.

(E) The underdamped/non-underdamped regime.
Comments. Generally, the two regimes are similar. Quantitatively though,
the non-underdamped regime emphasizes the longer-lasting quantum behav-
ior for the harmonic rotator. Thus we can expect non-trivial dependence on
the criteria (A)-(D) in conjunction with the presence/absence of the external
field.

Designing the proper scenarios for utilizing the relative stability of the
molecular nano-rotators is beyond the scope of the present paper. To this
end, the work is in progress as well as accounting for the non-quadratic
”internal” and time-dependent driving fields for the rotator system [6, 30-
34]. The results will be presented elsewhere.

5. Conclusion

Molecular cogwheels as the functional parts of the desired nano-machines
are with the definite geometrical shape and the finite spatial size. If mod-
elled as the one-dimensional, propeller-shaped rigid rotators, their dynami-
cal behavior exhibits dependence on the spatial size in regard of the role of
quantum decoherence, the possible accumulation of the quantum-mechanical
contributions as well as on devising the optimal scenarios for utilizing the
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relative stability of rotation.
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Appendix I. The classical expressions for the first and second

moments

Classical expressions for the equations (3) and (5) follow from these equa-
tions after substituting the classically allowed null initial values, σϕ(0) =
σL(0) = σ(0) = 0. The proof of this claim is as follows.

All expressions for the classical translational variables [2, 3] are equally
valid, mutatis mutandis, for the classical rotational variables [6]. Bearing
in mind that the classical Langevin equation is the classical limit of eq.(1)
[21], we simply exchange the translational by the rotational variables in the
expressions known for the classical translational variables; in our notation:
f = 2Iγ in eq.(9).

Eq.(10) in [2] gives the mean square displacement for the classical Brow-
nian particle:

〈(x(t)− x0)
2〉 =

2mkBT

f 2

(

f

m
t− 1 + e−ft/m

)

. (9)

where x0 ≡ x(0).
It is easy to express the standard deviation for the angle ϕ:

(∆ϕ(t))2 = 〈(ϕ(t)− 〈ϕ(t)〉)2〉 = 〈(ϕ(t)− ϕ0)
2〉 − (〈ϕ(t)〉 − ϕ0)

2. (10)

In our notation, eq.(22) of [2] reads:

〈ϕ(t)〉 − ϕ0 =
Lz(0)

2Iγ

(

1− e−2γt
)

. (11)

Now placing eq.(9) and eq.(11) into eq.(10) with the use of equipartition,
L2

z(0) = IkBT :

(∆ϕ(t))2 =
kBT

Iγ2
[γt− (1− e−2γt) +

1

4
(1− e−4γt)]. (12)

On the other hand, equations (12) and (14) from [2] in our notation read:

〈Lz(t)〉 = 〈Lz(0)〉e
−2γt, 〈L2

z(t)〉 = IkBT +
(

〈Lz(0)
2〉 − IkBT

)

e−4γt. (13)
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From eq.(13) easily follows:

(∆Lz(t))
2 = 〈L2

z(t)〉 − 〈Lz(t)〉
2 = IkBT (1− e−4γt). (14)

Equations (12) and (14) can be easily recognized in eq.(3), where the
quantum terms are those proportional to σϕ(0), σL(0) and σ(0).

Finally for the free rotator, we derive the covariance σϕL. From Section
II of Ref. [2]:

dϕ

dt
=

Lz

I
,

dLz

dt
= −βLz + IA(t), (15)

with the zero average for the stochastic force, I〈A(t)〉 = 0. Then

d

dt
(〈ϕLz〉 − 〈ϕ〉〈Lz〉) = 〈

dϕ

dt
Lz + ϕ

dLz

dt
〉 − 〈

dϕ

dt
〉〈Lz〉 − 〈

dLz

dt
〉〈ϕ〉 (16)

Substituting eq.(15) into eq.(16), we obtain the differential equation for
σϕL:

dσϕL

dt
=

(∆Lz)
2

I
− βσϕL, (17)

whose integration, for β = 2γ, gives the expression eq.(3) for σϕL (in eq.(3)
we use the dimensionless σ).

For the harmonic rotation, we directly take over the classical expressions,
equation (55) in [3]:

(∆ϕ(t))2 =
D

βω2

(

1−
e−βt

ω2

1

(ω2

1
+

β2

2
sin2 ω1t+ βω1 sinω1 cosω1t)

)

(∆Lz(t))
2 =

I2D

β

(

1−
e−βt

ω2

1

(ω2

1
−

β2

2
sin2 ω1t− βω1 sinω1 cosω1t)

)

σϕL =
D

ω2

1

e−βt sin2 ω1t, (18)

where ω1 =
√

ω2 − β2/4 and D = βkBT/I; in our notation, β = 2γ. Within
the approximation of the order O(γ/ω) that is used in eq.(5), all the sine and
cosine terms in eq.(18) disappear while ω1 ≈ ω. The remaining classical terms
are easy recognized in eq.(5), in which the quantum terms are proportional
to σϕ(0), σL(0) and σ(0).

Appendix II. Exact results for the harmonic rotator

19



Solutions of eq.(2) are presented by eq.(5) in the approximate form, as-
suming weak interaction (i.e. γ◦/ω ≪ 1). In this appendix we provide the
exact solutions of eq.(2) that underlie eq.(5) and are not explicitly given
in Ref.[25], where the method of calculation is presented in detail; we use
Ω2 = γ2 − ω2.

(∆ϕ(t))2 =
kBT

Iω2Ω2
(Ω2 + e−2γt(ω2 − γ2 cosh(2Ωt)− γΩ sinh(2Ωt))) +

(∆L2

z(0))
2

I2Ω2
e−2γt sinh2(Ωt) +

(∆ϕ(0))2

Ω2
e−2γt(−ω2 cosh2(Ωt) +

γ2 cosh(2Ωt) + γΩ sinh(2Ωt)) +
e−2γtσLϕ(0)

2IΩ2
(2γ sinh2(Ωt) +

Ω sinh(2Ωt)), (19)

(∆Lz(t))
2 =

IkBT

Ω2
(−ω2(1− e−2γt) + γ2(1− e−2γt cosh(2Ωt))−

γΩe−2γt sinh(2Ωt)) +
e−2γt(∆Lz(0))

2

Ω2
(−ω2 cosh2(Ωt) + γ2 cosh(2Ωt)−

γΩ sinh(2Ωt)) +
e−2γtI2ω4(∆ϕ(0))2

Ω2
sinh2(Ωt) +

e−2γtIω2σLϕ(0)

2Ω2
(2γ sinh2(Ωt)− Ω sinh(2Ωt)), (20)

σLϕ(t) = e−2γt(
4γkBT

Ω2
sinh2(Ωt) +

(∆Lz(0))
2

IΩ2
(−2γ sinh2(Ωt) + Ω sinh(2Ωt))−

Iω2

Ω2
(∆ϕ(0))2(2γ sinh2(Ωt) + Ω sinh(2Ωt))−

σLϕ(0)

Ω2
(ω2 cosh(2Ωt)− γ2)) (21)

Taking the approximation γ◦/ω ≪ 1 (when Ω2 ≈ −ω2 and Ω ≈ ıω) and,
for simplicity, 〈Lz(0)〉 = 0 = 〈ϕ(0)〉, eqs.(19)-(21) lead to eq.(5). Equations
(19)-(21) are used for Figures 5 and 6 in the main text.

Appendix III. The decoherence limit

The decoherence limit of eq.(1) follows for the sufficiently large moment
of inertia, I = NI◦, N ≫ 1. Then the second (the dissipation) term in eq.(1)
can be neglected compared to the third (the decoherence term); the ratio of
the third and the second term is proportional to N . Therefore, for simplicity,
we place γ = γ◦ and I = NI◦. Then instead of eq.(2), we obtain:
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d〈ϕ(t)〉

dt
=

1

I
〈Lz(t)〉,

d〈Lz(t)〉

dt
= −〈V ′(ϕ(t))〉,

d〈ϕ2(t)〉

dt
=

1

I
〈Lz(t)ϕ(t) + ϕ(t)Lz(t)〉,

d〈L2

z(t)〉

dt
= −〈Lz(t)V

′(ϕ(t)) + V ′(ϕ(t))Lz(t)〉+ 4IγkBT

d

dt
〈ϕLz + Lzϕ〉 =

2

I
〈L2

z〉 − 2〈ϕV ′(ϕ)〉. (22)

From eq.(22) it is straightforward to obtain:

σ2

ϕ = σ2

ϕ(0) +
σ(0)

N
τ +

σ2

L(0)

N2
τ 2 +

4kBT

3NI◦γ2
◦

τ 3,

σ2

L = σ2

L(0) +
4NkBT

I◦γ2
◦

τ, (23)

for the free rotator, and the exact expressions:

σ2

ϕ = σ2

ϕ(0) cos
2
ω

γ◦
τ +

σ2

L(0)

N2
sin2

ω

γ◦
τ +

σ(0)

2N
sin 2

ω

γ◦
τ

+
2kBT

NI◦ω2
τ −

γ◦kBT

NI◦ω3
sin 2

ω

γ◦
τ,

σ2

L = σ2

L(0) cos
2
ω

γ◦
τ +N2σ2

ϕ(0) sin
2
ω

γ◦
τ −

Nσ(0)

2
sin 2

ω

γ◦
τ (24)

+
2NkBT

I◦ω2
τ +

Nγ◦kBT

I◦ω3
sin 2

ω

γ◦
τ

for the harmonic rotator. In Section 3 it is assumed that γ◦/ω ∼ 10−3.
Expression for σ2

ϕ in eq.(23) is of the form of eq.(3.442) in Ref. [14],
which is obtained for the initial wave-packet with σ(0) = 0 for short time
intervals, i.e. for τ ≪ 1. The rest of eqs.(23) and (24) cannot be obtained
as approximations of the equations (3) and (5). Even for the short time
intervals allowing for the approximation e−Nτ ≈ 1−Nτ , the two descriptions
departure from each other. It is rather obvious that equations (23) and
(24) give different predictions than equations (3) and (5) for the finite τ as
well as in the asymptotic limit τ → ∞. Therefore we can conclude that
the exact dynamics eqs.(3) and (5) as well as the related transitions to the
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classical behavior–that are presented in Section 3 and in Appendix I–are
not determined by decoherence for the finite-dimensional (N ≤ 10) rotators,
even for the small time intervals Nτ ≪ 1.
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