Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 16 (2015), No 1, pp. 195-203 DOI: 10.18514/MMN.2015.1140

> ‘no&s K
UVERSTag MiskoLOIVENS:

Bounds for Laplacian-type graph energies

Tvan Gutman, Emina Milovanovic, and Igor
Milovanovié



Miskolc Mathematical Notes HU e-ISSN 1787-2413
. Vol. 16 (2015), No. 1, pp. 195-203

BOUNDS FOR LAPLACIAN-TYPE GRAPH ENERGIES

IVAN GUTMAN, EMINA MILOVANOVIC, AND IGOR MILOVANOVIC

Received 24 February, 2014

Abstract. Let G be an undirected simple and connected graph with n vertices (n > 3) and m
edges. Denote by u1 > o > -+ > Up—1> un =0, y1 2 y2 =+ = yp,and p;1 > p2 > -+ >
Pn—1 > pn = 0, respectively, the Laplacian, signless Laplacian, and normalized Laplacian ei-
genvalues of G. The Laplacian energy, signless Laplacian energy, and normalized Laplacian

energy of G are defined as LE = Y 1, ‘/L,‘ —2—”", SLE=Y%7, ’y,- —2m| and NLE =

n n

Z;-Ll |pi — 1], respectively. Lower bounds for LE, SLE, and NLE are obtained.
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1. INTRODUCTION

Let G be an undirected simple and connected graph with n vertices (n > 2) and m
edges, and let dy,d>,...,d, be its vertex degrees.

If the i-th and j-th vertex of the graph G are adjacent, we write i ~ j. Then the
adjacency matrix A = (a;;) of G is defined as

1 ifiA#j and i~ j
ajj =
0 otherwise.

The eigenvalues Ay > A, > --- > A, of A form the (ordinary) spectrum of G; for
details on the respective spectral theory see [9].

Denote by D the diagonal matrix of the vertex degrees of G. The Laplacian matrix
of G is L = D — A and its eigenvalues are (1 > (p > -+ > p—1 > Un = 0 (see
[3,16,25]). In addition, Q = D + A is the signless Laplacian matrix of G and its
eigenvalues will be denoted by y; >y >+ >y, > 0[10,11].

Because the graph G is assumed to be connected, it has no isolated vertices (i.e.,
di > 0 for all 1 <i < n) and therefore the matrix D~1/2 is well-defined. Then
L* =D Y/2LD~1/2 is called the normalized Laplacian matrix of the graph G. Its
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eigenvalues are p; > pp > -+ > pp—1 > pp = 0. For details of the spectral theory of
the normalized Laplacian matrix see [8].
It is convenient to write the normalized Laplacian matrix as I — R, where R is the

so-called Randi¢ matrix [4,29,30], whose (i, j)-entry is
1//d;d; ifi 2j and i~j
rij =
0 otherwise.

The (ordinary) energy of the graph G is defined as [23]
n
E=E@G)=) |l (1.1)
i=1

Its theory is nowadays well elaborated [23]. Energy—like spectral invariants have
been introduced also for other graph matrices [18]. In this paper we are concerned
with the Laplacian [21, 23], signless Laplacian [1], and normalized Laplacian (or

Randi¢) energies [5,20], defined as
n

2m

LE =LE(G =E P——
(G) e Mi n

" 2m

SLE =SLE(G) = - —
(G) E vim—

i=1

n
NLE =NLE(G) =Y |p;i 1|
i=1

respectively. In what follows lower bounds for LE, SLE and NLE are obtained.

Remark 1. In analogy to (1.1), the “Randi¢ energy” is defined as the sum of the
absolute values of the eigenvalues of the Randi¢ matrix. It has been shown in [20],
that the Randi¢ energy coincides with the normalized signless Laplacian energy.

Remark 2. One could also consider the normalized signless Laplacian matrix,
D~ 1/2QD~Y/2 and its “energy” (sum of absolute values of eigenvalues). However,
the energy of this matrix is exactly the same as the normalized Laplacian energy,
NLE [20]. For the general definition of the energy of a matrix see [28].

The Laplacian, signless Laplacian, and normalized (or Randi¢) Laplacian spreads
of a graph G are defined as LS(G) = u1 — n—1, SLS(G) = y1 — ¥n, and
NLS(G) = p1 — pn—1, respectively (see [5, 13, 15,24]).

2. PRELIMINARIES

In this section we recall some results from spectral graph theory, and state a few
analytical inequalities needed for our work.
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Lemma 1 ([3]). Let G be an undirected simple and connected graph withn ,n > 2,
vertices and m edges. Then

n—1 n n—1 n n
ZuiZZd,‘ZZm and Z/L?IZCZI-Z-FZdi:Ml-i-Zm
i=1 i=1 i=1 i=1 i=1
where M is the sum of squares of the vertex degrees, usually referred to as the first
Zagreb index (see [2,7,19]).

Lemma 2 ([12]). Let G be an undirected simple and connected graph withn , n >
2, vertices and m edges. Then
M M 4
_1 > 2 _1 > _m . (2'1)
m n n
Lemma 3 ([31]). Let G an (n,m)-graph, such thatn > 3 and m > 1. Then

2m
LE(G) = p1 — ptn—1+ P’y (2.2)

with equality if and only if n =3 or forn >4 if o = -+ = ty_p = 22

.
Lemma 4 ([26]). Let G be an undirected simple and connected graph withn , n >
3, vertices and m edges. Then

2
LS(G) = 1=t =\ === Jr= DM +2m) —dm? . 23)
Equality holds if and only if G = K, .

LemmaSs ([27]). Letay,as,...,a, be real numbers and p1, p2, ..., pn non-negative
real numbers with the property p1+ p2 +-+-+ pn = 1. Then, for each a, @ < 0 and

oa>1,
n n «
Y pial = (Zpiai) : (2.4)

i=1 i=1
For the case 0 < o < 1, the opposite inequality is valid. Equality in (2.4) holds if and
onlyifa =0ora=1oray=a;=--=a,.

Lemma 6 ([0]). Let ay,as,...,a, be real numbers, and assume that there are
r,R € R such that —oo <r <a; < R < 409, foreachi = 1,2,...,n. Then for any
non-negative pi, p2,..., Pn With the property p1 + pa2+---+ pn =1,

OSZpia?—(Zpiai) SE(R—V)ZPi ai—ZPiai

i=1 i=1 i=1 i=1

. (2.5)

1 .
The constant 5 is sharp.
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Lemma 7 ([32]). Let G be an undirected simple and connected graph withn , n >
2, vertices and m edges. Then

n—1 n
> pi=n and > pF=n+2R (2.6)

i=1 i=1

where R_; = ) ﬁ ; for details on the graph invariant R_; see [4,22].
iN . L%

Lemma 8 ([17]). Let G be an undirected simple and connected graph withn , n >
2, vertices and m edges. Then

n n n n n
Zyi=2di=2m and Zyl-2=2dl-2+2d,~=M1+2m
i=1 i=1 i=1 i=1 i=1

where M is the first Zagreb index.
Lemma 9 ([17]). The signless Laplacian spread has an upper bound

ey [

Lemma 10 ([14]). Suppose that G is a graph without isolated vertices. Then

2
1=t = = D@+ My) = dm?. )

3. MAIN RESULTS
3.1. Lower bound for Laplacian energy

Theorem 1. Let G be an undirected connected graph with n, n > 3, vertices and
m edges. Then

LE(G) > —+—\/(n—1)(2m+M1) 4m? . 3.1
Proof. Inequality (3.1) directly follows from inequalities (2.2) and (2.7). ]

Corollary 1. Let G be an undirected graph with n, n > 3, vertices and m edges.
Then

LEG) > 2—m+ 31 \/2m(”(”_l)_2m) .

Corollary 2. Let G be an undirected simple and connected k-regular graph with
n, n >3, vertices and m edges, 1| <k <n—1. Then

LE(G) >k + L\/nk(n k—1).

n
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Theorem 2. Let G be an undirected simple and connected graph with n,n > 3
vertices and m edges. Then

LE@G) =z \/-= \/(n —1)(M, +2m) —4m? . 3.2)

Proof. For n —1 and p; := = 1, ai =ui, i =12,...n—1, r := up—1 and
R := p1, the inequality (2.5) transforms into

1 n—1 2 m " n—1
1— Mn—1

_ . < - " -

o () <

i.e., based on Lemma 1,

i=1

n—1

2m
(n—1)(My +2m) —4m?> <—(M1—Mn 1)2} n—l"
iz

Since

n—1 n

2m 2m

22| -2

i=1 i=1
using inequality (2.3), from the above inequality we obtain (3.2). g

Using Lemma 2, we arrive at the following (n,m)-type lower bound for the Lapla-
cian energy:

Corollary 3. Let G be an undirected simple and connected graph with n,n > 3,
vertices and m edges. Then

LEG) = \/4m(n(n —h—2m) a3

nn—1)

Corollary 4. Let G be an undirected simple and connected k-regular graph with
n,n >3, vertices and m edges, 1 <k <n—1. Then

LE(G) > /M.
n—1

Remark 3. Since for undirected k-regular graphs, L E = E, the inequality in Co-
rollary 4 provides a lower bound also for the ordinary energy.

Inequalities (3.1) and (3.2) are incomparable. Thus, for example, if G =~ K, then
inequality (3.1) is stronger than (3.2), butif G = K1 ,—1, n > &, then the opposite is
valid.
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3.2. Lower bound for signless Laplacian energy

Theorem 3. Let G be an undirected simple and connected graph with n,n > 3,
vertices and m edges. Then

2(n(My +2m) —4m?
SLE(G) > \/ (n(M1+2m) —dm) (3.4)
n
Proof. For p; := %, ai=vyi,i =12,...,n,r =y, and R = y1, the inequality
(2.5) becomes
2
1, 1 (& Y1—Vn 2m
FE s (B) <rRE B
i=1 i=1 i=1
Bearing in mind Lemma 8, the above inequality becomes
n(My +2m) —4m? < %SLS(G) x SLE(G) .
By Lemma 9 and the above inequality, we obtain (3.4). ([l

Bearing in mind Lemma 2 and inequality (3.4), we arrive at a lower bound for
SL E(G) depending only on the parameter m.

Corollary 5. Let G be an undirected simple and connected graph withn,n > 3,
vertices and m edges. Then

SLE(G) >2y/m .

Corollary 6. Let G be an undirected simple and connected graph withn,n > 3,
vertices and m edges, which is k-regular, 1 <k <n. Then

SLE(G) > ~2nk .
3.3. Lower bound for normalized Laplacian energy

Theorem 4. Let G be an undirected simple and connected graph with n,n > 3,

vertices and m edges. Let, as before, R_1 = ) ﬁ Then
~—. a;q;
1~]

NLS(G) < ,/% V2(m—1)R_; —n.. (3.5)

Equality holds if and only if G =~ K, .
Proof. According to (2.6) we have that

n—1 n—1
(=D +2R-1)=n*=@-1)) o}~ (Zm)

i=1 i=1

2

= ). (i=p)’. (3.6)

1<i<j<n-—1
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By Lemma 5, i.e., by inequality (2.4), forn =2 and o = 2, we get

1
(p1—pi)* + (pi —pn—1)> = 5 (1 — pn—1)* (3.7)
foreachi =2,3,...,n—2. Then,
n—2
> pi—p)? = Y [er =)+ (pi = pn—1)*]+ (1 — pu—1)’
1<i<j<n—1 i=2
n—3
> — (P1— Pn—1)*+ (01 — pn—1)*
n—1
== (p1—pn—1)*

which combined with (3.6) yields
n—1
(n—1)(n+2R_1)—n*=2(n—1)R_1—n> 5 (p1—pn—1)?

from which the inequality (3.5) follows.
Equality in (3.7) holds if and only if p; = p» = -+ = pp—1 . Therefore, equality in
(3.5) holds if and only if G = K, . This completes the proof of Theorem 4. U

Corollary 7. Let G be an undirected simple nad connected k-regular graph, 1 <
k <n—1, withn,n >3, vertices and m edges. Then

2n(n—k—1)
(n—Dk
Equality holds if and only ifk =n—1,ie, G = K.

We now state a theorem, analogous to Theorem 2, which provides a lower bound
for NLE in terms of parameters n and R_; .

NLS(G) <

Theorem 5. Let G be an undirected simple and connected graph with n,n > 3,
vertices and m edges. Then

NLE(G) > ,/n%] V2(m—1)R_;—n. (3.8)

Proof. Forn :=n—1, p; :== ﬁ, ai =pi,i=12,....n—1,r = py—1 and
R = py, inequality (2.5) becomes

2
1

n—1 1 n—1 p1—p 1n—l
2 _ . <l
n—ll,;p’ (n—1)2 (Zp’) = 2m—1) 2

i=1 i=1

Pi —

1 n—1
n—1 Zpi '

i=1

Having in mind Lemma 7, the above inequality transforms into

n
pi——| - (3.9
n—1

n—1 n—1
(n—1)(n+2R_1)—n?% < —— NLS(G) Zl
1=
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Since
n—1

n
n
Z pi—n_1\§Z|pi—1|
1= i=1
according to (3.9) we obtain

-1
(n—1)(n —|—2R_1)—n2 < nTNLS(G)NLE(G) . (3.10)
Combining (3.5) and (3.10) we arrive at (3.8). ]

Remark 4. For a k-regular graph, R_1 = m/k? = n/(2k). Since for k-regular
graphs, NLE = % E = %LE , inequality (3.8) is equivalent to the result proven in
Corollary 4.
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