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Abstract: This study investigates the robust fault detection filter design problem for a class of discrete-time conic-type non-
linear Markov jump systems with jump fault signals. The conic-type non-linearities satisfy a restrictive condition that lies in an n-
dimensional hyper-sphere with an uncertain centre. A crucial idea is to formulate the robust fault detection filter design problem
of non-linear Markov jump systems as H∞ filtering problem. The authors aim to design a fault detection filter such that the
augmented Markov jump systems with conic-type non-linearities are stochastically stable and satisfy the given H∞ performance
against the external disturbances. By means of the appropriate mode-dependent Lyapunov functional method, sufficient
conditions for the existence of the designed fault detection filter are presented in terms of linear matrix inequalities. Finally, a
practical circuit model example is employed to demonstrate the availability of the main results.

 Nomenclature
(Y)* Y + YT

I unit matrix
0 zero matrix
A−1 matrix inverse
AT matrix transpose
* symmetric matrix
ℰ{A} expectation of A
ℜn × p n × p real matrix
‖ ⋆ ‖ Euclidean vector norm
ℜn n-dimensional Euclidean space
diag{A B} block-diagonal matrix of A and B
P > ( < , ≥ , positive (negative, semi-positive, semi-negative)
≤ )0 -definite matrix

1 Introduction
Markov jump systems (MJSs) were firstly proposed by Krasovskii
and Lidskii [1] in 1960s. As a special kind of hybrid systems, MJSs
consist of a finite number of subsystems converted by a Markov
chain. In fact, MJSs can be used to describe some dynamic systems
in which the structures are subjected to randomly sudden variables
due to abrupt external disturbance, shifts of the action spots of non-
linear systems and repairs of components. During the past several
decades, MJSs have received considerable attention and many
results are available such as stability analysis [2, 3], sliding mode
control [4], robust filtering [5] etc.

In fact, some environmental factors (such as modelling errors,
external disturbances and uncertainties) usually bring many
problems to the dynamic system (poor behaviour and unstable
performance) in controlling. Therefore, the non-linearities always
should be considered when we model an actual engineering
system. As a kind of complex non-linearities, conic-type non-linear
dynamic has attracted increasing attention in theoretical analysis
and practical application. Aiming at a class of time-delay conic
non-linear systems, Song and co-authors [6] presented the finite-
time bounded controller design by using the sliding mode control
strategy. Moreover, the conic-type non-linear MJSs have become a
hot spot recently. In [7], Cheng and He investigated the observer-

based finite-time asynchronous control problem for a class of
hidden MJSs with conic-type non-linearities. The challenge is how
to deal with the conic-type non-linearities, which prompts us to
study this topic. For more details about this topic, please see [8–10]
and the references therein.

On another research forefront, the research on fault detection
(FD) for dynamic systems has attracted increasing attention during
the past three decades owing to the rising demand of product
quality [11], effectiveness [12] and safety [13] in modern
industries. Many results related to FD have been shown in the
literature, see for example [14–19] and the references therein.
Among these methods, the model-based method is the most
common scheme, that is the state observers or filters are usually
constructed as a residual generator. By comparing the value of
residual evaluation function with the prescribed threshold, one
could make a judgment whether a fault occurs or not. With the
development of these theories and techniques for various FD
system designs, one of the commonly adopted ways is to introduce
an H∞ performance index and to formulate an H∞ filtering [20] to
solve the issue of robustness.

In the past few decades, there exist extensive researches on FD
related to MJSs and their applications in a wide range of industrial
processes [21–26]. For a class of non-linear MJSs, Dong et al. [22]
solved the problem of dissipativity-based asynchronous FD for
Takagi–Sugeno (T–S) fuzzy MJSs with network data dropouts. In
[24], the finite-frequency FD filter (FDF) design problem based on
derandomisation for MJSs is proposed. In [26], the research was
concerned with the problem of partially mode-dependent l2 − l∞
filtering for discrete-time non-homogeneous MJSs with repeated
scalar non-linearities. However, to the best of our knowledge, the
problem of H∞ descriptor FDF design for conic-type non-linear
MJSs with jump fault signals has not yet been fully investigated in
the open literature and the research remains significant and
challenging, which further motivates the present work.

Inspired by above research motivations, this paper focuses on
the FDF design problem for a class of discrete-time conic-type
non-linear MJSs with jump fault signals. Firstly, to linearise the
non-linear model. In [27], a T–S fuzzy model is adopted to
reconstruct the non-linear systems. Different from the general non-
linearities, the conic-type non-linearities satisfy a restrictive
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condition that lies in an n-dimensional hyper-sphere with an
uncertain centre. In order to deal with the predefined conic-type
non-linear term, we introduce additional inequality. Based on the
relevant matrix inequality transformations, the conic-type non-
linear term can be expressed as a linear representation. Secondly,
FDF working as the residual generator will be proposed, and
further, its design will be cast into a stochastic H∞ filtering
problem. Fourthly, the proposed FDF gains are obtained by solving
a set of linear matrix inequalities (LMIs). Finally, to demonstrate
the feasibility and effectiveness of the proposed method, a
simulation example is included.

Throughout this paper, all matrices are assumed to have
compatible dimensions and all notations are quite standard. The
implication of the symbols are given in the Nomenclature section.

2 System description and preliminaries
Consider the following discrete-time conic-type non-linear MJSs
with jump fault signals:

xk + 1 = f (xk, dk, f̄ k) + B(θk)uk
yk = C(θk)xk + D(θk)dk + H(θk) f̄ k
xk = x0, θk = θ0, k = 0,

(1)

where xk ∈ ℜn is the state, dk ∈ ℜr is the external disturbance,
uk ∈ ℜp is the controlled input and yk ∈ ℜq is the measurement
output. uk and dk belong to L2[0, ∞). x0 and θ0 are, respectively, the
initial state and mode. B(θk), C(θk), D(θk) and H(θk) are the known
real matrices with proper dimensions. The stochastic variable θk
stands for a discrete Markov chain which takes value in the finite
set U = {1, 2, 3, …, U} with transition probability matrix
Π = {πi j} ∈ ℜU × U given by

Pr θk + 1 = j θk = i = πi j (2)

where 0 ≤ πi j ≤ 1, ∀i, j ∈ U and ∑ j = 1
U πi j = 1, ∀i ∈ U.

f k
¯  is a random jump fault signal described by

f̄ k = αk f k (3)

where αk is a random jump signal which composes of two values,
i.e. 0 and 1, and f k is a deterministic fault signal.

 
Remark 1: By investigating the existing references about FD as

many as possible, it is found that the fault signal f k is
deterministic. In fact, its fault is always added in a system. When
the underlying system is not deterministic but with jump processes,
the problem of FD [28] for the jump fault signal f̄ k was considered.

 
Remark 2: f k is a fixed fault signal in a specific interval.

Combining with the deterministic fault signal f k and the jump
value αk, a jump fault signal is designed in (3). Particularly, f̄ k
exists in system (1) when αk = 1. On the contrary, there is no fault
in system (1) with αk = 0. Equation (3) represents that f̄ k is a jump
fault signal in a specific interval. In order to describe such random
jump fault signal, a discrete Markov chain with two modes is
considered in this paper. Then, the transition probability matrix is
assumed to be

Π = π11 π12

π21 π22
= 1 − X X

Y 1 − Y (4)

where X and Y are independent conditional probabilities which
satisfy X = Pr {θk + 1 = 2 θk = 1} and Y = Pr {θk + 1 = 1 θk = 2}.
The allowed range for these two parameters are [0, 1].

f (xk, dk, f̄ k) is an unknown non-linear function with the
following conic-type sector description:

∥ f xk, dk, f̄ k − A(θk)xk + E(θk)dk + F(θk) f̄ k ∥
≤ ∥ Gxk + Gddk + L f̄ k ∥

(5)

where A(θk), E(θk), F(θk), G, Gd and L are the known matrices with
appropriate dimensions.

Letting ξk = ∥ f (xk, dk, f̄ k) − (A(θk)xk + E(θk)dk + F(θk) f̄ k) ∥,
we have

ξk
Tξk ≤ (Gxk + Gddk + L f̄ k)T(Gxk + Gddk + L f̄ k) (6)

 
Remark 3: In general, many non-linearities fall within the scope

of the conic-type function f (xk, dk, f̄ k) in (1). Without dk, f̄ k, the
centre of hyper-sphere is set as the origin of n-dimensional space.
Then the inequality in (5) will reduce to ∥ f (xk) ∥ ≤ ∥ G(θk)xk ∥.
In this case, the non-linear function f (xk) satisfies the global
Lipschitz conditions.

Then, the discrete-time conic-type non-linear MJSs (1) can be
rewritten as:

xk + 1 = A(θk)xk + B(θk)uk + E(θk)dk + F(θk) f̄ k + ξk

yk = C(θk)xk + D(θk)dk + H(θk) f̄ k

xk = x0, θk = θ0, k = 0.
(7)

In order to detect the fault for system (1), we propose the
following FDF:

x f (k + 1) = A f (θk)x f k + B f (θk)yk

r f k = C f (θk)x f k
(8)

where x f k ∈ ℜn is the filter state and r f k ∈ ℜf is the filter output.
A f (θk), B f (θk) and C f (θk) are the filter parameters to be determined.
According to the references in [29, 30], we introduce the residual
error rk = yk − r f k to enhance the sensitivity of faults. Therefore,
we can get the following augmented system:

x~k + 1 = A
~(θk)x~k + B

~(θk)ωk + ξk
¯

rk = C
~(θk)x~k + D

~(θk)ωk
(9)

where x~k =col xk x f k , ωk =col uk dk f̄ k

A
~

θk =
A(θk) 0

B f (θk)C(θk) A f (θk)
,

B
~

θk =
B(θk) E(θk) F θk

0 B f (θk)D(θk) B f (θk)H θk
,

C
~

θk = C(θk) −C f (θk) ,

D
~

θk = 0 D(θk) H(θk) ,

ξ̄k =
ξk

0
.

Considering inequality (6), we have

ξ̄k
Tξ̄k = ξk

Tξk ≤ (Ḡx~k + L̄ωk)T(Ḡx~k + L̄ωk) (10)

where Ḡ = G 0 , L̄ = 0 Gd L .
For convenience, we denote the matrices associated with

θk = i ∈ U as:
A(θk) = Ai, B(θk) = Bi, C(θk) = Ci, D(θk) = Di, E(θk) = Ei,

F(θk) = Fi, H(θk) = Hi, A f (θk) = A f i, B f (θk) = B f i, C f (θk) = C f i,
A
~(θk) = A

~
i, B

~(θk) = B
~

i, C
~(θk) = C

~
i, D

~(θk) = D
~

i, P(θk) = Pi,
P(θk + 1) = P̄i.
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The next step for FD is to determine the residual evaluation
function and the detection threshold. In this paper, we select the
residual evaluation function JL(r) and the threshold Jth as:

JL r = ∑
k = k0

k = k0 + L

rk
Trk (11)

Jth = sup
dk ∈ L2, uk ∈ L2, f k = 0

ℰ JL r (12)

where k0 is the initial evaluation time instant. L denotes the
evaluation time step. Then, the random fault f̄ k can be detected by
comparing JL(r) and Jth according to the following test:

JL(r) > Jth → alarm of fault (13)

JL(r) ≤ Jth → no fault (14)

To proceed with the study, we give the following lemmas and
definitions which can be seen in [31, 32, 33].

 
Lemma 1: For given appropriate dimension matrices A and B,

there exist a positive-definite matrix P such that the following
matrix inequality is satisfied:

ATB + BTA ≤ ATPA + BTP−1B (15)
 
Definition 1: The augmented system (9) is stochastically stable

if for ωk = 0, k > 0, we have

ℰ ∑
k = 0

∞
∥ x~k ∥2 x~0, θ0 < ∞ (16)

where x~0 ∈ ℜn, θ0 ∈ S.
 
Definition 2: Given a positive scalar γ, the augmented system

(9) is stochastically stable and satisfies the given H∞ performance
index if it is stochastically stable and the following condition under
zero initial condition holds for all non-zero ωk ∈ L2[0, ∞):

ℰ ∑
k = 0

∞
∥ rk ∥2 x~0, θ0 − γ2ℰ ∑

k = 0

∞
∥ ωk ∥2 < 0 (17)

3 Main results
In this section, the stability analysis and the H∞ performance index
against external disturbance are given.
 

Theorem 1: Given positive scalars γ, a and b with a − b < 0, the
augmented system (9) is stochastically stable and satisfies the
given H∞ performance index, if there exist a positive-definite
matrix Pi such that

−Pi 0 3A
~

i
T 0 C

~
i
T bḠT

* −γ2I 0 3B
~

i
T D

~
i
T bL̄T

* * −3P̄i
−1 0 0 0

* * * −3P̄i
−1 0 0

* * * * −I 0

* * * * * − b
2 I

< 0 (18)

−Pi 2Āi
T 2ḠT

* −2P̄i
−1 0

* * −2P̄i
−1

< 0 (19)

−P̄i P̄i

* − a
3 I

< 0 (20)

where P̄i = ∑ j ∈ U πi jP j.
 
Proof: First, we prove the stochastic stability of the augmented

system (9) with ωk = 0. Selecting a stochastic Lyapunov functional
as

V x~k, θk = x~k
TP θk x~k (21)

For every θk = i, i ∈ S, we obtain the difference of (21) as

ΔV(x~k, θk) = ℰ{V(x~k + 1, θk + 1)} − V(x~k, θk)
= x~k + 1

T P̄ix~k + 1 − x~k
TPix~k

= A
~

ix~k + ξ̄k
TP̄i A

~
ix~k + ξ̄k

−x~k
TPix~k

= x~k
TA

~T
iP̄iA

~
ix~k + x~k

TA
~T

iP̄iξ̄k

+ξ̄k
TP̄iA

~
ix~k + ξ̄k

TP̄iξ̄k

−x~k
TPix~k < 0

(22)

Considering Lemma 1, we have

x~k
TA

~
i
TP̄iξ̄k + ξ̄k

TP̄iA
~

ix~k ≤ x~k
TA

~
i
TP̄iA

~
ix~k + ξ̄k

TP̄iξ̄k (23)

Then, we can get

ΔV x~k, θk ≤ 2x~k
TA

~
i
TP̄iA

~
ix~k + 2ξ̄k

TP̄iξ̄k − x~k
TPix~k

= x~k
T 2A

~
i
TP̄iA

~
i + 2ḠTP̄iḠ − Pi x~k

< 0

(24)

That is

2A
~

i
TP̄iA

~
i + 2ḠTP̄iḠ − Pi < 0 (25)

which is implied by condition (19). Based on condition (22), we
have

ℰ V x~k + 1, θk + 1 xk, θk ≤ V x~k, θk − ϑ∥ x~k ∥2 (26)

where ϑ = mini ∈ S λmin −℘i  and
℘i = 2A

~
i
TP̄iA

~
i + 2ḠTP̄iḠ − Pi. Taking the expectation on both

sides of (26) and continuing the iterative procedure as k → ∞, we
can get

ℰ V x~∞, θ∞ x0, θ0

≤ V x~0, θ0 − ϑ ∑
k = 0

∞
ℰ ∥ x~k ∥2 x0, θ0

(27)

which implies

ℰ ∑
k = 0

∞
∥ x~k ∥2 x0, θ0 ≤ ∑

k = 0

∞
ℰ ∥ x~k ∥2 x0, θ0

≤ 1
ϑV x0, θ0 < ∞

(28)

Thus, the augmented system (9) is stochastically stable.
Then, we introduce the following auxiliary function to prove

the augment system (9) with an H∞ performance index:
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J = ℰ ∑
k = 0

T − 1
{rk

Trk − γ2ωk
Tωk} < 0 (29)

where T is an arbitrary positive integer. For any non-zero
ωk ∈ L2[0, ∞) and under zero initial condition x~0 = 0, we have

J = ℰ ∑
k = 0

T − 1
{rk

Trk − γ2ωk
Tωk + ΔV x~k } − V T

≤ ∑
k = 0

T − 1
ℰ rk

Trk − γ2ωk
Tωk + ΔV x~k

(30)

Then, we obtain

ΔV(x~k, θk)
= ℰ{V(x~k + 1, θk + 1)} − V(x~k, θk)
= x~k + 1

T P̄ix~k + 1 − x~k
TPix~k

= x~k
TA

~T
i + ωk

TB
~T

i + ξ̄k
T P̄i A

~
ix~k + B

~
iωk + ξ̄k

−x~k
TPix~k

= x~k
TA

~T
iP̄iA

~
ix~k + x~k

TA
~T

iP̄iB
~

iωk + x~k
TA

~T
iP̄iξ̄k

+ωk
TB

~TP̄iA
~

ix~k + ωk
TB

~TP̄iB
~

iωk + ωk
TB

~
i
TP̄iξ̄k

+ξ̄k
TP̄iA

~
ix~k + ξ̄k

TP̄iB
~

iωk + ξ̄k
TP̄iξ̄k − x~k

TPix~k

(31)

Recalling to Lemma 1, it yields:

x~k
TA

~T
iP̄iB

~
iωk + ωk

TB
~

i
TP̄iA

~
ix~k

≤ x~k
TA

~T
iP̄iA

~
ix~k + ωk

TB
~TP̄iB

~
iωk

(32)

x~k
TA

~T
iP̄iξ̄k + ξ̄k

TP̄iA
~

ix~k ≤ x~k
TA

~T
iP̄iA

~
ix~k + ξ̄k

TP̄iξ̄k (33)

ωk
TB

~
i
TP̄iξ̄k + ξ̄k

TP̄iB
~

iωk ≤ ωk
TB

~
i
TP̄iB

~
iωk + ξ̄k

TP̄iξ̄k (34)

Then it derives

J ≤ ∑
k = 0

T − 1
x~k

T C
~

i
TC

~
i + 3A

~
i
TPi

¯ A
~

i − Pi x~k

+ωk
T D

~
i
TD

~
i + 3B

~
i
TPi

¯ B
~

i − γ2I ωk

+x~k
TC

~
i
TD

~
iωk + ωk

TD
~

i
TC

~
ix~k + 3ξ̄i

TPi
¯ ξ̄i .

(35)

Using the Schur complement, inequality (35) can be rewritten as

J ≤ J̄ =
ℵ − 3ξ̄k

TPi
¯

* − 3Pi
¯ (36)

where

ℵ = 3x~k
TA

~
i
TP̄iA

~
ix~k + x~k

TC
~

i
TC

~
ix~k − x~k

TPix~k

+ωk
TD

~
i
TD

~
iωk + 3ωk

TB
~

i
TP̄iB

~
iωk − γ2ωk

Tωk

+x~k
TC

~
i
TD

~
iωk + ωk

TD
~

i
TC

~
ix~k

.
For positive constants a and b with a − b < 0, the following

formula is established:

−2bξ̄k
Tξ̄k + aξ̄k

Tξ̄k < 0 (37)

Applying the Schur complement, we can get

−2bξ̄k
Tξ̄k 0

* −9a−1Pi
¯ 2

< 0 3ξ̄k
TPi

¯

* 0
(38)

Recalling the inequality (36), we have J̄ < 0, that is

ℵ 0
* −3Pi

¯ < 0 3ξ̄k
TPi

¯

* 0
(39)

which is guaranteed by

ℵ 0
* −3Pi

¯ <
−2bξ̄k

Tξ̄k 0
* −9a−1Pi

¯ 2 (40)

Then we have

J <
∑

1
0

* ∑
2

(41)

It derives from J < 0 that

∑1
= ℵ + 2bξ̄k

Tξ̄k < 0 (42)

∑2
= − 3P̄i + 9a−1P̄i

2 < 0 (43)

Applying the Schur complement, we can obtain inequality (20)
from inequality (43). According to inequality (42), we have

ℏk
Tϖℏk < 0 (44)

where ℏk = col x~k ωk

ϖ = −Pi + 3A
~

i
TPi

¯ A
~

i + C
~

i
TC

~
i + 2bḠTḠ

*
C
~

i
TD

~
i + 2bḠTL̄

−γ2I + 3B
~

i
TP̄iB

~
i + D

~
i
TD

~
i + 2bL̄TL̄

Then we have

−Pi 0
0 −γ2I

− 3A
~

i
T

0
( − 3P̄i

−1)−1 3A
~

i
T

0

T

−
0

3B
~

i
T ( − 3P̄i

−1)−1
0

3B
~

i
T

T

−
C
~

i
T

D
~

i
T ( − I)

C
~

i
T

D
~

i
T

T

− bḠT

bL̄T ( − b
2 I)−1 bḠT

bL̄T < 0

(45)

which is equivalent to condition (18) by utilising the Schur
complement. Letting T → ∞, we know that condition (29) is still
satisfied. This completes the proof. □
 

Remark 4: In the proof, the Schur complement and the relevant
matrix inequality transformations are employed to solve the conic-
type linearisation problem in inequality (35). Based on inequality
(37), J < 0 can be guaranteed by inequality (40). Combing with
inequalities (10) and (42), the conic-type non-linear term ξk can be
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expressed as a linear representation. In addition, the stochastic
stability of the augmented system (9) and the H∞ attenuation
performance from rk to ωk are derived by the LMI method.
 

Theorem 2: Given a positive scalar γ, the augmented system (9)
is stochastically stable and satisfies the given H∞ performance
index if there exist positive-definite symmetric matrices Pi1, Pi2,
Pi3, Xi1, Xi2, Y, matrices Ā f i, B̄ f i and C̄ f i such that the following
LMIs hold:

−Pi 0 3φi 0 Πi bḠT

* −γ2I 0 3φ̄i Π̄i bL̄T

* * −3Γi 0 0 0
* * * −3Γi 0 0
* * * * −I 0

* * * * * − b
2 I

< 0 (46)

−πi1P11 − πi2P21 −πi1P12 − πi2P22

* −πi1P13 − πi2P23

* *
* *

πi1P11 + πi2P21 πi1P12 + πi2P22

πi1P12
T + πi2P22

T πi1P13 + πi2P23

− a
3 I 0

* − a
3 I

< 0 (47)

where

Pi =
Pi1 Pi2

* Pi3
, φi =

φi1 φi2

Ā f i
T Ā f i

T ,

φ̄i =
BTXi1

T BTXi2
T

φ̄i1 φ̄i2

φ̄i3 φ̄i4

, Πi =
Ci

T

−C̄ f i
T ,

Π̄i =
0

Di
T

Hi
T

, Γi =
Γi1 Γi2
* Γi3

,

φi1 = Ai
TXi1

T + Ci
TB̄ f i

T , φi2 = Ai
TXi2

T + Ci
TB̄ f i

T ,

φ̄i1 = Ei
TXi1

T + Di
TB̄ f i

T , φ̄i2 = Ei
TXi2

T + Di
TB̄ f i

T ,

φ̄i3 = Fi
TXi1

T + Hi
TB̄ f i

T , φ̄i4 = Fi
TXi2

T + Hi
TB̄ f i

T ,

Γi1 = Xi1 * − ∑
j ∈ S

πi jP j1,

Γi2 = Yi + Xi2
T − ∑

j ∈ S
πi jP j2,

Γi3 = Yi * − ∑
j ∈ S

πi jP j3 .

Moreover, the FDF parameters are given by

A f i = Y−1Ā f i, B f i = Y−1B̄ f i, C f i = C̄ f i . (48)

 

Proof: On the basic of Theorem 1, pre- and post-multiplying
inequality (18) with matrix

I 0 0 0 0 0
* I 0 0 0 0
* * Ψi 0 0 0
* * * Ψi 0 0
* * * * I 0
* * * * * I

(49)

and its its transpose, respectively, we get

−Pi 0 3A
~

i
TΨi

T

* −γ2I 0
* * −3ΨiP̄i

−1Ψi
T

* * *
* * *
* * *
0 C

~
i
T bḠT

3B
~

i
TΨi

T D
~

i
T bL̄T

0 0 0
−3ΨiP̄i

−1Ψi
T 0 0

* −I 0

* * − b
2 I

< 0

(50)

where Ψi is non-singular.
Noting (P̄i − Ψi)P̄i

−1(P̄i − Ψi)T ≥ 0, we have

−ΨiP̄i
−1ΨiΨi

T ≤ − Ψi − Ψi
T + P̄i = − (Ψi)* + P̄i (51)

Since inequality (51) holds, inequality (50) is guaranteed by

−Pi 0 3A
~

i
TΨi

T

* −γ2I 0
* * −3(Ψi)* + 3P̄i

* * *
* * *
* * *

0 C
~

i
T bḠT

3B
~

i
TΨi

T D
~

i
T bL̄T

0 0 0
−3(Ψi)* + 3P̄i 0 0

* −I 0

* * − b
2 I

< 0

(52)

where Ψi and Pi are assumed to have the following forms:

Ψi =
Xi1 Y
Xi2 Y

, Pi =
Pi1 Pi2

* Pi3
. (53)

Substituting (53) into (52) and defining
Ā f i = Y A f i, B̄ f i = YB f i, C̄ f i = C f i, we can get LMI (46) with
relation (48). It is concluded that Ψi is non-singular according to
LMI (46). Combining equality (4) with condition (20), we obtain
LMI (47). This completes the proof. □
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Remark 5: The main results indicate that the stochastic stability
of the corresponding augmented system (9) with a desired H∞
disturbance attenuation level. In the derivation of LMI (46), some
complex mathematical transformations are employed to simplify
condition (18). At last, the FDF parameters are obtained by using
the Matlab LMI tool.

4 Simulation experiments
Consider an R − L − C circuit model with two switches S1 and S2
from [34], as depicted in Fig. 1. The switch s(t) follows a Markov
chain and switches at most once in each period T. L is the
inductance, C is the capacitance, R is the load resistance, u(t) is the
source voltage, Vc(t) represents the capacitor voltage and iL(t)
represents the current through the inductance. Then, we can
construct the following R − L − C circuit switching model:

dVc(t)
dt = − m(θ(t))[ 1

R2
Vc(t) + iL(t)]

diL(t)
dt = − n(θ(t))[ − Vc(t) − R1iL(t) + u(t)]

(54)

where

m(θ(t)) =

1
C1

if θ(t) = 1

1
C2

if θ(t) = 2

n(θ(t)) =

1
L1

if θ(t) = 1

1
L2

if θ(t) = 2

We can rewrite model (54) as

ẋ(t) = − m(θ(t))
R2

m(θ(t))

−n(θ(t)) −n(θ(t))R1

x(t) + 0
n(θ(t)) u(t) (55)

where x(t) =col[Vc(t) iL(t)]

A1 =
− 1

C1R2

1
C1

− 1
L1

− R1

L1

, A2 =
− 1

C2R2

1
C2

− 1
L2

− R1

L2

,

ℬ1 =
0
1
L1

, ℬ2 =
0
1
L2

.

Letting C1 = 1.6 × 103 μF, C2 = 1.0 × 103 μF, L1 = 0.1 H,
L2 = 0.1 H, R1 = 100 Ω, R2 = 1 × 103 Ω, we get

A1 = −0.625 625
−10 −1000 , A2 = −1 1000

−10 −1000 ,

ℬ1 = ℬ2 = 0
10 .

Applying the discretisation method with the sampling period
Ts = 0.1 s, we have:

A1 = 0.5038 0.3171
−0.0051 −0.0032 , B1 = 0.4508

0.0055 .

A2 = 0.3326 0.3363
−0.0034 −0.0034 , B2 = 0.6065

0.0040 .

The other parameters are selected as:

C1 = C2 = 0.2 0.1 , D1 = D2 = [ − 0.1],

E1 = E2 = 0.1 0.4 , F1 = col 0.3 0.3 ,

F2 = col 0.1 0.2 , G = 0.01 −0.01 ,

Gd = [0.1], H1 = 2, H2 = 0.5, L = 0.1.

We select the non-linear function as

ξk =
−0.00059( xk1 + 1 − xk1 − 1 )

0
,

where xk j is the jth state variable, j = 1, 2.
Since the switch s(t) is assumed to be driven by a Markov

chain, it is known that θk ∈ {1, 2} is also a Markov chain. Without
loss of generality, the transition probability matrix is assumed to be

Π = 0.4 0.6
0.25 0.75 .

To show the simulation results, we set γ = 2.1, a = 4, b = 5. By
solving LMIs (46) and (47), we can get the FDF parameters as:

A f 1 = 0.4664 0.1522
0.0570 −0.0659 , B f 1 = −0.1606

−0.1405 ,

C f 1 = −0.1731 − 0.1071 ;

A f 2 = 0.3238 0.1606
0.0555 −0.0577 , B f 2 = −0.6247

−0.1325 ,

C f 2 = −0.0048 − 0.1113 .

The unknown input uk is given by a step signal with amplitude
1. The external disturbance input dk shown in Fig. 2 is given by the
white noise with power 0.01. The general fault signal is given by

f k = 1.5, 10 ≤ k ≤ 19
0, otherwise

The fault signal and the jump mode are shown in Fig. 3, with
the general fault signal (a), the random value (b), the random fault
signal (c) and the jump mode (d). Fig. 4 presents the generated
residual signal rk, while Fig. 5 shows the evaluation function of
JL(r) = ℰ{∑l = 0

k rT(l)r(l)} for both the fault case and the fault-free
case. Based on the simulation result given in Fig. 5, we know that
Jth = sup f k = 0 ℰ{∑l = 0

35 rT(l)r(l)} = 0.24, which shows
JL(r) = ℰ{∑l = 0

11 rT(l)r(l)} = 0.25 > Jth. Thus, the random fault
signal will be detected after one time step.

 

Fig. 1  Switching R-L-C circuit
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Remark 6: In [16], Wang et al. focused on the FD problem for a
class of discrete-time linear delay MJSs. The utility and advantage
of the established results showed that the fault could be detected in
four time steps after its occurrence. Comparing with the existing
results, we construct a more complex discrete-time conic-type non-
linear MJSs with jump fault signals. From the simulation example
in Fig. 5, the random fault signals can be detected in one step after
its occurrence. Therefore, the residual can deliver fault alarms
quickly when the fault occurs. It indicates that the designed FDF
method of this paper can detect the jump fault for this system.

5 Conclusion
In this paper, the robust FDF design problem for a class of discrete-
time conic-type non-linear MJSs is investigated. Based on the

appropriate mode-dependent Lyapunov functional method and LMI
techniques, sufficient conditions are established on the existence of
FDF such that the augmented MJSs are stochastically stable and
satisfy the given H∞ disturbance attenuation index. A practical
example is delivered to demonstrate the feasibility and validity of
the main results. It should be noted that this paper introduces a
linear inequality in the process of conic linearisation. We have
solved the non-linear terms ξk by employing appropriate
mathematical transformations. However, the amount of calculation
for the corresponding LMI has increased significantly. In our future
work, we will improve the method of conic linearisation to make it
easier. Furthermore, some possible research topics will be extended
to the singular non-linear MJSs [35], fuzzy singular MJSs [36] and
network-based singular systems [37].

6 Acknowledgments
This work was supported in part by the National Natural Science
Foundation of China (No. 61673001), the Foundation for
Distinguished Young Scholars of Anhui Province (No.
1608085J05), the Key Support Program of University Outstanding
Youth Talent of Anhui Province (No. gxydZD2017001) and the
Serbian Ministry of Education, Science and Technological
Development (No. 451-03-68/2020-14/200108).

7 References
[1] Krasovskii, N.N., Lidskii, È.A.: ‘Analytical design of controllers in systems

with random attributes’, Autom. Remote Control, 1961, 22, pp. 1021–1025
[2] Alwan, M.S., Liu, X.: ‘Recent results on stochastic hybrid dynamical

systems’, J. Control Decis., 2016, 3, (1), pp. 68–103
[3] Xiao, X., Park, J.H., Zhou, L., et al.: ‘New results on stability analysis of

Markovian switching singular systems’, IEEE Trans. Autom. Control, 2019,
64, (5), pp. 2084–2091

[4] Li, J., Zhang, Q., Yan, X., et al.: ‘Integral sliding mode control for Markovian
jump T–S fuzzy descriptor systems based on the super-twisting algorithm’,
IET Control Theory Appl., 2017, 11, (8), pp. 1134–1143

[5] Yin, Y., Shi, P., Liu, F., et al.: ‘Robust filtering for nonlinear nonhomogeneous
Markov jump systems by fuzzy approximation approach’, IEEE Trans.
Cybern., 2015, 45, (9), pp. 1706–1716

[6] He, S., Song, J., Liu, F.: ‘Robust finite-time bounded controller design of
time-delay conic nonlinear systems using sliding mode control strategy’,
IEEE Trans. Syst. Man Cybern. Syst., 2018, 48, (11), pp. 1863–1873

[7] Cheng, P., He, S.: ‘Observer-based finite-time asynchronous control for a
class of hidden Markov jumping systems with conic-type non-linearities’, IET
Control Theory Appl., 2020, 14, (2), pp. 244–252

[8] He, S., Song, J.: ‘Finite-time sliding mode control design for a class of
uncertain conic nonlinear systems’, IEEE/CAA J. Autom. Sin., 2017, 4, (4),
pp. 809–816

[9] Nie, R., He, S., Luan, X.: ‘Finite-time stabilisation for a class of time-delayed
Markovian jumping systems with conic non-linearities’, IET Control Theory
Appl., 2019, 13, (9), pp. 1279–1283

[10] Cheng, P., Wang, J., He, S., et al.: ‘Observer-based asynchronous fault
detection for conic-type nonlinear jumping systems and its application to
separately excited DC motor’, IEEE Trans. Circuits Syst., 2020, 67, (3), pp.
951–962

[11] Wang, Y., Zhang, S., Li, Y.: ‘Fault detection for a class of non-linear
networked control systems with data drift’, IET Signal Process., 2015, 9, (2),
pp. 120–129

Fig. 2  Trajectory of the disturbance signal dk

 

Fig. 3  Trajectories of the fault signal and the jump mode
 

Fig. 4  Trajectory of the residual signal rk

 

Fig. 5  Trajectories of the evaluation function JL(r)
 

1918 IET Control Theory Appl., 2020, Vol. 14 Iss. 14, pp. 1912-1919
© The Institution of Engineering and Technology 2020



[12] HassanAli, M., Rabhi, A., Hajjaji, A.E., et al.: ‘Real time fault detection in
photovoltaic systems’, Energy Procedia, 2017, 111, pp. 914–923

[13] Li, Y., Wu, Q., Peng, L.: ‘Simultaneous event-triggered fault detection and
estimation for stochastic systems subject to deception attacks’, Sensors, 2018,
18, (2), doi: 10.3390/s18020321

[14] Li, L., Ding, S.X., Qiu, J., et al.: ‘Real-time fault detection approach for
nonlinear systems and its asynchronous T–S fuzzy observer-based
implementation’, IEEE Trans. Cybern., 2017, 47, (2), pp. 283–294

[15] Longhi, S., Monteriù, A.: ‘Fault detection and isolation of linear discrete-time
periodic systems using the geometric approach’, IEEE Trans. Autom. Control,
2017, 62, (3), pp. 1518–1523

[16] Wang, G., Li, Z., Miao, X., et al.: ‘Fault detection of discrete-time delay
Markovian jump systems with delay term modes partially available’, J.
Franklin Inst., 2019, 356, (5), pp. 3045–3071

[17] Raza, M.T., Khan, A.Q., Mustafa, G., et al.: ‘Design of fault detection and
isolation filter for switched control systems under asynchronous switching’,
IEEE Trans. Control Syst. Technol., 2016, 24, (1), pp. 13–23

[18] Li, Y., Karimi, H.R., Ahn, C.K., et al.: ‘Optimal residual generation for fault
detection in linear discrete time-varying systems with uncertain observations’,
J. Franklin Inst., 2018, 355, (7), pp. 3330–3353

[19] Li, J., Wu, C., Su, Q.: ‘Robust fault detection filter design for interconnected
systems subject to packet dropouts and structure changes’, IET Control
Theory Appl., 2018, 12, (3), pp. 368–376

[20] Gu, Y., Li, X.: ‘Fault detection for sector-bounded non-linear systems with
servo inputs and sensor stuck faults’, J. Control Decis., 2019, 6, (3), pp. 147–
165

[21] Li, Y., Karimi, H.R., Zhao, D., et al.: ‘H∞ fault detection filter design for
discrete-time nonlinear Markovian jump systems with missing
measurements’, Eur. J. Control, 2018, 44, pp. 27–39

[22] Dong, S., Wu, Z., Shi, P., et al.: ‘Networked fault detection for Markov jump
nonlinear systems’, IEEE Trans. Fuzzy Syst., 2018, 26, (6), pp. 3368–3378

[23] He, S., Liu, F.: ‘Resilient fault detection observer design of fuzzy Markovian
jumping systems with mode-dependent time-varying delays’, J. Franklin
Inst., 2016, 353, (13), pp. 2943–2965

[24] Zhou, Z., Luan, X., Liu, F.: ‘Finite-frequency fault detection based on
derandomisation for Markov jump linear system’, IET Control Theory Appl.,
2018, 12, (8), pp. 1148–1155

[25] Wu, L., Luo, W., Zeng, Y., et al.: ‘Fault detection for underactuated
manipulators modeled by Markovian jump systems’, IEEE Trans. Ind.
Electron., 2016, 63, (7), pp. 4387–4399

[26] Hua, M., Zheng, D., Deng, F.: ‘Partially mode-dependent l2 − l∞ filtering for
discrete-time nonhomogeneous Markov jump systems with repeated scalar
nonlinearities’, Inf. Sci., 2018, 451, pp. 223–239

[27] Song, X., Wang, M., Zhang, B., et al.: ‘Event-triggered reliable H∞ fuzzy
filtering for nonlinear parabolic PDE systems with Markovian jumping sensor
faults’, Inf. Sci., 2020, 510, pp. 50–69

[28] Silvestre, D., Rosa, P., Hespanha, J.P., et al.: ‘Stochastic and deterministic
fault detection for randomized gossip algorithms’, Automatica, 2017, 78, pp.
46–60

[29] Khan, A.Q., Abid, M., Steven, X.D.: ‘Fault detection filter design for
discrete-time nonlinear systems —- A mixed H−/H∞ optimization’, Syst.
Control Lett., 2014, 67, pp. 46–54

[30] Yin, Y., Shi, P., Liu, F., et al.: ‘Robust fault detection for discrete-time
stochastic systems with non-homogeneous jump processes’, IET Control
Theory Appl., 2014, 8, (1), pp. 1–10

[31] Hu, J., Wang, Z., Gao, H., et al.: ‘Robust H∞ sliding mode control for discrete
time-delay systems with stochastic nonlinearities’, J. Franklin Inst., 2012,
349, (4), pp. 1459–1479

[32] Wei, Y., Wang, M., Qiu, J.: ‘New approach to delay-dependent H∞ filtering
for discrete-time Markovian jump systems with time-varying delay and
incomplete transition descriptions’, IET Control Theory Appl., 2013, 7, (5),
pp. 684–696

[33] Zhong, M., Ye, H., Shi, P., et al.: ‘Fault detection for Markovian jump
systems’, IEE Proc. Control Theory Appl., 2005, 152, (4), pp. 397–402

[34] He, S., Ai, Q., Ren, C., et al.: ‘Finite-time resilient controller design of a class
of uncertain nonlinear systems with time-delays under asynchronous
switching’, IEEE Trans. Syst. Man Cybern. Syst., 2019, 49, (2), pp. 281–286

[35] Mohanapriya, S., Sakthivel, R., Kwon, O.M., et al.: ‘Disturbance rejection for
singular Markovian jump systems with time-varying delay and nonlinear
uncertainties’, Nonlinear Anal. Hybrid Syst., 2019, 33, pp. 130–142

[36] Sakthivel, R., Kanagaraj, R., Wang, C., et al.: ‘Non-fragile sampled-data
guaranteed cost control for bio-economic fuzzy singular Markovian jump
systems’, IET Control Theory Appl., 2019, 13, (2), pp. 279–287

[37] Sakthivel, R., Santra, S., Kaviarasan, B., et al.: ‘Dissipative analysis for
network-based singular systems with non-fragile controller and event-
triggered sampling scheme’, J. Franklin Inst., 2017, 354, (2), pp. 4739–4761

IET Control Theory Appl., 2020, Vol. 14 Iss. 14, pp. 1912-1919
© The Institution of Engineering and Technology 2020

1919


