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Abstract: Multi-attribute decision-making (MADM) methods represent reliable ways to solve
real-world problems for various applications by providing rational and logical solutions. In reaching
such a goal, it is expected that MADM methods would eliminate inconsistencies like rank reversal
issues in a given solution. In this paper, an endeavor is taken to put forward a new MADM method,
called RAFSI (Ranking of Alternatives through Functional mapping of criterion sub-intervals into
a Single Interval), which successfully eliminates the rank reversal problem. The developed RAFSI
method has three major advantages that recommend it for further use: (i) its simple algorithm helps in
solving complex real-world problems, (ii) RAFSI method has a new approach for data normalization,
which transfers data from the starting decision-making matrix into any interval, suitable for making
rational decisions, (iii) mathematical formulation of RAFSI method eliminates the rank reversal
problem, which is one of the most significant shortcomings of existing MADM methods. A real-time
case study that shows the advantages of RAFSI method is presented. Additional comprehensive
analysis, including a comparison with other three traditional MADM methods that use different ways
for data normalization and testing the resistance of RAFSI method and other MADM methods to
rank the reversal problem, is also carried out.

Keywords: multi-criteria optimization; RAFSI method; performance comparison; rank reversal

1. Introduction

Multi-criteria optimization (MCO) methods represent powerful tools for making rational decisions
while being engaged in various types of activities. Studies in MCO problems have particularly been
prevalent in recent decades [1]. The reasons for such developments lie both in theoretical and practical
points of view. In a theoretical sense, MCO is attractive as it studies insufficiently structured problems,
while, in a practical sense, MCO represents a powerful way for choosing adequate actions. Furthermore,
MCO methods are unavoidable for designing appropriate tools to explore diverse systems.

MCO methods can be classified into five groups [2]: (1) methods for determining non-inferior
solutions that determine the set of non-inferior solutions, while it depends on the decision-makers
(DMs) to adopt the final solution based on their preferences. The following methods belong to this
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group: weighting coefficient methods (the restriction method in the criteria functions environment,
as well as the Simplex method), (2) methods with a predetermined preference, which are used to
form synthesizing (resultant) criterion function (it includes almost all multi-attribute decision-making
(MADM) methods, (3) interactive methods in which DMs express their preferences interactively, (4)
stochastic methods where indicators of uncertainty are included in the optimization model, and (5)
methods for emphasizing a subset of non-inferior solutions that narrow down the subset of non-inferior
results, which are achieved by introducing additional elements for making rational decisions.

MADM methods involve sound mathematical steps for processing information to evaluate
alternatives concerning a predetermined set of criteria, which is the main focus of this paper. It is
performed to establish a ranking of solutions and the best choice. Some of the most predominant
representative methods of this group are

• Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) [3],
• Više Kriterijumska optimizacija i Kompromisno Rešenje (VIKOR) [4,5],
• Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [6],
• Analytical Hierarchy Process (AHP) [7],
• Elimination Et Choice Translating Reality (ELECTRE) [8],
• Multi-Attributive Border Approximation Area Comparison (MABAC) [9],
• Complex Proportional Assessment (COPRAS) [10],
• Combinative Distance-based Assessment (CODAS) [11],
• lattice MADM methods [12].

MADM methods play a significant role in solving real-world problems in several areas. Let us
mention some interesting studies, which show the diversity of applications of MADM methods. Orji
and Wei [13] applied a hybrid decision-making trial and evaluation laboratory (DEMATEL)-TOPSIS
model for sustainable supplier selection. Rabbani et al. [14] modified traditional MADM methods
using fuzzy sets and demonstrated their application in logistics. Mahdi Paydar et al. [15] applied
the fuzzy Multi-Objective Optimization Method by Ratio Analysis (MOORA) and Failure Mode and
Effects Analysis (FMEA) methods in the Iranian chemical industry application. Zhou and Xu [16]
used DEMATEL, Analytic Network Process (ANP), and VIKOR methods in sustainable supplier
selection. Lu et al. [17] extended the ELECTRE method using a rough set theory. Si et al. [18]
showed the possibilities of applying picture fuzzy numbers in MADM. Noureddine and Ristic [19]
combined the Full Consistency Method (FUCOM), TOPSIS, and MABAC with the Dijkstra algorithm
for optimizing the transport of dangerous cargo. Badi et al. [20] used a gray-based assessment
model to evaluate healthcare waste treatment alternatives in Libya. Krmac and Djordjevic [21]
applied the TOPSIS method for evaluating the influence of the Train Control Information System on
capacity utilization.

One of the most important problems that occur in most MADM methods with predetermined
preferences is the lack of resistance to rank reversal problems. If unexpected changes in the ranking
of alternatives occur when any non-optimal alternative is added or deleted from the existing set of
alternatives, this indicates serious mathematical issues in the applied MADM method. This problem
can be illustrated with the following example in which three candidates are examined (candidates A,
B, and C) who applied for the same work position. A MADM method is used to rank the candidate
alternatives and the method suggested the following ranking of the candidates: A > B > C. Furthermore,
it is assumed that candidate B (with the second rank) is replaced with a poor candidate D, which
kept candidates A and C unchanged. If this new set of alternatives (A, D, and C) is now ranked by
the same method under the same criteria weights, it is expected that the applied MADM method
would again suggest candidate A as the best solution under the new conditions. However, in actual
practice, some unwanted changes in the ranking order of the alternatives occur for the majority of
the MADM methods [22].
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The rank reversal problem was noticed and presented for the first time by Belton and Gear [22],
who analyzed the use of Analytic Hierarchy Process (AHP) for ranking alternatives. In their research,
they conducted a simple experiment in which three alternatives and two criteria were analyzed. After
the initial ranking of the alternatives, they formed a new set of alternatives by introducing a copy of
the non-optimal alternative. After evaluating this new set of alternatives while keeping the same criteria
weights, inconsistencies were observed as the ranking order of the best alternative was changed. Thus,
they concluded that AHP suffers from rank reversal phenomena. A few years later, Triantaphyllou
and Mann [23] noticed the same problem again in AHP when the worst alternative was replaced by
a non-optimal alternative. Triantaphyllou and Mann [23] also conducted the same experiment on
two other methods, which included the Weighted Sum Model (WSM) and Weighted Product Model
(WPM), and concluded that none of these methods were efficient in solving the rank reversal problem.
Afterward, Triantaphyllou and Lin [24] further tested five MADM methods, including WSM, WPM,
AHP, revised AHP, and TOPSIS in terms of the same two evaluative criteria in the fuzzy environment
and came to the same conclusions. Then, many authors pointed out the rank reversal problem in many
other MADM methods [25–30].

Furthermore, there is a large number of MADM methods already developed in the past few
years, which give successful results for solving practical problems [31]. Nevertheless, most of these
methods are not able to successfully eliminate the rank reversal problem. Among such methods, only
the lattice MADM method can successfully eliminate the rank reversal problem [12]. However, this
method has a complex mathematical algorithm and requires profound knowledge in net theory [32].
The complexity of the lattice algorithm significantly limits its broader use [33]. Moreover, several studies
have shown that the rank reversal problem can be solved when traditional methods are substantially
modified [34–36]. Keeping in mind that MADM methods are often used in the condition of dynamic
changes in the initial decision matrix, authors of this research have paid attention to the development
of a new MADM method, called Ranking of Alternatives through Functional mapping of criterion
sub-intervals into a Single Interval (RAFSI) method that eliminates rank reversal problems. Besides
eliminating the rank reversal problem, RAFSI method is also characterized by simple mathematical
formulations that can be easily used for solving complex problems. RAFSI method integrates three
starting points for making consistent decisions, which encompass (1) defining referential criteria points
including ideal and anti-ideal criteria values, (2) defining relations between the considered alternatives
and ideal/anti-ideal values, and (3) using a new technique for data normalization, based on defining
criteria functions that map criteria sub-intervals into a unique criteria interval.

According to the results shown in this paper, three main advantages of the RAFSI method
distinguish it from the other traditional MADM methods, which include (1) a simple algorithm
of RAFSI method that enables DMs to solve complex problems, (2) use a new data normalization
technique that converts an initial decision matrix into a unique criterion interval, and (3) resistance
of the RAFSI method to rank reversal problems. We are emphasizing this phenomenon since it can
be especially seen in dynamic conditions of decision-making where some alternatives often change
during the process of making decisions, and MADM methods are often used in such conditions. Based
on these advantages of RAFSI method, one of the most important contributions of this paper is to
enrich the MADM research domain by developing a new method, which enables the DMs to make
stable and coherent decisions in dynamic and uncertain environments.

After the introductory discussion on motivation, goals, and contributions, the content of the paper
is presented as follows. In Section 2, the mathematical formulation of the RAFSI method is presented.
Section 3 covers the application of RAFSI method for a real-time case study by considering six
alternatives and five criteria. Results’ validation and performance comparisons are presented in
Section 4. Lastly, Section 5 concludes the paper with future research directions.
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2. RAFSI Method

Let us assume that the DMs have to rank m alternatives on the basis of n criteria C1, C2, . . . , Cn.

Criteria weights (wj, j = 1, 2, . . . . n) meet the following condition
n∑

j=1
w j = 1. Criteria C1, C2, . . . , Cn can

be maximizing type (max) or minimizing type (min). Alternatives Ai(i = 1, 2, . . . , m) are defined by
their respective values (aij) on each criterion (cj). The initial decision matrix is shown as follows.

C1 C2 . . . Cn

N =

A1

A2
...

Am


n11 n12 · · · n1n
n21 n22 · · · n2n

...
...

. . .
...

nm1 nm2 · · · nmn


(1)

The RAFSI method has the following steps.
Step 1: Define ideal and anti-ideal values. For each criterion C j( j = 1, 2, . . . , n), the DM defines

two values aI j and aN j , where aI j represents the ideal value of criterion C j, while aN j represents an
anti-ideal value of criterion C j. It is clear that aI j > aN j for max criteria and aI j < aN j for min criteria.

Step 2: Mapping of elements of the initial decision matrix into criteria intervals. In the previous
part, criteria intervals are defined below.

(a) C j ∈
[
aN j , aI j

]
, when C j belongs to max type criteria and

(b) C j ∈
[
aI j , aN j

]
, when C j belongs to min type criteria.

In order to make all criteria of the initial decision matrix equal or transfer them into the criteria
interval [n1, n2k], we are forming a sequence of numbers from the k interval in the way where k−1
points are inserted between the highest and the lowest values of the criteria interval.

n1 < n2 ≤ n3 < n4 ≤ n5 < n6 . . . ≤ n2k−1 < n2k (2)

The criteria interval is constant for all criteria and it has n1 and n2k fixed points. Then we can
map sub-intervals of the criteria into criteria intervals using functions f1, f2, f3, that is fs, as shown in
Figure 1.
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Figure 1. Mapping of sub-intervals into the criteria interval.

The map of minimum value aN j (for max criteria) and aI j (for min criteria) is n1. Additionally,
the map of maximum value aI j (for max criteria) and aN j (for min criteria) is n2k. It is suggested that
the ideal value is at least six times better than the anti-ideal (barely acceptable value), or n1 = 1 and
n2k = 6. However, the DM can use other preferred values such as n1 = 1 and n2k = 9.
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We define a function fs(x), which maps sub-intervals into the criteria interval [n1, n2k] by Formula
(3) below. The endpoints of the interval [n1, n2k] determine the ratio of a barely acceptable alternative
to the ideal alternative. This ratio is set up by the DM.

fs(x) =
n2k − n1

aI j − aN j

x +
aI j · n1 − aN j · n2k

aI j − aN j

(3)

where n2k and n1 represent the relation that shows the extent to which the ideal value is preferred
over the anti-ideal value, and where aI j and aN j represent ideal and anti-ideal values of criteria C j,
respectively.

Expression (3), as a function, can be part of the function, which maps a part of the interval[
aN j , aI j

]
into interval [n1, n2k]. In this case, all these parts, that is, all functions f1(x), f2(x)..., fn(x),

represent a function fs(x) that maps the entire criterion interval into a defined numerical interval. Thus,
Expression (3) can represent a function that maps a part of an interval, but can also map a complete
criterion interval into the corresponding numerical interval. Therefore, the numbers aI j and aN j

can represent: (1) values from inside the criterion interval or (2) endpoints of the criterion interval.
The second possibility is used in this paper.

In this way, the standardized decision matrix S =
[
si j

]
m×n

(i = 1, 2, . . . , m, j = 1, 2, . . . , n) is
obtained in which all elements of the matrix are mapped into the interval [n1, n2k]. After functional
mapping of the elements of the initial decision matrix into criteria interval N [n1, n2k], the condition
n1 ≤ si j ≤ n2k is achieved for every I, j.

C1 C2 . . . Cn

S =

A1

A2
...

Am


s11 s12 · · · s1n
s21 s22 · · · s2n
...

...
. . .

...
sm1 sm2 · · · smn


(4)

In the above formula, the elements of the matrix si j are obtained by using expression (3), that is,
si j = fAi

(
C j

)
.

Note the following:

(a) for max type criteria, if there is ax j where ax j > aI j , then we have equality f
(
ax j

)
= f

(
aI j

)
(b) for min type criteria, if there is ax j where ax j < aI j , then we have equality f

(
ax j

)
= f

(
aI j

)
Step 3: Calculate arithmetic and harmonic means. Using expressions (5) and (6), arithmetic and

harmonic means are calculated for minimum and maximum sequence of the elements n1 and n2k.

A =
n1 + n2k

2
(5)

H =
2

1
n1

+ 1
n2k

(6)

Step 4: Form normalized decision matrix Ŝ =
[
ŝi j

]
m×n

(i = 1, 2, . . . , m, j = 1, 2, . . . , n). Using
expressions (7) and (8), elements of the matrix S are normalized, and transferred into the interval [0,1].

(a) for the criteria Cj ( j = 1, 2, . . . , n) max type:

ŝi j =
si j

2A
(7)
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(b) for the criteria Cj ( j = 1, 2, . . . , n) min type:

ŝi j =
H

2si j
(8)

In this way, a new normalized decision matrix is created, as shown below.

C1 C2 . . . Cn

Ŝ =

A1

A2
...

Am


ŝ11 ŝ12 · · · ŝ1n
ŝ21 ŝ22 · · · ŝ2n
...

...
. . .

...
ŝm1 ŝm2 · · · ŝmn


(9)

where ŝi j ∈ [0, 1] represents normalized elements of Ŝ.
For the elements of the normalized decision matrix Ŝ =

[
ŝi j

]
m×n

, which are defined using
Expressions (7) and (8), the following relations can apply.

(a) For max type criteria Cj ( j = 1, 2, . . . , n), we have the following condition.

0 <
n1

2A
≤ ŝi j ≤

n2k
2A
< 1 (10)

Proof of (10):
n2k
2A

=
n2k

2 n1+n2k
2

=
n2k

n1 + n2k
<

n2k + n1

n1 + n2k
= 1

(b) for min type criteria Cj ( j = 1, 2, . . . , n), we have the following condition.

0 <
H

2n2k
≤ ŝi j ≤

H
2n1
< 1 (11)

Proof of (11):

H
2n1

=

2
1

n2k
+ 1

n1

2n1
=

1

n1
(

1
n2k

+ 1
n1

) =
1

1 + n1
n2k

< 1

Additionally, for the boundary values of criteria intervals n1 and n2k, we have the following
equality (12) and (13).

n1

2A
=

H
2n2k

(12)

Proof of (12):
n1

2A
=

H
2n2k

⇒
n1

A
=

H
n2k

n1
A = n1

n1+n2k
2

= 2
n1+n2k

n1

= 2
1+

n2k
n1

= 2
n2k
n2k

+
n2k
n1

= 2

n2k

(
1

n2k
+ 1

n1

) =
2

1
n2k

+ 1
n1

n2k
= H

n2k

n2k
2A

=
H

2n1
(13)
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Proof of equality (13):

n2k
2A = H

2n1
⇒

n2k
A = H

n1

n2k
A =

n2k
n1+n2k

2

= 2
n1+n2k

n2k

= 2
n1
n2k

+1

= 2
n1
n2k

+
n1
n1

= 2

n1

(
1

n2k
+ 1

n1

) = 1
n1

2
1

n2k
+ 1

n1

= H
n1

Step 5: Calculate criteria functions of the alternatives V(Ai). Criteria functions of the alternatives
(V(Ai)) are calculated according to Equation (14) below. Alternatives are then ranked according to
the descending order of the calculated (V(Ai)) values.

V(Ai) = w1ŝi1 + w2ŝi2 + . . .+ wnŝin (14)

3. Case Study and Results

In this section, the application of the newly developed RFIS method is presented by giving
an example that considers the evaluation of six alternatives Ai (i = 1, 2, . . . , 6) in relation to five
criteria C j ( j = 1, 2, . . . , 5

)
. Suppose that the alternatives represent researchers who applied for a job at

a scientific research center. Evaluation of the researchers is performed using five criteria. The criteria
are arranged in two groups: 1) criteria of maximizing type (max): C1, C2, and C5, and 2) criteria
of minimizing type (min): C3 and C4. Criteria weights are estimated by the Level-Based Weight
Assessment (LBWA) model [26] as w j = (0.35, 0.25, 0.15, 0.15, 0.1). The initial decision matrix
(N =

[
ni j

]
m×n

,i = 1, 2, . . . , m, j = 1, 2, . . . , n) is given below.

C1 C2 C3 C4 C5

N =

A1
A2
A3
A4
A5
A6



180 10.5 15.5 160 3.7
165 9.2 16.5 131 5
160 8.8 14 125 4.5
170 9.5 16 135 3.4
185 10 14.5 143 4.3
167 8.9 15.1 140 4.1


max max min min max

Application of RAFSI method is illustrated by following the steps described in Section 2.
Step 1: In the first step, DM defines the set of ideal (aI j ) and anti-ideal values (aN j ) for the considered

criteria. In this example, the following ideal and anti-deal points are defined by consensus.

aI j = {200, 12, 10, 100, 8}

aN j = {120, 6, 20, 200, 2}

Step 2: Based on the defined ideal and anti-ideal points, criteria intervals are formed.

(a) for max type criteria: C1 ∈ [120, 200]; C2 ∈ [6, 12] i C5 ∈ [2, 8],
(b) for min type criteria: C3 ∈ [10, 20] i C4 ∈ [100, 200].

To transfer the values of all criteria into a unique interval, a sequence of numbers is chosen where
n1 < n2 ≤ n3 < n4 ≤ n5 < n6 . . . ≤ n2k−1 < n2k. The final points of the sequence n1 and n2k define
the values determining the number of times the ideal value is better than the anti-ideal value. In other
words, points n1 and n2k determine the boundary values of the interval in which all values of the initial
decision matrix are transferred. In this paper, it is assumed that the ideal value is six times better
than the barely acceptable value (anti-ideal value). Now, the functions for criteria standardization
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are defined using expression (3). It helps to transfer the values of the initial decision matrix into
the interval [1, 6]. Therefore, we consider the following functions.

fAi(C1) =
6−1

200−120 C1 +
200·1−120·6

200−120 = 0.06 ·C1 − 6.50

fAi(C2) =
6−1

12−6 C2 +
12·1−6·6

12−6 = 0.83 ·C2 − 4.00

fAi(C3) =
6−1

20−10 C3 +
20·1−10·6

20−10 = 0.50 ·C3 − 4.00

fAi(C4) =
6−1

200−10 C4 +
200·1−100·6

200−100 = 0.05 ·C4 − 4.00

fAi(C5) =
6−1
8−2 C5 +

8·1−2·6
8−2 = 0.83 ·C5 − 0.67

Based on the defined functions, the elements of the initial decision matrix are mapped into
the interval [1, 6] and the standardized decision matrix (S =

[
si j

]
6×5

,i = 1, 2, . . . , 6, j = 1, 2, . . . , 5) is
obtained in which all elements are transferred into the interval [1, 6].

C1 C2 C3 C4 C5

S =

A1
A2
A3
A4
A5
A6



4.75 4.75 3.75 4.00 2.42
3.81 3.67 4.25 2.55 3.50
3.50 3.33 3.00 2.25 3.08
4.13 3.92 4.00 2.75 2.17
5.06 4.33 3.25 3.15 2.92
3.94 3.42 3.55 3.00 2.75


max max min min max

The elements of the position Ai-C1 are obtained using the functions fAi(C1) = 0.06 ·C1 − 6.50:

fA1(180) = 0.06 · 180− 6.50 = 4.75, fA2(165) = 0.06 · 165− 6.50 = 3.81

fA3(160) = 0.06 · 160− 6.50 = 3.50, fA4(170) = 0.06 · 170− 6.50 = 4.13

fA5(185) = 0.06 · 185− 6.50 = 5.06, fA6(167) = 0.06 · 167− 6.50 = 3.94

Replacing the values from the initial matrix into functions fAi(C2), fAi(C3), fAi(C4), and fAi(C5),
we get the remaining values of elements of si j.

Step 3: Calculating the arithmetic and harmonic means of minimum and maximum elements
n1 = 1 and n2k = 6.

A = (n1 + n2k)/2 = (1 + 6)/2 = 3.5

H = 2
1

n1
+ 1

n2k

= 2
1
6+

1
1
= 1.71

The arithmetic mean for n1 = 1 and n2k = 6 is 3.5, while the harmonic mean is 1.71.
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Step 4: Using expressions (7) and (8) elements of matrix S are normalized and transformed,
depending on whether they belong to min or max type criteria. In this way, we get a new matrix
Ŝ =

[
ŝi j

]
6×5

(i = 1, 2, . . . , 6, j = 1, 2, . . . , 5).

C1 C2 C3 C4 C5

Ŝ =

A1
A2
A3
A4
A5
A6



0.68 0.68 0.23 0.21 0.35
0.54 0.52 0.20 0.34 0.50
0.50 0.48 0.29 0.38 0.44
0.59 0.56 0.21 0.31 0.31
0.72 0.62 0.26 0.27 0.42
0.56 0.49 0.24 0.29 0.39


max max min min max

For example, the element of the matrix Ŝ in position A1–C1 is ŝ11 = 4.75
2·3.5 = 0.68. Moreover, for

the min type criteria, A1–C3 is ŝ13 = 1.71
2·3.75 = 0.23.

Step 5: Using expression (14), criteria functions V(Ai) of the alternatives are calculated, as exhibited
in Table 1. Ranking pre-order of the alternatives is derived as per the descending order of V(Ai) values,
where the alternative with higher V(Ai) values are always preferred.

Table 1. The function criteria and the final ranking of the researchers/alternatives.

Alternative V(Ai) Rank

A1 0.5081 2
A2 0.4522 4
A3 0.4381 5
A4 0.4560 3
A5 0.5299 1
A6 0.4373 6

Based on the above findings, the researcher A5 is selected as the best alternative candidate for
the considered case study.

4. Validation of the Results

4.1. Comparing the Results with Other MADM Methods

For validation, the results of RFIS method are now compared with other traditional MADM
methods like TOPSIS [6], VIKOR [4,5], and COPRAS [10]. The same decision matrix and criteria
weights are used for this performance comparison. The results of this comparison are shown in
Figure 2.
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The ranking orders as obtained by VIKOR and RAFSI methods are in complete agreement,
whereas, in COPRAS and TOPSIS methods, the rank similarity is observed only for the first two
alternatives {A5, A1}, and the last ranked alternative (A6). For the remaining three alternatives (A2, A3,
and A4), COPRAS and TOPSIS methods suggested different rankings. Such a result is a consequence
of using different data normalization techniques, such as vector normalization (in TOPSIS method)
and additive normalization (in the COPRAS method). To confirm this fact, an experiment is further
conducted, which was comprised of the following two stages.

(1) In the first stage, the COPRAS and TOPSIS methods were slightly modified through the use
of additive data normalization techniques in both methods. It was observed that both
methods gave the same ranking order (Figure 2) for the considered alternatives under additive
data normalization.

(2) In the second stage, data normalization, as suggested in RAFSI method, was also used for
TOPSIS, VIKOR, and COPRAS methods. After using the new normalization technique, identical
rankings were obtained by all the methods. Based on these results, it can be concluded that
the RAFSI method gives credible and reliable results.

4.2. Rank Reversal Problem

One of the ways to check the stability of MADM methods is by introducing new alternatives in
the original set or by eliminating poor alternatives from the set. In such conditions, it is expected
that the MADM method will not show any drastic change in the ranking of the alternatives. This
phenomenon is called the well popular rank reversal problem [13], and considerable attention has
already been paid to it in the literature [21,25]. The resistance of the developed RAFSI method to
the rank reversal problem is now tested through two experiments. In the first experiment, five scenarios
are considered. In each scenario, the worst alternative is eliminated from the set of alternatives,
and the impact of this change on ranking and criteria functions of the alternatives are analyzed. In
the second experiment, the set of alternatives is further expanded by introducing a new alternative,
and the impact of such inclusion on alternatives’ rank is analysed.

The first experiment: After applying RAFSI method, the researchers are ranked according to
the results shown in scenario S0 (the original rank). In the next scenario (S1), the researcher who
achieved the least rank is eliminated. After that, the remaining five candidates are again ranked. Thus,
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a total of five scenarios (S1–S5) are formed, whereby, in each subsequent scenario, the worst-ranked
researcher from the set is eliminated. At the same time, we also analyzed the possibility of any changes
in criteria function values and rankings of the remaining alternatives for each of the newly formed
scenarios. The rankings of the alternatives in all five scenarios are shown in Table 2.

Table 2. The ranking of the alternatives in scenarios.

Alternative S0 S1 S2 S3 S4 S5

A5 1 1 1 1 1 1
A1 2 2 2 2 2
A4 3 3 3 3
A2 4 4 4
A3 5 5
A6 6

From Table 2, it is easy to observe that RAFSI method gives valid results in a dynamic environment.
This is also confirmed by criteria function values of the alternatives (f(Ai)). In all these scenarios,
the criteria functions of the alternatives remained unchanged. TOPSIS, VIKOR, and COPRAS methods
are used in the same condition. All these methods also showed stability and resistance to rank reversal.
However, changes in criteria function values are observed in these methods.

The second experiment: In the second experiment, among the six existing candidates, another
candidate (A7) is added who achieved the same test results as compared to candidate A6. The new
decision matrix is shown below.

C1 C2 C3 C4 C5

N =

A1
A2
A3
A4
A5
A6
A7



180 10.5 15.5 160 3.7
165 9.2 16.5 131 5
160 8.8 14 125 4.5
170 9.5 16 135 3.4
185 10 14.5 143 4.3
167 8.9 15.1 140 4.1
165 8.9 11 120 3.5


max max min min max

After evaluating the new set of candidates by RAFSI, TOPSIS, VIKOR, and COPRAS methods
with the same criteria weights, it was observed that the rankings and criteria functions of certain
alternatives are changed, as shown in Table 3. To compare the results more comprehensively, a parallel
presentation of the results is given using RAFSI, TOPSIS, VIKOR, and COPRAS methods on the new
and old set of alternatives.
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Table 3. Ranking pre-orders for the old and new set of the alternatives.

f (Ai) A1 A2 A3 A4 A5 A6 A7

RAFSI

Original f (Ai) f (A1) = 0.508 f (A2) = 0.452 f (A3) = 0.438 f (A4) = 0.456 f (A5) = 0.530 f (A6) = 0.437
Original rank 2 4 5 3 1 6

New f (Ai) f (A1) = 0.508 f (A2) = 0.452 f (A3) = 0.438 f (A4) = 0.456 f (A5) = 0.530 f (A6) = 0.437 f (A7) = 0.495
New rank 2 5 6 4 1 7 3

VIKOR

Original f (Ai) f (A1) = 0.350 f (A2) = 0.901 f (A3) = 0.924 f (A4) = 0.801 f (A5) = 0.00 f (A6) = 0.928
Original rank 2 4 5 3 1 6

New f (Ai) f (A1) = 0.274 f (A2) = 0.817 f (A3) = 1.000 f (A4) = 0.738 f (A5) = 0.00 f (A6) = 0.920 f (A7) = 0.718
New rank 2 5 7 4 1 6 3

TOPSIS

Original f (Ai) f (A1) = 0.542 f (A2) = 0.464 f (A3) = 0.431 f (A4) = 0.396 f (A5) = 0.704 f (A6) = 0.351
Original rank 2 3 4 5 1 6

New f (Ai) f (A1) = 0.468 f (A2) = 0.400 f (A3) = 0.410 f (A4) = 0.340 f (A5) = 0.593 f (A6) = 0.311 f (A7) = 0.507
New rank 3 5 4 6 1 7 2

COPRAS

Original f (Ai) f (A1) = 0.964 f (A2) = 0.950 f (A3) = 0.951 f (A4) = 0.932 f (A5) = 1.00 f (A6) = 0.930
Original rank 2 4 3 5 1 6

New f (Ai) f (A1) = 0.962 f (A2) = 0.952 f (A3) = 0.957 f (A4) = 0.933 f (A5) = 1.00 f (A6) = 0.933 f (A7) = 0.998
New rank 3 5 4 6 1 7 2
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After analyzing the results of Table 3, we can conclude the following

(1) COPRAS method: The new candidate A7 was ranked second in the ranking order, so it is clear
that all the candidates (except the first ranked) moved one place down in the ranking order.
Furthermore, it is expected that the values of criteria functions f(Ai) for an old set of the alternatives
f(A1), f(A2), . . . , f(A6) would not change, which signifies the function of an f(A7) of the new
alternative would be ranked based on the old values of f(Ai). However, from Table 3, after
introducing the new alternative, a change in f(Ai) values are observed for the COPRAS method.
This fact can cause inconsistencies in ranking order of the alternatives.

(2) TOPSIS method: The introduction of the new alternative resulted in a significant change in
the ranking order as well as changes in f(Ai) values that are also observed. Alternative A7 is
placed in the second position. Therefore, it is clear that the ranks of the other alternatives moved
one place down. However, the same did not happen for alternative A3 as it remained in the fourth
position in both new and old sets of alternatives. Additionally, alternative A2 was third in the old
set, while, in the new set, it is in the fifth position instead of the fourth. These kinds of changes in
alternatives’ ranking are observed with changes in f(Ai) values.

(3) VIKOR method: In this method, similar changes happened as in the previous two methods.
The new alternative A7 is placed in the third position. It is expected that, in the new set of
alternatives, all the alternatives below the third rank would move one place down. However,
some more drastic changes are noticed in the VIKOR method. For example, alternative A3 was in
the fifth rank in the old set, but, in the new set, it is ranked last. Moreover, alternative A6 was last
in the old set of alternatives, while it is in the second to last in the new set of alternatives. These
changes in the ranking order also followed with the changes in f(Ai) values.

(4) RAFSI method: This method showed stability in both sets of alternatives. All the alternatives
kept the same f(Ai) values in both sets. Thus, it can be concluded that the RAFSI method has
shown logical results following the new set of alternatives.

Based on these analyses, we can conclude that rank reversal problems exist in COPRAS, TOPSIS,
and VIKOR methods can lead to irrational results in conditions where we have changeable initial
parameters in the decision matrix. At the same time, we can conclude that the developed RAFSI
method is resistant to rank reversal problems, which contributes to achieving stable and reliable
evaluation results while solving complex real-world problems.

5. Discussion and Conclusions

In this paper, a new MADM method, called RAFSI, is suggested, which shows a high level
of reliability in results. This makes this method suitable for solving real-time MADM problems in
different areas. The mathematical formulation of the RAFSI method does not use traditional data
normalization expression. Instead, a new technique for standardization is suggested that enables data
transformation from the initial decision matrix into any interval, which makes this method suitable
for rational decision making. The mapping of criteria sub-intervals from the initial decision matrix
into a unique criteria interval is done by using criteria functions. After forming a unique criteria
interval, using arithmetic and harmonic means, the criteria interval is transformed into a normalized
criteria interval. This mapping is done depending on the criteria type. Therefore, we can highlight
the following contributions of this paper: (1) the development of a new MADM method for solving real
problems in the business world, (2) presentation of the new method that is based on coherent defining
relations between ideal and anti-ideal criteria values, (3) it eliminates the rank reversal problem and
offers reliable results for making rational decisions, (4) development of a new method for the data
normalization, which can be used in various areas, from MADM to heuristic algorithms and artificial
intelligence-based methods.

The RAFSI method is validated through a comparison of the results with traditional MADM
methods and by checking resistance to rank reversal problems. The performance comparison of
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the results of the RAFSI method is done with TOPSIS, COPRAS, and VIKOR methods. These methods
are chosen because they use different ways of data normalization like vector, linear normalization, and
additive normalization. The goal of comparison with different methods is to confirm the validity of
the new method by concerning traditional MADM methods that have already shown high efficiency
in solving real-world problems. The performance comparison results showed a very high level of
a positive correlation between the results of the RAFSI method and other widely used MCO methods.

After comparing the ranks in the second phase, the validity of resistance of RAFSI, TOPSIS,
COPRAS, and VIKOR methods to rank reversal problem is executed. In these experiments, the change
in the number of alternatives is simulated. In the first experiment, the number of alternatives is reduced
in five scenarios, while, in the second experiment, a set of alternatives is expanded by introducing
one non-optimal alternative. The results showed that the RAFSI method is resistant to the rank
reversal problem. On the other hand, the conventional TOPSIS, COPRAS, and VIKOR methods did
not show satisfying results. The achieved results confirm the validity of RAFSI methods and can be
recommended for using in future research for solving different multi-criteria problems.

The goals of future research should be aimed into the direction of using the RAFSI method for
other real problems as well as combining with objective and subjective criteria weighting techniques.
Furthermore, one of the goals of future research also lies in expanding RAFSI method by using different
uncertainty theories. Using uncertainty theories, it would enable the use of linguistic variables for
rational expression of human preferences. In addition, the use of new data normalization techniques
in heuristic algorithms and other MADM methods can be a future research scope.

Author Contributions: Conceptualization, M.Ž. and D.P. Methodology, M.Ž. and D.P. Validation, M.Ž. and D.P.
Writing—original draft preparation, M.Ž. and D.P. Review and editing, M.A., P.C., and I.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kahraman, C.; Büyüközkan, G.; Ates, N.Y. A two phase multi-attribute decision-making approach for new
product introduction. Inf. Sci. 2007, 177, 1567–1582. [CrossRef]

2. Nassiri, P.; Dehrashid, S.A.; Hashemi, M.; Shalkouhi, P.J. Traffic Noise Prediction and the Influence of Vehicle
Horn Noise. J. Low Freq. Noise, Vib. Act. Control. 2013, 32, 285–291. [CrossRef]

3. Brans, J.P. L’ingénierie de la Décision: Élaborationd’instrumentsd’aide à la Décision. La Méthode Promethee; Presses
de l’Université Laval: Quebec City, QC, Canada, 1982.

4. Duckstein, L.; Opricovic, S. Multiobjective optimization in river basin development. Water Resour. Res. 1980,
16, 14–20. [CrossRef]

5. Opricovic, S.; Tzeng, G.-H. Compromise solution by MCDM methods: A comparative analysis of VIKOR
and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [CrossRef]

6. Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY,
USA, 1981.

7. Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
8. Bernard, R. Classementetchoixenprésence de points de vue multiples (la méthode ELECTRE). La Revue

d’Informatiqueet de RechercheOpérationelle (RIRO) 1968, 8, 57–75.
9. Pamucar, D.; Cirovic, G. The selection of transport and handling resources in logistics centres using

Multi-Attributive Border Approximation area Comparison (MABAC). Expert Syst. Appl. 2015, 42, 3016–3028.
[CrossRef]

10. Zavadskas, E.K.; Kaklauskas, A.; Sarka, V. The new method of multicriteria complex proportional assessment
of projects. Technol. Econ. Dev. Econ. 1994, 1, 131–139.

11. Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A new combinative distance-based
assessment (CODAS) method for multi-criteria decision-making. Econ. Comput. Econ. Cybern. Stud. Res.
2016, 50, 25–44.

http://dx.doi.org/10.1016/j.ins.2006.09.008
http://dx.doi.org/10.1260/0263-0923.32.4.285
http://dx.doi.org/10.1029/WR016i001p00014
http://dx.doi.org/10.1016/S0377-2217(03)00020-1
http://dx.doi.org/10.1016/j.eswa.2014.11.057


Mathematics 2020, 8, 1015 15 of 16

12. Zizovic, M.; Damljanovic, N.; Lazarevic, V.; Deretic, N. New method for multicriteria analysis. UPB Sci. Bull.
Ser. A Appl. Math. Phys. 2011, 73, 13–22.

13. Orji, I.; Wei, S. A decision support tool for sustainable supplier selection in manufacturing firms. J. Ind. Eng.
Manag. 2014, 7, 1293–1315. [CrossRef]

14. Rabbani, M.; Foroozesh, N.; Mousavi, S.M.; Farrokhi-Asl, H. Sustainable supplier selection by a new
decision model based on interval-valued fuzzy sets and possibilistic statistical reference point systems under
uncertainty. Int. J. Syst. Sci. Oper. Logist. 2017, 6, 162–178. [CrossRef]

15. Paydar, M.M.; Arabsheybani, A.; SattarSafaei, A. A new approach for sustainable supplier selection. Int. J.
Ind. Eng. Prod. Res. 2017, 28, 47–59. [CrossRef]

16. Zhou, X.; Xu, Z. An Integrated Sustainable Supplier Selection Approach Based on Hybrid Information
Aggregation. Sustainability 2018, 10, 2543. [CrossRef]

17. Lu, H.; Jiang, S.; Song, W.; Ming, X. A Rough Multi-Criteria Decision-Making Approach for Sustainable
Supplier Selection under Vague Environment. Sustainability 2018, 10, 2622. [CrossRef]

18. Si, A.; Das, S.; Kar, S. An Approach to Rank Picture Fuzzy Numbers for Decision Making Problems. Decis.
Making: Appl. Manag. Eng. 2019, 2, 54–64. [CrossRef]

19. Noureddine, M.; Ristic, M. Route planning for hazardous materials transportation: Multi-criteria
decision-making approach. Decis. Mak. Appl. Manag. Eng. 2019, 2, 66–84. [CrossRef]

20. Badi, I.; Shetwan, A.; Hemeda, A. A grey-based assessment model to evaluate health-care waste treatment
alternatives in Libya. Oper. Res. Eng. Sci. Theory Appl. 2019, 2, 92–106. [CrossRef]
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