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Abstract: In this paper, a new method for determining weight coefficients by forming a non-decreasing
series at criteria significance levels (the NDSL method) is presented. The NDLS method includes the
identification of the best criterion (i.e., the most significant and most influential criterion) and the
ranking of criteria in a decreasing series from the most significant to the least significant criterion.
Criteria are then grouped as per the levels of significance within the framework of which experts
express their preferences in compliance with the significance of such criteria. By employing this
procedure, fully consistent results are obtained. In this paper, the advantages of the NDSL model are
singled out through a comparison with the Best Worst Method (BWM) and Analytic Hierarchy Process
(AHP) models. The advantages include the following: (1) the NDSL model requires a significantly
smaller number of pairwise comparisons of criteria, only involving an n − 1 comparison, whereas
the AHP requires an n(n − 1)/2 comparison and the BWM a 2n − 3 comparison; (2) it enables us to
obtain reliable (consistent) results, even in the case of a larger number of criteria (more than nine
criteria); (3) the NDSL model applies an original algorithm for grouping criteria according to the
levels of significance, through which the deficiencies of the 9-degree scale applied in the BWM and
AHP models are eliminated. By doing so, the small range and inconsistency of the 9-degree scale are
eliminated; (4) while the BWM includes the defining of one unique best/worst criterion, the NDSL
model eliminates this limitation and gives decision-makers the freedom to express the relationships
between criteria in accordance with their preferences. In order to demonstrate the performance of the
developed model, it was tested on a real-world problem and the results were validated through a
comparison with the BWM and AHP models.

Keywords: NDSL model; AHP; criteria weights; pairwise comparisons

1. Introduction

The determination of the relative weights of criteria in multi-criteria decision-making models
represents a specific problem that is inevitably accompanied by subjectivities. This procedure is very
significant, since it exerts a great influence on the final decision in the decision-making process [1].
Multi-criteria optimization methods use normalized values of weights, which meet the condition
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that
∑n

i = 1 wi = 1, wi ≥ 0. In many models for perceiving the relative ratios of weights, however,
non-normalized values are used in the form of whole numbers or amounts in percentages [2].
The percentage value of the weight of one criterion denotes a part of the overall preference attributed
to that criterion.

The determination of the values of criteria weights is a special problem in multi-criteria
optimization, so numerous models have been developed to solve it. Multi-criteria optimization
models are well-known for their sensitivity to change in the vector of weight coefficients, so minor
modifications in the values of the mentioned vector can cause a major change in the order of the
significance of alternatives in the model. Therefore, special attention has been devoted to studying
these models in the literature dealing with multi-criteria optimization [3–6].

Studying the available literature allows us to notice that there is no unique classification of
methods used for the determination of criteria weights, and their classification was, for the most
part, performed in compliance with the author’s understanding of and needs regarding the solving
of a concrete practical problem. Therefore, in [7], the classification of criteria weight determination
methods is given, and groups them into objective and subjective approaches. Objective models imply
the calculation of criteria weight coefficients based on the value(s) of the criterion/criteria in the initial
decision-making matrix. The most well-known objective models include the Entropy method [8], the
CRiteria Importance Through Intercriteria Correlation (CRITIC) method [9], and the FANMA method
(named after the authors Fan and Ma) [10].

On the other hand, subjective models include the application of a methodology implying the direct
participation of decision-makers, who express their preferences according to the significance of criteria.
There are several ways in which weights of criteria are obtained through the subjective approach, which
may differ from each other in terms of the number of participants in the process of the determination
of weights, the methods applied, and the manner in which the final criteria weights are formed.
The group of subjective models used to aggregate partial values in multi-attribute analysis methods
includes the trade-off method [11], which enables identification of the decision-maker’s dilemmas
through pairwise comparisons; the swing weight method [12], which involves the construction of two
extreme hypothetical scenarios; the worst (W) and the best (B) method, in which the first scenario (W)
is constructed based on the worst values of all criteria, and the second scenario (B) corresponds to
the best values; the Simple Multi-Attribute Rating Technique (SMART) method [13], which includes a
procedure for the determination of criteria weights based on comparing criteria with the best and the
criteria from within the defined set of criteria; and SMART Exploiting Ranks (SMARTER), which was
developed by [13] and which represents a new version of the SMART method. SMARTER uses the
centroid method for ranking the criteria for the determination of weight coefficients.

Apart from the above-mentioned subjective approaches, there are also approaches exclusively
based on criteria pairwise comparisons, and such approaches are referred to as pairwise comparison
methods. The pairwise comparison method was first introduced by Thurstone [14], and it represents a
structured way of producing a decision matrix. Pairwise comparisons (performed by an expert or a
team of experts) are used to demonstrate the relative significance of m actions in situations in which it
is impossible or senseless to assign marks to actions in relation to criteria. In pairwise comparison
methods, the decision-maker compares the observed criterion/action with other criteria/actions, and
determines the level of significance of the observed criterion/action. An ordinal scale is used to help
determine the magnitude of the preference for one criterion over another. One of the most frequently
used methods based on pairwise comparisons is the method of the Analytic Hierarchy Process
(AHP) [15]. Apart from the AHP, the pairwise comparison methods include the Decision-Making Trial
and Evaluation Laboratory (DEMATEL) method [16]; the Best Worst Method (BWM) [17]; the resistance
to change method [18], which has elements of the swing method and pairwise comparison methods;
and the Step-Wise Weight Assessment Ratio Analysis (SWARA) method [19]. In pairwise comparison
methods, for example, in the AHP, weights are determined based on pairwise comparisons of criteria,
and the results are generated from pairwise comparisons of alternatives with criteria. After that, by
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means of the usefulness function, the final values of alternatives are calculated. A very significant
challenge in pairwise comparison methods arises from a lack of consistency of comparison matrices,
which is frequently the case in practice [20]. Each of these methods has a wide application in the various
areas of science and technology, as well as in solving real-life problems. The AHP method is used
in [21] to make a strategic decision in a transport system. In [22], this method is employed to determine
the significance of criteria in evaluating different transitivity alternatives in transport in Catania. In [23],
the AHP method is using to identify and evaluate defects in the passenger transport system, whereas
in [24], it is applied to select an alternative to the electronic payment system. Stević et al. [25] carried
out site selection of a logistics center by applying the AHP method. In [26], the DEMATEL method is
employed to analyze the risk in mutual relations in logistics outsourcing. Additionally, in [27], the
authors proposed a two-phase model which aims to evaluate and select suppliers using an integrated
Fuzzy AHP and Fuzzy Technique for Ordering Preference by Similarity to Ideal Solution (FTOPSIS)
methods. Integration of the DEMATEL method is not rare, so in [27], along with the Analytic Network
Process (ANP) and Data Envelopment Analysis (DEA), a decision is made on the choice of the 3PL
logistics provider. The SWARA method is used in [28] to select the 3PL in the sustainable network of
reverse logistics and a rough form [29] for the purpose of determining the significance of criteria to
the procurement of railroad wagons. Moreover, the application of the SWARA method can be seen
in [30–46]. BWM is a method that has increasingly been applied in a short period of time [47–70]. Some
authors [55–57,61,67,71–73] see this method as an adequate substitute for the AHP. Its major advantage
is the smaller number of pairwise comparisons (2n− 3) involved compared to the AHP.

Weight coefficients represent a means calibrating decision-making models and the quality
of a decision made directly depends on the quality of their definition. The reason for studying
this problem lies in the fact that each subjective method used for the determination of criteria
weights has both advantages and disadvantages. In this research study, subjective methods based on
pairwise comparisons of criteria, more precisely, the BWM and AHP models, as the highest-sounding
representatives of this group of methods, are analyzed. Their advantages and disadvantages are
analyzed. Based on the identification of the weaknesses of these models, a new approach to the
determination of weight coefficients that involves forming a non-decreasing series at criteria significance
levels (the NDSL model) is proposed. The NDSL model includes the application of an original algorithm
to the grouping of criteria according to significance levels, through which the need to predefine the
ordinal scale for the pairwise comparison of criteria is eliminated. Criteria are grouped according
to significance levels in relation to the most significant criterion. After their grouping according to
significance levels, the numerical values of the significance of the criteria are determined in accordance
with the decision-maker’s preferences. By employing this procedure, results which are fully consistent
and also represent the real relationships defined by experts’ preferences are obtained. The proposed
model eliminates the deviations from experts’ preferences that appear in the AHP model, since the
NDSL’s results are always consistent. We highlight this since an increase in the consistency ratio in the
AHP leads to the distortion of experts’ preferences and the values of weight coefficients deviate from
the optimal values. This is what frequently appears in the mentioned models and most often, it is a
consequence of using the 9-degree scale characterized by limited possibilities of expressing experts’
preferences [74].

This paper has several goals. The first goal of the paper is to present a new model for the
determination of criteria weight coefficients which enables a rational expression of the decision-maker’s
preferences with a minimal number of comparisons—n − 1. The second goal of the paper is to develop
a model for the determination of criteria weight coefficients which always generates consistent results.
The third goal of the paper is to eliminate the 9-degree scale for the expression of experts’ preferences in
pairwise comparison models through defining an original algorithm for comparing criteria according
to the levels of significance. By forming significance levels, the shortcomings of the 9-degree scale,
which include (1) its limited flexibility while expressing experts’ preferences and (2) inconsistencies
during criteria pairwise comparisons, are eliminated [74].
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The rest of the paper is organized in the following manner: in the next section (Section 2),
the mathematical bases of the NDSL model are presented, and the algorithm demonstrating the
performance of the seven steps for defining criteria weight coefficients is presented; in Section 3, the
NDSL model is tested on a real-world problem, and a comparison of the results with those of the BWM
and AHP models is made; conclusive considerations and directions for future research studies are
given in Section 4.

2. Model for Determining Weight Coefficients by Forming a Non-Decreasing Series at Criteria
Significance Levels

Allow us to assume that, in a multi-criteria model, there is a set S containing n evaluation criteria
S = {C1, C2, . . . , Cn}, and that the weight coefficients of the criteria have not been predefined, i.e., that
weight coefficients need to be determined. Allow us also to assume that, in that multi-criteria problem,
the criteria C1, C2, . . . , , Cn are ordered according to their significance (strength). Therefore, the weight
coefficients of the criteria satisfy the relationships in which w1 ≥ w2 ≥ . . . ≥ wn ≥ 0, with the condition
that the criteria weights are normalized and meet the condition stipulating that

∑n
i = 1 wi = 1.

Theorem 1. For a randomly chosen real (natural) number N, which is such that N > n (where n represents the
number of criteria in the multi-criteria model), and if the criterion C1 and the criterion Cx, x ∈ {1, 2, . . . , n}, are
assigned the sum of 2N, then it is possible to determine the number αx, which is such that it fulfils the ratio
between the criteria:

C1 : Cx = (N + αx) : (N − αx). (1)

Proof. The proof of this ratio is obvious, since, for x = 1, we evidently obtain C1 : C1 = (N + α1) :
(N − α1), i.e., we obtain α1 = 0, i.e., we obtain C1 : C1 = N : N, i.e., the ratio C1 : C1 = 1.

If we assume that the ratio C1 : Cx = tx, then we also obtain N+αx
N−αx

= tx ≥ 1, from which it
follows that N + αx = Ntx − αxtx, i.e.,

αx = N ·
tx − 1
tx + 1

, (2)

where αx represents a non-negative number for the given x ∈ {1, 2, . . . , n}. �

Corollary 1. If the criterion Cx has a greater or equal significance (weight) for the criterion Cy, then the
condition tx ≥ ty is met, from which it follows that αx ≥ αy.

Proof. The proof for Corollary 1 is evident, since it arises from Theorem 1:
If Cx ≥ Cy, then we have C1 : Cx ≥ C1 : Cy. Since C1 : Cx = tx and C1 : Cy = ty, then we have

tx ≥ ty and αx ≥ αy. �

It follows from Corollary 1 that a non-decreasing series of numbers can be attributed to the series
of the criteria ordered according to significance, i.e.,

α1, α2, α3, . . . , αn. (3)

Based on Theorem 1, it is possible to conclude that α1 = 0. Since we have

C1 : C1 = (N + α1) : (N − α1)→ C1(N − α1) = C1(N + α1),

then N − α1 = N + α1 and we have α1 = 0.
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Additionally, based on Theorem 1, a new series (4) can be formed from the already formed series
of elements (3), i.e.,

N + α1

N − α1
,

N + α2

N − α2
, . . . ,

N + αn

N − αn
. (4)

The non-decreasing series of elements that is presented by the expression (4) represents a series of
ratios of the significance (strength) of the criterion C1 against the other criteria from within the S set of
criteria. Based on the condition (1), the series of elements (4) can be represented as a non-decreasing
series of weight coefficients of the criteria of the multi-criteria model, which is such that

w1 = w1, w2 =
N − α2

N + α2
·w1, w3 =

N − α3

N + α3
·w1, . . . , wn =

N − αn

N + αn
·w1. (5)

Based on the expression (5) and the condition that the sum of all weight coefficients of criteria of

the multi-criteria model is equal to one, i.e.,
n∑

j = 1
w j = 1, the following is obtained:

w1 ·

1 +
n∑

j = 2

N − α j

N + α j

 = 1. (6)

Therefore, it follows from this that the weight coefficient of the most influential (best) criterion is
obtained as

w1 =
1

1 +
n∑

j = 2

N−α j
N+α j

. (7)

It follows from the condition (1) that w1 : wi = (N + αi) : (N − αi), i.e., wi = w1 ·

(N − αi)/(N + αi), from which the weight coefficients of the remaining criteria are obtained:

wi =

N−αi
N+αi

1 +
n∑

j = 2

N−α j
N+α j

; i = 2, 3, . . . , n. (8)

2.1. Forming a Non-Decreasing Series at Criteria Significance Levels

The basic idea of forming a criteria classification level precisely reflects the need to determine the
significance of criteria and eliminate the limitations of using predefined scales for expressing experts’
preferences. The basic limitation of using scales for expressing experts’ preferences in subjective models,
such as the AHP, BWM, and DEMATEL, relates to the small range of values of such scales, as well as
the nonlinearity of the scale (in the AHP). The insufficient range of values makes the development
of an objective expression of experts’ preferences more difficult, which is particularly pronounced
when comparing a larger number of criteria. Therefore, for example, the range of values for the scale
employed in the AHP and BWM is from 1 to 9. Should there be a larger number of criteria (for example,
seven) in the considered problem, experts’ comparisons are made more difficult due to the small
number of values in the scales. The 9-degree scale also implies that the greatest ratio between the
weights of the best (CB) and worst (CW) criteria is limited to 9, i.e., CB:CW = 9:1. If, however, an expert
considers the ratio CB:CW to be greater than 9:1 and the CB:CW = 15:1, then such a preference cannot
be presented. In order for experts to express preferences of this kind by applying the 9-degree scale,
they are forced to distort their preferences, which leads to the deviation of weight values from the
optimal values.

By introducing the level of criteria significance, experts are given a possibility to form as many
criteria significance levels L j, j ∈ {1, 2, . . . , k} as they need for expressing their preferences. Within
the framework of significance levels, criteria are roughly classified according to experts’ preferences.
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Forming significance levels, i.e., grouping criteria according to levels, is performed by adhering to the
following rules:

• Level L1: At the L1 level, the criteria from within the set S whose significance is equal to the
significance of the criterion C1 or up to two times as small as the significance of the criterion C1

should be grouped. The criterion Ci belonging to the L1 level will be presented as Ci ∈ [1, 2), i ∈
{1, 2, . . . , n};

• Level L2: At the L2 level, the criteria from within the set S whose significance is exactly two times
as small as the significance of the criterion C1 or up to three times as small as the significance of
the criterion C1 should be grouped. The criterion Ci belonging to the L2 level will be presented as
Ci ∈ [2, 3), i ∈ {1, 2, . . . , n};

• Level L3: At the L3 level, the criteria from within the set S whose significance is exactly three times
as small as the significance of the criterion C1 or up to four times as small as the significance of the
criterion C1 should be grouped. The criterion Ci belonging to the L3 level will be presented as
Ci ∈ [3, 4), i ∈ {1, 2, . . . , n};

• Level Lk: At the Lk level, the criteria from within the set S whose significance is exactly k times as
small as the significance of the criterion C1 or up to k + 1 times as small as the significance of the
criterion C1 should be grouped. The criterion Ci belonging to the Lk level will be presented as
Ci ∈ [k, k + 1), i ∈ {1, 2, . . . , n}.

After grouping criteria as per the levels L j, j ∈ {1, 2, . . . , k}, experts express their preferences through
a numerical comparison of the criteria by means of the significance of the criteria (αi). Therefore, based
on the value αi, a fine classification of the criteria is conducted within the observed level. The values of
the significance of the criteria (αi) within every level L j, j ∈ {1, 2, . . . , k}, are defined based on experts’
preferences; the final values αi within every level L j need to be defined. In the following part, the
boundary values of the significance of the criteria (αi) within the level L j, j ∈ {1, 2, . . . , k} are defined.

If the significance of the criterion Ci is expressed as αi, where i ∈ {1, 2, . . . , n}, then subset of the
criteria is formed for each criteria level, which together make the criteria set S. Then, it follows that
L j = L1 ∪ L2 ∪ · · · ∪ Lk, and for every level j ∈ {1, 2, . . . , k},

L j =
{
C j1 , C j2, . . . , C js

}
=

{
Ci ∈ S : j ≤ αi < j + 1

}
. (9)

Based on the previously defined relations, it is possible to define the boundaries within which
the values of the significance of the criteria (αi) move for each observed level L j, j ∈ {1, 2, . . . , k}. If
the criterion Ci belongs to the level L j, j ∈ {1, 2, . . . , k} is presented as Ci ∈ [t j, t j + 1), i ∈ {1, 2, . . . , n},
j ∈ {1, 2, . . . , k}, and then, based on the relation (2), we can obtain the following:

• Level L1: For Ci ∈ [1, 2), i.e., for t1 = 1, it follows that αi = 0, whereas for t1 = 2, we obtain
αi = N/3. Therefore, it follows that the values of the significance of the criteria (αi) at the L1

level range in the interval 0 ≤ αi < N/3, i.e., Ci ∈ [1, 2)⇒ 0 ≤ αi < N/3 ;
• Level L2: For Ci ∈ [2, 3), i.e., for t2 = 2, it follows that αi = N/3, whereas for t1 = 3, we obtain

αi = N/2. The values of the significance of the criteria (αi) at the L2 level range in the interval
N/3 ≤ αi < N/2, i.e., Ci ∈ [2, 3)⇒ N/3 ≤ αi < N/2 ;

• Level Lk: For Ci ∈ [k, k + 1), i.e., for tk = k, it follows that αi = N · (k− 1)/(k + 1),
whereas for tk = k + 1, we obtain αi = N · k/(k + 2). The values of the significance of
the criteria (αi) at the Lk level range in the interval N · (k− 1)/(k + 1) ≤ αi < N · k/(k + 2), i.e.,
Ci ∈ [k, k + 1)⇒ N · (k− 1)/(k + 1) ≤ αx < N · k/(k + 2) .

Example 1. If we assume that the criteria are grouped at three levels L j, j ∈ {1, 2, 3}, and if we take that N = 50,
then we can define the interval in which the values of the significance of the criterion Ci within the level L j should
range. By applying the previously defined relationships, we obtain the result that the values αi range within the
level L j, j ∈ {1, 2, 3}, in the following intervals:
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1. Level L1: Ci ∈ [1, 2)⇒ 0 ≤ αi < N/3 , then we have Ci ∈ [1, 2)⇒ 0 ≤ αx < 50/3 ;
2. Level L2: Ci ∈ [2, 3)⇒ N/3 ≤ αi < N/2 , then we have Ci ∈ [2, 3)⇒ 50/3 ≤ αx < 25 ;
3. Level L3: Ci ∈ [3, 4)⇒ N · 2/4 ≤ αx < N · 3/5 , then we have Ci ∈ [3, 4)⇒ 25 ≤ αx < 30 .

From the relations presented for the determination of the boundary values of the significance
of the criteria (αi), i.e., from experts’ preferences within the level L j, j ∈ {1, 2, . . . , k}, we may perceive
that the breadth of the interval N · (k− 1)/(k + 1) ≤ αx < N · k/(k + 2) depends on the value of the
real (natural) number N. A broader interval and, simultaneously, a more comfortable scale with fewer
decimal values for expressing experts’ preferences, are obtained for greater values of the number N,
such as N ≥ n2; vice versa, a scale with a larger number of decimal values for expressing experts’
preferences is obtained for smaller values of the number N, such as n < N < n2.

Based on Theorem 1, while performing a comparison of any criterion Ci with the criterion C1

(where C1 is the most influential criterion), the NDSL model ensures that the number 2N is added
to the criteria. Simultaneously, a part greater than or equal to 2N belongs to the criterion C1, as the
most significant criterion, whereas a smaller or equal part belongs to the criterion Ci. If the problem
of defining the number N is observed from an economic standpoint, and if we take N = 50, then this
problem can be observed in ordinary economic terms, i.e., in percentages (p%). If p ≥ 50, then it belongs
to the criterion C1, while (1−p)% belongs to the criterion Ci. Since expressing in percentages is a normal
thing to do during a pairwise comparison, the authors propose that N = 50 should be taken for the
values of the number N for solving real problems.

2.2. Steps of the NDSL Model

Based on the previously demonstrated mathematical bases of the NDSL model, the steps that
should be taken in order to obtain the weight coefficients of criteria are systematized in this section.
In Phase One, a set of evaluation criteria is formed, and the criteria are further ranked in accordance
with experts’ preferences. In Phase Two, the levels of significance of the criteria are formed and the
criteria significance level is determined within each level. Finally, the weight coefficients of the criteria
are calculated in Phase Three. Figure 1 schematically presents the phases through which the NDSL
model is implemented.

The NDSL model includes the calculation of the weight coefficients of criteria through the seven
steps presented in the next part of the paper.

Step 1: Determining the most significant criterion from within the set of criteria
S = {C1, C2, . . . , Cn}. Allow us to assume that the decision-maker has chosen the criterion C1 as the
most significant, and allow us to assume that C1 is a criterion from within the set S = {C1, C2, . . . , Cn},
which is the most significant in the decision-making process.

Step 2: Ranking the criteria from within the defined set of evaluation criteria S = {C1, C2, . . . , Cn}.
Ranking is performed according to the significance of the criteria, i.e., from the most significant criterion
to the criterion of the least significance. In that manner, we obtain the criteria ranked according to the
expected values of weight coefficients:

C1 > C2 > . . . > Cn, (10)

where n represents the total number of the criteria. If it is estimated that there are two or several criteria
with the same significance, instead of the sign “>”, the sign “=” is placed in-between those criteria in
the expression (10).
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Figure 1. The non-decreasing series at criteria significance levels (NDSL) model.

Step 3: Grouping the criteria according to the significance levels. Allow us to assume that
experts have grouped the criteria as per levels in accordance with their preferences, depending on the
significance of the criteria. Grouping criteria as per levels is performed according to the rules defined
in the previous section of the paper, namely:

• Level L1: At the L1 level, the criteria from within the set S whose significance is equal to the
significance of the criterion C1 or up to two times as small as the significance of the criterion C1

should be grouped. The criterion Ci belonging to the L1 level will be presented as Ci ∈ [1, 2), i ∈
{1, 2, . . . , n};

• Level L2: At the L2 level, the criteria from within the set S whose significance is exactly two times
as small as the significance of the criterion C1 or up to three times as small as the significance of
the criterion C1 should be grouped. The criterion Ci belonging to the L2 level will be presented as
Ci ∈ [2, 3), i ∈ {1, 2, . . . , n};

• Level Lk: At the Lk level, the criteria from within the set S whose significance is exactly k times as
small as the significance of the criterion C1 or up to k + 1 times as small as the significance of the
criterion C1 should be grouped. The criterion Ci belonging to the Lk level will be presented as
Ci ∈ [k, k + 1), i ∈ {1, 2, . . . , n}.

By grouping criteria as per levels, rough expert preferences for the criteria from within the set
S = {C1, C2, . . . , Cn} are expressed. The precise definition of experts’ preferences is expressed via the
significance of the criteria (αi). The boundary values of αi as per levels are presented in the next step.

Step 4: Defining the boundary values of the significance of criteria (αi) as per levels. When defining
the boundary values of the significance of criteria, the following relations should be adhered to:

• Level L1: For Ci ∈ [1, 2), the values of the significance of criteria (αi) range in the interval
0 ≤ αi < N/3, i.e., Ci ∈ [1, 2)⇒ 0 ≤ αi < N/3 ;
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• Level L2: For Ci ∈ [2, 3), the values of the significance of criteria (αi) range in the interval
N/3 ≤ αx < N/2, i.e., Ci ∈ [2, 3)⇒ N/3 ≤ αi < N/2 ;

• Level Lk: For Ci ∈ [k, k + 1), the values of the significance of criteria
(αi) range in the interval N · (k− 1)/(k + 1) ≤ αi < N · k/(k + 2), i.e.,
Ci ∈ [k, k + 1)⇒ N · (k− 1)/(k + 1) ≤ αx < N · k/(k + 2) .

Step 5: Presenting experts’ preferences as per levels. Based on the defined boundary values αi,
experts express their preferences in accordance with the significance of the criteria. Every criterion
Ci ∈ S within the level L j, j ∈ {1, 2, . . . , k} is assigned the value αi. Therefore, since it is the most
significant criterion, the criterion C1 is assigned the value α1 = 0. The rest of the criteria are assigned
appropriate values αi in compliance with the significances of the criteria. If the criterion Ci has a
greater significance than the criterion Ci+1, then it is considered that αi < αi+1, or if the criterion Ci has
a significance equal to that of the criterion Ci+1, then it is considered that αi = αi+1.

Step 6: Defining the f (Ci) criteria significance functions. The f : S→ R criteria significance
function is defined in that manner. For each criterion Ci ∈ S, it is possible to define a criteria significance
function by applying the following expression:

f (Ci) =
N − αi
N + αi

, (11)

where i ∈ {1, 2, . . . , n}, αi represents the significance of the criterion assigned to the criterion Ci within
the observed level, whereas N represents a real (natural) number.

Step 7: Calculating the optimal values of criteria weight coefficients. If the most influential
criterion is marked as C1, then, by applying the expression (12), it is possible for us to calculate the
weight coefficient of the criterion C1, i.e.,

w1 =
1

1 +
n∑

j = 2
f (C j)

, (12)

where f (C j) represents the criteria significance function.
The weight coefficients of the remaining criteria from within the set S are obtained by applying

the following expression (13):

wi =
f (Ci)

1 +
n∑

j = 2
f (C j)

, (13)

where f (Ci) represents the function of the significance of criteria whose weight coefficient is being
calculated, whereas f (C j) represents the functions of the significance of all criteria (without the function
of the significance of the most significant criterion).

The application of all multi-criteria models is aimed at selecting an alternative with the best final
value of the criteria function. The total value of the criteria function fl (l = 1,2,..,m) alternative l can be
obtained through the transformation of the NDSL model into a classical multi-criteria model by the
application of the expression (14). By applying the simple additive weighted value function (14), which
is the basic model for the majority of MCDM methods, the algorithm of the NDSL model transforms
into a classical multi-criteria model, which can be used to evaluate m alternative solutions as per n
optimization criteria.

fl =
n∑

i = 1

wixi j, (14)

where wi represents the values of the weight coefficients, whereas xi j represents the values of the
alternatives as per the optimization criteria in the decision-making initial matrix X =

[
xi j

]
m×n

.
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3. Application of the NDSL Model

This section is a demonstration of the application of the presented model for solving a real-world
problem. With the aim of understanding the presented algorithm as easily as possible, the application
of the NDSL model for solving the simple problem of evaluating a car, which a large number of people
are faced with every day, is presented. The subject matter of consideration was the problem of selecting
an optimal car from a set of cars by applying a larger number of criteria. For the purpose of this study,
the criteria defined in the study [74] were considered.

The subject matter of consideration was the example in which the car buyer is evaluating
the alternatives by observing the following five criteria: The quality (C1), the price (C2),
convenience/comfort (C3), the safety level (C4), and the interior (C5). If we accept the condition that
N ≥ n2, i.e., N = 25, then we can determine the weight coefficients of the criteria by the NDSL model
as follows:

Step 1: Determining the most significant criterion from within the set of criteria
S = {C1, C2, . . . , C5}. Allow C1 to be selected as the most significant criterion;

Step 2: The criteria from within the set of criteria S = {C1, C2, . . . , C5} are ranked as follows: C2
> C1 = C4 > C3 > C5;

Step 3: Grouping the criteria as per significance levels. The criteria are grouped into sets at four
levels, as follows:

• Level L1:{C2};
• Level L2:{C1, C4};
• Level L3:{C3};
• Level L4, L5, L6, L7: ∅;
• Level L8:{C5}.

At the first level, the criterion C2 is positioned as the most significant criterion, i.e., C2 ∈ [1, 2).
Since it has been estimated that the significance of the remaining criteria is more than two times as
small as that of the criterion C2, they are classified as the other significance levels. At the second level,
there are the criteria C1 and C4, because they have been estimated to have a weight coefficient which
is two to three times as small as that of the criterion C2, i.e., C1, C4 ∈ [2, 3). The criterion C3 is at the
third level, since its weight coefficient is three to four times as small as that of the criterion C2, i.e.,
C3 ∈ [3, 4). The criterion C5 is at the eighth level, since its weight coefficient has been estimated to be
between eight and nine times as small as the weight coefficient of the most significant criterion (C2),
i.e., C5 ∈ [8, 9);

Step 4: Based on the relations for defining the boundary values of the criteria significance (αi), we
can determine the intervals for αi at every significance level, as follows:

Level L1 : αi ∈ [0.00, 8.33);
Level L2 : αi ∈ [8.33, 12.5);
Level L3 : αi ∈ [12.5, 15.0);

Level L8 : αi ∈ [19.44, 20.0).

Step 5: Based on the defined intervals of the criteria significance (αi), the experts’ preferences as
per levels are presented:

Level L1 : α2 = 0
Level L2 : α1 = α4 = 8.33

Level L3 : α3 = 14.9
Level L8 : α5 = 19.5

Based on the presented values of αi, it is possible to conclude the following:

(1) For Level One: Since the criterion C2 is the most significant criterion, it has been assigned the
value α1 = 0.;
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(2) For Level Two: The criteria C1 and C4 have been estimated to have the same significance, which
is exactly twice as small as the significance of the criterion C2, so they have been assigned the
value α1 = α4 = 8.33;

(3) For Level Three: The significance of the criterion C3 has been estimated to be slightly less than
four times as small as the significance of the criterion C2, so it has been assigned the value
α4 = 14.9;

(4) For Level Eight: The significance of the criterion C5 has been estimated to be slightly more than
eight times as small as the significance of the criterion C2, so it has been assigned the value
α4 = 19.5;

Step 6: By applying the expression (11), the functions of the significance of the criteria f (Ci),
i = 1, 2, . . . , 5, were defined as follows:

f (C2) = 1.000
f (C1) = 0.500
f (C4) = 0.500
f (C3) = 0.253
f (C5) = 0.124

Step 7: Since the criterion C2 is defined as the most influential criterion, by applying the expression
(12), it is possible to calculate the weight coefficient of the most significant criterion:

w2 =
1

1 +
5∑

j = 2
f (C j)

=
1

1 + 0.500 + 0.500 + 0.253 + 0.124
= 0.421.

The weight coefficients of the remaining criteria are obtained by applying the following
expression (13):

w1 = 0.500
1+0.500+0.500+0.253+0.124 = 0.210

w4 = 0.500
1+0.500+0.500+0.253+0.124 = 0.210

w3 = 0.253
1+0.500+0.500+0.253+0.124 = 0.106

w5 = 0.124
1+0.500+0.500+0.253+0.124 = 0.052

In that way, the vector of the weight coefficients wi = (0.210, 0.421, 0.106, 0.210, 0.052)T is obtained.

4. Comparison and Discussion

In this section, based on the presented methodology, the advantages of the NDSL model that make
the model a reliable and interesting multi-criteria model are singled out. The advantages of the NDSL
model are presented through a comparison with known methodologies employed for the determination
of criteria weight coefficients. The BWM and AHP methods were singled out for the purpose of the
comparison, since the validity of both methodologies is based on the satisfaction of the condition of
the transitivity of relations and a pairwise comparison. Additionally, other reasons for comparing
the model with the BWM and AHP methods are the quality of the results and the widespread use
of the BWM and AHP models by the scientific community for successfully solving numerous real
world problems. Bearing in mind the fact that the NDSL model is methodologically based on an
assessment of the comparative significance of criteria and satisfaction of the condition of transitivity, a
comparison with the BWM and AHP models is a logical step for conducting a comparison of the results
and validation of the model. In the following part, the application of the BWM and AHP methods is
presented for the same example in which the NDSL model was tested in the previous chapter.

The algorithm of the BWM implies the formation of the Best-to-Others (BO) and the
Others-to-Worst (OW) vector [75]: AB = (2, 1, 4, 2, 8)T and AW = (4, 8, 2, 4, 1)T, respectively.
By applying the BWM, the optimal values of the weight coefficients were obtained, namely,
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w1 = 0.2105, w2 = 0.4211, w3 = 0.1053, w4 = 0.2105, w5 = 0.0526, and a consistency
ratio (CR) CR = 0.00.

Based on the data from [75], a pairwise comparison matrix of the AHP model (Table 1) was formed,
and the values of the weight coefficients of criteria, with a consistency ratio CR = 0.029, were obtained.

Table 1. Criteria pairwise comparison—the Analytic Hierarchy Process (AHP) method.

Criteria C1 C2 C3 C4 C5 Wj

C1 1.000 0.333 3.000 1.000 5.00 0.202
C2 3.000 1.000 5.000 3.000 7.00 0.464
C3 0.333 0.200 1.000 0.333 3.00 0.089
C4 1.000 0.333 3.000 1.000 5.00 0.202
C5 0.200 0.143 0.333 0.200 1.00 0.044

By applying the AHP method, the values of the weight coefficients of criteria similar to those in the
BWM were obtained, but with a significantly larger number of pairwise comparisons. The differences
in the values of the weight coefficients between the AHP and BWM are a consequence of the incomplete
consistency of the results in the AHP model (CRAHP = 0.029 and CRBWM = 0.000). A comparative
presentation of the results of all three approaches is shown in Table 2.

Table 2. A comparative presentation of the results obtained by applying the NDSL, Best Worst Method
(BWM), and AHP methods.

Criteria AHP (wi) BWM (wi) NDSL (wj)

C1 0.202 0.210 0.210
C2 0.464 0.421 0.421
C3 0.089 0.106 0.106
C4 0.202 0.210 0.210
C5 0.044 0.052 0.052

CR 0.029 0.000 -

Table 2 allows us to notice that identical values of the weight coefficients of criteria were obtained
by applying the BWM and NDSL models. By applying the AHP, the values obtained deviate to a
certain extent from the weights of the BWM and NDSL models. The solution obtained by the AHP
model is also acceptable, since the values of the consistency ratio are within the permitted boundaries,
i.e., CR ≤ 0.1. We need to emphasize the fact that, by applying the BWM and NDSL models to this
example, completely consistent results were obtained, which was also confirmed by the calculation
made, i.e., CRBWM = 0.00. Comparing criteria by applying a 9-degree scale (in the BWM), however,
often leads to inconsistent results. Different from the BWM and AHP models, consistent results are
always obtained when using the NDSL model because it applies an original methodology for grouping
criteria as per significance, within which transitivity relations between criteria are retained. In the
next part of the paper, a discussion is presented through a comparison of the NDSL model with the
BWM and AHP models. The discussion aims to point to the limitations of the BWM and AHP models,
which are eliminated by the application of the NDSL model. The discussion is organized through the
following: (1) a comparative presentation of the number of criteria pairwise comparisons needed in
the analyzed models; (2) the impact of the measuring scale on the results of the BWM, AHP, and NDSL
models; (3) the consistency of the results of the analyzed models; (4) the problem of defining the best
and worst criteria in the BWM and NDSL models; and (5) the problem of multi-optimality in the BWM.

In the AHP method, n(n − 1)/2 pairwise comparisons need to be made, whereas the algorithm
of the BWM implies 2n − 3 comparisons. An increase in the number of criteria in the BWM and
AHP models leads to a significant increase in the number of pairwise comparisons, through which
the mathematical formulation of the mentioned models is, to a great extent, made more complex.



Mathematics 2020, 8, 745 13 of 18

This makes the validation of the results and the impossibility of obtaining satisfactory values of the CR
more complex. On the other hand, in relation to the presented subjective models (the AHP method
and BWM), the NDSL only requires an n − 1 comparison in pairs of criteria, so the mathematical
formulation of the model is made more complex as the number of criteria increases. Apart from that,
the presented methodology enables us to transfer mathematical transitivity as per significance levels,
which produces maximally consistent results for the comparison.

In the case of a larger number of criteria (more than eight), it is difficult to obtain fully consistent
results in the BWM and AHP models. That is a consequence of the small range of the 9-degree scale
used in these models. The 9-degree scale limits the expression of experts’ preferences to a maximum
ratio of 9:1. This limitation further imposes an inconsistency in comparisons. This assertion will be
illustrated by the example of an evaluation of suppliers A, B, and C. If suppliers B and C differ from
each other a little in terms of the quality of the delivery, the company has a possibility to assign them
the values 9 and 8 when comparing them with supplier A. Now, given the fact that there is a small
difference between suppliers B and C, that difference cannot consistently be expressed by means of the
9-degree scale. In that situation, there is no other possibility but to assign the value 1, through which
the same significance is assigned to suppliers B and C [76]. Another example is as follows: should
alternative A be preferable to B, and should B be better than C (mark: 7), once A is compared with C,
the highest available result is 9, which creates an inconsistency. Similar inconsistencies caused by the
9-degree scale also appear in the BWM, but can be eliminated by the implementation of different scales.

These inconsistencies in comparisons are eliminated in the NDSL model. The NDSL model applies
a different logic for criteria comparison, which is performed in two steps. The first step involves
grouping criteria according to the significance levels, whereas in the second step, an expert evaluation
of criteria is carried out through the scale defined for every level individually. By forming a criteria
significance level, the shortcoming of the predefined scale of values is eliminated. The NDSL model
enables us to form the needed number of such levels, which implies that experts have a sufficient
freedom to express the realistic advantages of the most significant criterion in relation to other criteria.

The results of the NDSL model do not require the consistency of the results to be checked because,
in the first step of the model, weight coefficients are ranked in relation to the most significant criterion.
Therefore, transitivity relations between criteria are formed in the first step. Those relations are retained
throughout the model by forming a non-decreasing series as per significance levels, so the results of
the model are simultaneously also always consistent. On the other hand, the BWM and AHP models
require the consistency of solution(s) to be checked and validation of the results obtained. The 9-degree
scale and a large number of comparisons frequently undermine the transitivity between criteria in
both models, which leads to an increase in the CR and the boundary values being exceeded.

5. Conclusions

In this paper, a new model for determining the weight coefficients of criteria in multi-criteria
models by forming a non-decreasing series at criteria significance levels (NDSL) is presented. The NDSL
model involves forming a non-decreasing series based on criteria significance levels. The mathematical
formulation of the NDSL model is systematized in the second section of the paper, and an algorithm,
which is implemented through seven steps, is proposed. With the aim of presenting the applicability
of the new model, its application in decision-making in a real-world problem is demonstrated.
A comparison of the results of the NDSL model and the results of the BWM and AHP models is also
presented in the paper. It was demonstrated through a comparison with the mentioned models that
the NDSL model generates the same results as the existing models and enables elimination of the
weaknesses that exist in the BWM and AHP models.

The NDSL model has several interesting characteristics that make it a robust and interesting
model to apply in multi-criteria decision-making, namely due to the following facts: (1) the NDSL
model requires a significantly smaller number of comparisons in pairs of criteria, only needing an
n − 1 comparison, whereas the AHP requires an n(n − 1)/2 comparison and the BWM requires a 2n − 3
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comparison; (2) the model enables us to obtain consistent results, even in the case of a larger number
of criteria (more than nine criteria); (3) the NDSL model applies an original algorithm for grouping
criteria as per significance levels, through which the shortcomings of the 9-degree scale applied in
the BWM and AHP models are eliminated. In that way, the small range and inconsistency of the
9-degree scale are eliminated; (4) while the BWM includes defining a unique best/worst criterion, the
NDSL model eliminates this limitation and gives decision-makers the freedom to express relationships
between criteria in accordance with their preferences, irrespective of the number of best/worst criteria
in the model.

The NDSL model represents a tool which helps managers cope with their own subjectivity when
prioritizing criteria through a simple and logical algorithm. By employing the presented model, the
appearance of the inconsistency of experts’ preferences is eliminated through an original algorithm
requiring a small number of comparisons (n − 1). The authors believe that this approach gives experts
the opportunity to express their preferences in a natural way, by forming the level of significance of
criteria. Accordingly, it is expected that by forming the criteria significance level, the shortcomings and
limitations that exist in predefined assessment scales are eliminated. For example, when comparing
the best (CB) criterion with the Cx criterion, an expert knows that the CB criterion is 2.5 times more
significant than the Cx criterion. In pairwise comparison methods that use the Saaty scale, such a
relationship cannot be represented directly, since the Saaty scale involves only integer values. Through
the formation of significance levels, the expert is given the opportunity to classify the Cx criterion as
belonging to another level in a logical manner, or based on their preferences, since they already know
that the CB criterion is 2.5 times more important than the Cx criterion. From this, we can conclude
that the experts indirectly form the significance levels of the criteria. However, the mathematical
formulation of existing models for pairwise comparisons requires experts to represent the significance
of criteria by defining relationships over a numerical scale. In this way, criteria are indirectly grouped
into levels of significance. However, such a procedure can lead to a misrepresentation of the significance
of the criterion, which may be due to a misunderstanding of the mathematical apparatus of the method.
Bearing all of the above in mind, the authors believe that this formulation of the interrelation between
criteria enables the rational and logical expression of expert preferences, which further contributes to
objective decision making.

Bearing in mind the mentioned advantages of the NDSL, there is a need for the development
and implementation of software for real-world applications. Through such work, the model will be
brought significantly closer to users and will enable the exploitation of all of the advantages mentioned
in the paper. We also propose the application of the model in other real-world applications in which
the NDSL model would be used with other developed MCDM tools. This limitation has already been
eliminated. The authors developed a software solution in Microsoft Excel software while working on
this study. One of the directions of future research studies should be working towards the extension of
this model through the application of different theories of uncertainty, such as neutrosophic sets, fuzzy
sets, rough numbers, grey theory, and so forth. The extension of the NDSL through the application of
theories of uncertainty will enable the processing of experts’ preferences, even when comparisons are
made based on partly known or even very little-known data. This would enable an easier expression
of the decision-maker’s preferences, simultaneously respecting the subjectivities and shortcomings of
information about certain phenomena.
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for risk assessment in deep foundation excavation project: An Iranian case study. J. Civ. Eng. Manag. 2017,
23, 524–532. [CrossRef]

2. Milicevic, M.; Zupac, G. Subjective Approach to the Determination of Criteria Weights. Mil. Tec. Cour. 2017,
60, 48–70.

3. Belton, V. A comparison of the analytic hierarchy process and a simple multiattribute value function. Eur. J.
Oper. Res. 1986, 26, 7–21. [CrossRef]

4. Zanakis, S.H.; Solomon, A.; Wishart, N.; Dublish, S. Multi-attribute decision making: A simulation comparison
of select methods. Eur. J. Oper. Res. 1998, 107, 507–529. [CrossRef]

5. Triantaphyllou, E. Multi-Criteria Decision Making Methods: A Comparative Study; Springer: New York, NY,
USA, 2000.

6. Opricovic, S.; Tzeng, G.-H. Extended VIKOR method in comparison with outranking methods. Eur. J. Oper.
Res. 2007, 178, 514–529. [CrossRef]

7. Tzeng, G.-H.; Chen, T.-Y.; Wang, J.C. A weight-assessing method with habitual domains. Eur. J. Oper. Res.
1998, 110, 342–367. [CrossRef]

8. Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana,
IL, USA, 1947.

9. Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems:
The CRITIC method. Comput. Oper. Res. 1995, 22, 763–770. [CrossRef]

10. Srdjevic, B.; Medeiros, Y.D.P.; Faria, A.S.; Schaer, M. Objektivno vrednovanje kriterijuma performanse sistema
akumulacija. Vodoprivreda 2003, 35, 163–176, 0350–0519. (In Serbian)

11. Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives; Wiley: New York, NY, USA, 1976.
12. Von Winterfeldt, D.; Edwards, W. Decision Analysis and Behavioral Research; Cambridge University Press:

Cambridge, UK, 1986.
13. Edwards, W.; Barron, H. SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility

Measurement. Organ. Behav. Hum. Decis. Process. 1994, 60, 306–325. [CrossRef]
14. Thurstone, L.L. A law of comparative judgment. Psychol. Rev. 1927, 34, 273. [CrossRef]
15. Saaty, T.L. Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
16. Gabus, A.; Fontela, E. World Problems an Invitation to Further Thought within the Framework of DEMATEL;

Battelle Geneva Research Centre: Geneva, Switzerland, 1972.
17. Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [CrossRef]
18. Roberts, R.; Goodwin, P. Weight approximations in multi-attribute decision models. J. Multi. Criteria Decis.

Anal. 2002, 11, 291–303. [CrossRef]
19. Keršuliene, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new

step-wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [CrossRef]
20. Herman, M.W.; Koczkodaj, W.W. A Monte Carlo study of pairwise comparison. Inf. Process. Lett. 1996, 57,

25–29. [CrossRef]
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