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Abstract: The weighted Szeged index (wSz) has gained considerable attention recently because of
its unusual mathematical properties. Searching for a tree (or trees) that minimizes the wSz is still
going on. Several structural details of a minimal tree were described. Here, it is shown a surprising
property that these trees have maximum degree at most 16, and as a consequence, we promptly
conclude that these trees are of large diameter.
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1. Introduction

Molecular descriptors are playing a crucial role in the QSPR/QSAR researches. As a side-effect of
the vigorous development of this area of science, a rise in the number of molecular descriptors has
occurred. This is especially noticed among the class of the so-called topological indices. Nowadays,
there are thousands of molecular descriptors. A vague idea on their number could be imagined by
reading the book [1].

A number of topological descriptors have been devised as extensions or modifications of the
previously known and well-performed indices (see [2–7] for the latest research on some of these
descriptors). The Szeged index (1) may be regarded as a descendant of the oldest and heavily used
Wiener index [8]. It is defined in the following manner:

Sz(G) = ∑
e={uv}∈E(G)

nu(e) · nv(e) , (1)

where nu(e) is cardinality of the set Nu(e = {uv}) = {x ∈ V(G) : d(x, u) < d(x, v)} .
The right-hand side of the Equation (1) was firstly appeared in the seminal paper on the Wiener

index [8], used for its calculation in the case of trees. More than four decades later, the researchers
have started to investigate properties of this formula in the case of connected graphs other than trees,
where obtained values do not coincide with those of the Wiener index. Gutman named this invariant
in [9]. The Szeged index has been extensively researched both in mathematical and in chemical
community, which resulted in a vast literature and several modifications (see [9–15] and references
cited therein).
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One such modification of the Szeged index was done by the Ilić and Milosavljević in [16].
This quantity is named as the weighted Szeged index (wSz), and defined as follows:

wSz(G) = ∑
e={uv}∈E(G)

[deg(u) + deg(v)] · nu(e) · nv(e) (2)

where deg(u) is degree of the vertex u .
Several papers, dealing with wSz on graph operations, have appeared [17–19]. In [20] the authors

proved that the star is a tree having the maximal weighted Szeged index. They also gave examples
of trees of order up to 25 with minimal weighted Szeged index and described the regularities which
retain in them. However, the characterization of a tree (or trees) having the minimal weighted Szeged
index remains an open problem.

The impression we get from the examples of trees of minimal weighted Szeged index in [20]
is that they are having one “central” vertex and branches around it with subtrees of similar shape
and small diameter. That would imply that these trees have a vertex whose degree increases as the
order of the trees increases. Further, the examples in [20] give an impression that the diameter of the
trees of minimal weighted Szeged index is bounded. However, in the next section we show that the
degree of any vertex of a tree with minimum weighted Szeged index is at most 16. Consequently,
this implies that the diameter of these trees is unbounded. In the last section of the paper we provide
two properties of trees having minimal weighted Szeged index, which give an idea how these trees
may grow as their order increases.

2. About the Diameter of Trees with Minimum Weighted Szeged Index

In this section, by Tmin we denote a tree with the minimum possible weighted Szeged index on n
vertices. As we mentioned in the previous section, we will first show that Tmin cannot have a vertex of
degree greater than 16.

Theorem 1. The degree of any vertex in Tmin is at most 16.

Proof. Suppose that the claim of the theorem does not hold and suppose that Tmin is a counterexample,
i.e., it has a vertex v of degree at least 17. Let a, b, x1, x2, . . . , xd be the adjacent vertices of v (d ≥ 15).
We denote by A, B, X1, X2, . . . , Xd the set of vertices of the components of Tmin − v that contain a, b,
x1, x2, . . . , xd respectively. Without loss of generality, we may assume |A| ≤ |B| ≤ |X1| ≤ · · · ≤ |Xd|.

Let a = y0, y1, . . . , ys = y, x be a path in Tmin such that x is a leaf and a, y1, y2, . . . , ys−1, y, x ∈ A.
We define the tree T′ from Tmin as follows. We remove the vertex x, we add a new vertex, denoted
again by x and three edges vx, xa and xb as on the Figure 1.

Thus

V(T′) = V(Tmin) and E(T′) = E(Tmin)− {yx, va, vb} ∪ {vx, xa, xb}.

Let ∆ = wSz(Tmin)− wSz(T′). We want to show that ∆ > 0. In order to do so, we first analyze
the contribution of the edges of Tmin and T′ to ∆.

The contribution of the edges with vertices in B, X1, X2, . . . , Xd in both wSz(Tmin) and wSz(T′) is
equal. So, they will cancel out in ∆.

The contribution of the edges vx1, vx2, . . . , vxd to ∆ is

d

∑
i=1

(d + 2 + deg(xi))|Xi|(n− |Xi|)−
d

∑
i=1

(d + 1 + deg(xi))|Xi|(n− |Xi|) =
d

∑
i=1
|Xi|(n− |Xi|).

We consider two cases regarding the size of A. We will first consider the case |A| ≥ 2 and address
the case |A| = 1 later, at the end of the proof.
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Figure 1. Reduction of big vertices.

Case 1: |A| ≥ 2. Here, we consider first the edges y0y1, y1y2, . . . , ys−2ys−1. As |A| ≥ 2 this list is
non-empty. We will introduce additional notation. By Ai we will denote the set of the vertices of the
component of A− yi−1yi that contains yi.

The contribution of the edge yi−1yi with i 6= s to ∆ is

(deg(yi−1) + deg(yi))|Ai|(n− |Ai|)− (deg(yi−1) + deg(yi))(|Ai| − 1)(n− |Ai|+ 1) =

(deg(yi−1) + deg(yi))(n− 2|Ai|+ 1) > 0.

The last inequality holds because of the assumptions |A| ≤ |B| ≤ |X1| ≤ · · · ≤ |Xd|.
If i = s, we consider the edge ys−1ys (ys = y). The contribution of this edge to the difference ∆ is positive

(deg(ys−1) + deg(ys))|As|(n− |As|)− (deg(ys−1) + deg(ys)− 1)(|As| − 1)(n− |As|+ 1) >

(deg(ys−1) + deg(ys))|As|(n− |As|)− (deg(ys−1) + deg(ys))(|As| − 1)(n− |Ai|+ 1) > 0.

As the degree of y(= ys) decreases by 1 in T′, it affects the contribution of all edges incident with
y. Denote by z1, z2, . . . , zk all neighbors of y distinct from x, ys−1, v. Denote by Zi the set of vertices of
the component of Tmin − y that contains zi. Observe that the contribution of these edges to ∆ is positive

k

∑
i=1

(deg(zi) + deg(y))|Zi|(n− |Zi|)−
k

∑
i=1

(deg(zi) + deg(y)− 1)|Zi|(n− |Zi|) =
k

∑
i=1
|Zi|(n− |Zi|) ≥ 0.

Next, we consider the contribution of the edges av and ax to ∆, and also of the edges bv and bx to ∆. Let

δ =

{
1, if a = y
0, otherwise.

Then

(deg(a) + d + 2)|A|(n− |A|)− (deg(a) + 3− δ)(|A| − 1)(n− |A|+ 1) ≥
(deg(a) + d + 2)|A|(n− |A|)− (deg(a) + 3)(|A| − 1)(n− |A|+ 1) ≥
(deg(a) + d + 2)|A|(n− |A|)− (deg(a) + 3)|A|(n− |A|) =
(deg(a) + d + 2− deg(a)− 3)|A|(n− |A|) = (d− 1)|A|(n− |A|) .
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Thus the contribution of the edges av and ax to ∆ is at least (d− 1)|A|(n− |A|). Similarly, the
contribution of bv and bx to ∆ equals to (d− 1)|B|(n− |B|).

At the edges yx and vx, we have the following contribution. The edge yx contributes (deg(y) +
1)(n− 1) > 0 and the edge vx,

−(d + 1 + 3)(|A|+ |B|)(n− |A| − |B|) = −(d + 4)(|A|+ |B|)(n− |A| − |B|).

Summing up all of the contributions listed above, except of some contributions that are clearly
positive but possibly small, we have

∆ >
d

∑
i=1
|Xi|(n− |Xi|) + (d− 1)|A|(n− |A|) + (d− 1)|B|(n− |B|)− (d + 4)(|A|+ |B|)(n− |A| − |B|)

which simplifies to

∆ >
d

∑
i=1
|Xi|(n− |Xi|) + 2|A||B|d + 5|A|2 + 5|B|2 + 8|A||B| − 5|A|n− 5|B|n.

It is enough to show that

d

∑
i=1
|Xi|(n− |Xi|) ≥ 5|A|n + 5|B|n.

The last inequality is equivalent to

d

∑
i=1
|Xi|n−

d

∑
i=1
|Xi|2 ≥ 5|A|n + 5|B|n.

Since ∑d
i=1 |Xi| = n− |A| − |B| − 1, it is enough to show

n2 ≥ 6|A|n + 6|B|n +
d

∑
i=1
|Xi|2 + n.

Using the well-known fact that (u + 1)2 + (v − 1)2 > u2 + v2 for u > v and u, v ∈ N,
we conclude that ∑d

i=1 |Xi|2 attains its maximum value when |X1| = |X2| = · · · = |Xd−1| = |B| and
|Xd| = n− 1− d|B| − |A|. For simplicity, we will increase |Xd| by 1, i.e., |Xd| = n− d|B| − |A|.

Thus it is enough to show

n2 ≥ 6|A|n + 6|B|n + d|B|2 + (n− d|B| − |A|)2 + n.

Notice that

6|A|n + 6|B|n + d|B|2 + (n− d|B| − |A|)2 =

4|A|n + n2 + |A|2 + |B|(6n + d|B|+ d2|B|+ 2d|A| − 2dn).

Since d|B| < n, 2d|A| < 2n, and d2|B| < dn, we get that

|B|(6n + d|B|+ d2|B|+ 2d|A| − 2dn) < |B|(9n + dn− 2dn) = −|B|n(d− 9).

Hence it is enough to show

n2 ≥ 4|A|n + n2 + |A|2 − |B|n(d− 9) + n.
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As |B| ≥ |A| it suffices to have

n(d− 10) ≥ 4n + |A|,

or equivalently
n(d− 14) ≥ |A|.

Since n ≥ d|A|, we want d(d − 14) ≥ 1 to hold, and this holds whenever d ≥ 15.
Since deg(v) = d + 2, we conclude that whenever the degree of v is at least 17, we can obtain a tree
with smaller weighted Szeged index than Tmin. Therefore the degree of every vertex of Tmin is at most
16. This establishes Case 1.

Case 2: |A| = 1. In this case, the tree Tmin has only the vertex a in the set A and, in this case, x = a and
deg(a) = 1. Then the degree of x in T′ is 2. The contribution of the edges av and vb in wSz(Tmin) is

(d + 3)(n− 1) + (d + 2 + deg(b))|B|(n− |B|).

The contribution of the edges xv and xb in wSz(T′) is

(d + 3)(|B|+ 1)(n− |B| − 1) + (2 + deg(b))|B|(n− |B|).

Thus, the contribution of these four edges is ∆ is the difference of the previous two expressions,
which is

2|B|d + 6|B|+ 3|B|2 − 3|B|n.

The contribution of the edges vx1, vx2, . . . , vxd to ∆ is the same as in the previous case, i.e.

d

∑
i=1
|Xi|(n− |Xi|).

The contribution of the edges with both end-vertices in B is equal in both wSz(Tmin) and wSz(T′),
so it will be 0 in ∆. Similarly holds for the sets X1, X2, . . . , Xd. Therefore,

∆ =
d

∑
i=1
|Xi|(n− |Xi|) + 2d|B|+ 6|B|+ 3|B|2 − 3|B|n.

In the case |A| ≥ 2 we proved ∑d
i=1 |Xi|(n − |Xi|) ≥ 5|A|n + 5|B|n. Here, in case |A| = 1,

we argue similarly but simpler. As 1 = |A| ≤ |B| ≤ |X1| ≤ |X2| ≤ |X2| ≤ · · · ≤ |Xd|, we have
1 + (d + 1)|B| ≤ n, and hence |B| ≤ n/d. Since |B| ≤ |Xi| ≤ n − |B|, we have |Xi|(n − |Xi|) ≥
|B|(n− |B|) for each i. Thus, we infer

∆ ≥ d|B|(n− |B|) + 2d|B|+ 6|B|+ 3|B|2 − 3|B|n > d|B|(n− n
d
)− 3|B|n = (d− 4)|B|n > 0.

This establishes the case |A| = 1, and the proof of the theorem is completed.

Now, we deduce the following interesting property of optimal trees.

Corollary 1. As the order n of the tree with minimum weighted Szeged index increases, its diameter increases
as well.

3. Two Properties of Trees Having Minimum Weighted Szeged Index

Analyzing the examples of trees of order between seven and 25 with minimal weighted Szeged
index in [20], we notice that there are vertices incident to 2-rays (P2 attached to a vertex is called 2-ray



Symmetry 2020, 12, 793 6 of 10

(see Figure 2)). We also notice that the maximum number of 2-rays that a vertex is incident to is 4.
As the order of the trees in those examples is at most 25, the natural question one may ask is if it is
possible a tree with minimum weighted Szeged index to have a vertex incident to more that four 2-rays.
The following proposition gives the answer to this question.

Proposition 1. No vertex in Tmin is simultaneously incident to five 2-rays.

Proof. Suppose the claim of the statement is false. Let v be a vertex of degree at least d + 5, d ≥ 0
and incident to five 2-rays. Denote the vertices of the five 2-rays incident to v by a1, a2, . . . , a10 as on
the figure. Denote by x1, x2, . . . , xd the vertices incident to v in Tmin − va1 − va3 − va5 − va7 − va9.
We denote by X1, X2, . . . , Xd the set of vertices of the components of Tmin − v that contain x1, x2, . . . , xd
respectively. Without loss of generality, we may assume |X1| ≤ · · · ≤ |Xd|.

...X1 X2 Xd

v

x1 x2 xd

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

...X1 X2 Xd

v

x1 x2 xd

a1 a2a3

a4
a5

a6

a7

a8

a9

a10

Tmin T'
Figure 2. Reduction of five 2-rays.

We define the tree T′ from Tmin as follows

V(T′) = V(Tmin)

E(T′) = E(Tmin)− {a1a2, va3, va5, va7, va9} ∪ {va2, a1a3, a1a5, a2a7, a2a9}.

Let ∆ = wSz(Tmin)− wSz(T′). We want to show that ∆ > 0. In order to do so, we first analyze
the contribution of the edges of Tmin and T′ to ∆.

All edges with vertices in X1, X2, . . . , Xd contribute the same values in both wSz(Tmin) and
wSz(T′). Hence they will cancel out in ∆.

The contribution of the edges vx1, vx2, . . . , vxd to ∆ is

d

∑
i=1

(d + 5 + deg(xi))|Xi|(n− |Xi|)−
d

∑
i=1

(d + 2 + deg(xi))|Xi|(n− |Xi|) = 3
d

∑
i=1
|Xi|(n− |Xi|).

The contribution of the five 2-rays of Tmin in wSz(Tmin) is

5 (3(n− 1) + 2(d + 7)(n− 2)) ,
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while the contribution of the edges in T′ −⋃d
i=1 Xi in wSz(T′) is

2((d + 5) · 5(n− 5)) + 4(5 · 2(n− 2) + 3(n− 1)).

The difference of the last two expressions is 30d− 17n + 187. Thus

∆ = 3
d

∑
i=1
|Xi|(n− |Xi|) + 30d− 17n + 187 = 3n

d

∑
i=1
|Xi| − 3

d

∑
i=1
|Xi|2 + 30d− 17n + 187.

Notice that ∑d
i=1 |Xi| = n− 11. Similarly as in the proof of Theorem 1 we conclude that ∑d

i=1 |Xi|2
attains the maximum value when |X1| = |X2| = · · · = |Xd−1| = 1 and |Xd| = n− d− 10. Thus

∆ = 3n
d

∑
i=1
|Xi|− 3

d

∑
i=1
|Xi|2 + 30d− 17n+ 187 ≥ 3n(n− 11)− (d− 1)− (n− d− 10)2 + 30d− 17n+ 187.

Hence ∆ ≥ −d2 + 2dn + 9d + 2n2 − 30n + 88. Since dn > d2, we have

∆ ≥ −d2 + 2dn + 9d + 2n2 − 30n + 88 > −dn + 2dn + 2n2 − 30n > n(2n− 30).

Clearly ∆ > 0 for n ≥ 15. For n < 15, the examples generated in [20] verify the statement.

We call a branch in a tree Y-subtree, if it is isomorphic to the tree on Figure 3. We call a root the
leaf of the Y-subtree incident to the vertex of degree 3, as it is attached as a branch to the tree of
consideration.

Figure 3. A Y-subtree with its root on the top.

We see Y-subtrees of T′ in the proof of the previous proposition. We also see this type of subtrees
in the examples of trees of minimal weighted Sezged index in [20]. Hence it is natural to ask if the
number of Y-subtrees with a common root is bounded.

Proposition 2. If n ≥ 54, a tree with minimum weighted Szeged index cannot have a vertex that is a root of
five Y-subtrees.

Proof. Let ∆ = wSz(Tmin)− wSz(T′). Suppose the claim of the statement is false. Let v be a vertex
of degree at least d + 5, d ≥ 0 and a root to the five Y-subtrees. Denote the vertices of the five
Y-subtrees by a1, a2, . . . , a25 as on the Figure 4. Denote by x1, x2, . . . , xd the vertices incident to v in
Tmin− va1− va6− va11− va16− va21. We denote by X1, X2, . . . , Xd the set of vertices of the components
of Tmin − v that contain x1, x2, . . . , xd respectively. Without loss of generality, we may assume
|X1| ≤ · · · ≤ |Xd|.
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Figure 4. Reduction of five Y-subtrees.

We define the tree T′ from Tmin as follows

V(T′) = V(Tmin)

E(T′) = E(Tmin)− {a22a23, a24a25, va1, va6, va11, va16} ∪ {va23, va25, a1a23, a6a23, a11a25, a16a25}.

All edges with vertices in X1, X2, . . . , Xd contribute the same values in both wSz(Tmin) and
wSz(T′). Hence they will cancel out in ∆.

The contribution of the edges vx1, vx2, . . . vxd to ∆ is

d

∑
i=1

(d + 5 + deg(xi))|Xi|(n− |Xi|)−
d

∑
i=1

(d + 3 + deg(xi))|Xi|(n− |Xi|) = 2
d

∑
i=1
|Xi|(n− |Xi|).

We consider the edges in Tmin − X1 − X2 − · · · − Xd. Their contribution to wSz(Tmin) is

5((d + 8) · 5(n− 5)) + 10 · 5 · 2(n− 2) + 10 · 3(n− 1) = 25dn− 125d + 330n− 1230.

Next we consider the edges in T′ − X1 − X2 − · · · − Xd. Their contribution to wSz(T′) is

2(d + 6) · 11(n− 11) + (d + 6) · 3(n− 3) + 4 · 6 · 5(n− 5) + 8 · 5 · 2(n− 2) + 8 · 3(n− 1) + 2 · 4(n− 1)

which is equal to
25dn− 251d + 382n− 2298.

Hence

∆ = 2
d

∑
i=1
|Xi|(n− |Xi|) + 25dn− 125d + 330n− 1230− (25dn− 251d + 382n− 2298)

= 2n
d

∑
i=1
|Xi| − 2

d

∑
i=1
|Xi|2 + 126d− 52n + 1068.

Notice that ∑d
i=1 |Xi| = n− 26. Similarly as in the proof of Theorem 1, we conclude that ∑d

i=1 |Xi|2
attains the maximum value when |X1| = |X2| = · · · = |Xd−1| = 1 and |Xd| = n− d− 25. Thus

∆ ≥ 2n(n− 26)− (n− d− 25)2 + 126d− 52n + 1068.

Hence
∆ ≥ −d2 + 2dn + 76d + n2 − 54n + 443.
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Similarly like in the proof of Proposition 1, since ∆ > dn + n2 − 54n > n(n− 54), it is valid for
n ≥ 54.

4. Conclusions

Characterization of trees that minimize or maximize the value of a topological invariant is one of
the crucial problems that need to be solved in order to better understand its behavior and to find its
possible applications. For the majority of topological indices, the path and the star are extremal trees.
However, there are topological invariants that are violating this pattern. One of them is the weighted
Szeged index. Computer screening, reported in [20], shows complex structures of trees that minimize
it. Nevertheless, some details are keeping constant with varying the order of trees. All trees with a
minimum wSz have a vertex with a significantly greater degree than others. It was assumed that this
vertex is a single root to which all other subtrees (with some specific structural details) are attached.
However, here it is proved that such vertex cannot have a degree greater than 16. This implies the
large diameter of the minimum trees and the existence of more than one root vertex.
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20. Bok, J.; Furtula, B.; Jedličková, N.; Škrekovski, R. On extremal graphs of weighted Szeged index.

MATCH Commun. Math. Comput. Chem. 2019, 82, 93–109.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.mcm.2012.08.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	About the Diameter of Trees with Minimum Weighted Szeged Index
	Two Properties of Trees Having Minimum Weighted Szeged Index
	Conclusions
	References

