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Abstract 
In this study, the microstructure, hardness, and electrical properties of selected 

ternary Bi-Ge-In alloys were investigated. Isothermal sections of the Bi-Ge-In system at 

25, 200, and 300 °C were extrapolated using optimized thermodynamic parameters from 

the literature. The used experimental techniques include optical microscopy, X-ray 

powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion 

spectrometry (EDS), Brinell hardness, and electrical conductivity measurements. The 

results of EDS phase composition analysis were compared with the calculated isothermal 

sections and a good overall agreement was reached. The results of the XRD were also in 

line with the predicted phase balance. By using ANOVA analysis and experimental 

results of Brinell hardness and electrical conductivity, a mathematical model was 

suggested for the calculation of these properties along with all composition ranges. The 

appropriated mathematical model was subsequently used for the prediction of hardness 

and electrical conductivity throughout the whole composition range. 

 

Keywords: phase equilibrium, mathematical model, hardness, electrical 

conductivity. 

Introduction 
The ternary Bi-Ge-In system has been previously investigated by our group [1]. In 

our previous study, a reliable thermodynamic data set was proposed and experimentally 

confirmed. For Bi-Ge-In system, three vertical sections Bi-GeIn, Ge-BiIn, and In-BiGe 

and three isothermal sections at 50, 75, and 100 °C were experimentally investigated [1]. 
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The same thermodynamic parameters obtained in a previous study [1] were used in the 

current study as well as Pandat software [2]. 

Both Bi-Ge and Ge-In based alloys have applications in the industry for making 

different optical and electronic devices [3-5]. Germanium-based alloys have special 

applications in modern technology for making optical discs, blu-ray discs, flash memory, 

etc. [6-8]. A very limited number of studies carried out on Bi-Ge-X alloy systems is 

available in the literature. Premović et al. [9] experimentally investigated phase equilibria 

of the ternary Bi-Ge-Sb system. The phase diagram of the ternary Bi-Ge-Ag system has 

been experimentally examined and calculated by Milisavljević et al. [10]. The main 

motivation for studying these alloys is to contribute to the further development of their 

field of application. The results presented in this study should benefit the industry for the 

development of new alloys. On the other hand, Bi-In alloys are also interesting due to the 

application as thermoelectric materials [11], multicomponent lead-free solders [12, 13], 

etc. A large number of ternary systems based on Bi-In are tested but not in combination 

with Ge. So this is another reason for this work. 

 

Experimental work 
In this study, three isothermal sections at 25, 200, and 300 °C were calculated. 

Thermodynamic calculations of isothermal sections were performed by using Pandat 

software [2]. Experimental results were obtained using scanning electron microscopy 

(SEM) with energy dispersive spectrometry (EDS), X-ray powder diffraction (XRD) 

analysis and inverted metallographic microscope. In addition, important properties such 

as hardness and electrical conductivity were measured. 

High-purity (99.999 wt. %) Bi, Ge, and In metals produced by Alfa Aesar 

(Germany) were used for the preparation of investigated alloy samples. Three series of 

samples were prepared i.e., 22 alloys in total. Five of the prepared samples were used for 

the assessment of phase equilibria at 200 °C and another five for the assessment of phase 

equilibria at 300 °C. Nominal compositions of the samples were randomly selected. The 

total mass of each sample was 4 g. Weighed masses of the samples were arc-melted and 

re-melted five times under a high purity argon atmosphere using a non-consumable 

tungsten electrode with an average weight loss of around 1 mass %. After melting, three 

series of samples were prepared (first series annealed at 200 °C, second series annealed 

at 300 °C, and third series for electrical conductivity and hardness measurements). 

Samples for investigation of isothermal sections at 200 °C and 300 °C were sealed in 

evacuated quartz tubes and kept at 200 °C for four weeks and six weeks at 300 °C. After 

annealing the samples were quenched in the water and ice mixture. These samples were 

prepared and used for SEM-EDS and XRD analysis. 

The compositions of the alloy samples were determined using a JEOL JSM-6460 

scanning electron microscope (SEM) and TESCAN VEGA3 scanning electron 

microscope, which were both equipped with an EDS system (Oxford Instruments X-act). 

The samples for SEM-EDS analysis were prepared by standard procedure. 

Powder XRD data were recorded with a D2 PHASER in the 2θ range from 10° to 

75° with a step size of 0.02°.  

The last prepared group of the samples was used for light optical microscopy, XRD 

analysis, electrical conductivity, and hardness measurements. These samples were again 

melted in an electric furnace under a high-purity argon atmosphere and slowly cooled to 
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room temperature using a cooling rate of 2 °Cmin−1 in a way to achieve equilibrium at 

room temperature for the hardness and electrical conductivity measurements. The 

obtained microstructures were inspected using XRD analysis. By using OLYMPUS 

GX41 optical images of the microstructures were recorded. The samples were prepared 

by the classic metallographic procedure. INNOVATEST and SIGMATEST 2.069 eddy 

instruments were used for Brinell hardness and Electrical conductivity measurements, 

respectively. For the Brinell hardness test, a steel ball with a diameter of 1 mm was used, 

and a load force of 294.2 N was applied for 20 seconds. 

Results and discussion 
Constitutive binary systems of the ternary Bi-Ge-In system were extensively 

studied in the past. Reliable thermodynamic datasets for these binary systems are 

available in the literature [14-16]. Based on the literature information for binary sub-

systems, considered phases, their crystallographic data, and database names (for the solid 

phases) are summarized in Table 1.  

Table 1. Considered phase, their crystallographic data and database names for the 

solid phases of the ternary Bi-Ge-In system [14-16]. 

Thermodynamic 

database name 

Common 

name 

Space group 

symbol 

Structural 

designation 

Pearson’s 

symbol 

LIQUID Liquid - - - 

RHOMBO_A7 (Bi) R3̅mH A7 hR2 

DIAMOND_A4 (Ge) Fm3̅m A4 cF8 

TETRAG_A6 (In) I4/mmm A6 tI2 

BIIN BiIn P4/nmms B10 tP4 

BI3IN5 Bi3In5 I4/mcm D81 tI32 

BIIN_BRASS BiIn2 P63/mmc B82 hP6 

TET_ALPHA1 ε I4/mmm A6mod tI2 

 

According to the information listed in Table 1, stable phases that should appear in 

the ternary Bi-Ge-In system include liquid phase, solid solution phases (Bi), (Ge), (In) 

and ε, and three binary intermetallic compounds BiIn, Bi3In5 and BiIn2. 
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Ternary Bi-Ge-In system 

 
Isothermal section at 200 °C 

Five ternary samples were annealed at 200 °C for four weeks and then analyzed by 

using SEM-EDS and XRD techniques. The obtained results are summarized in Table 2. 

 

Table 2. Combined results of SEM-EDS and XRD analyzes 

 of the selected Bi-Ge-In alloys annealed at T=200 °C. 

N. 

Composition 

of samples 
(at. %) 

Determined 
phases 

Compositions of phases (at. %) Lattice parameters (Å) 

EDS XRD Bi Ge In a=b c 

1. 

9.36 Bi 

51.42 Ge 

39.22 In 

L 

(Ge) 

 

 

(Ge) 

 

73.55±0.4 

0.83±0.1 

 

1.42±0.5 

98.45±0.3 

 

25.03±0.8 

0.72±0.9 

 

 

5.6557±0.0004 

 

 

 

 

2. 
23.69 Bi 
53.21 Ge 

23.10 In 

L 
(Ge) 

 

 
(Ge) 

 

81.38±0.8 
0.14±0.2 

 

1.18±0.1 
99.05±0.2 

 

17.44±0.2 
0.81±0.2 

 

 
5.6585±0.0006 

 

 

3. 
26.84 Bi 
17.93 Ge 

55.23 In 

L 
(Ge) 

 

 
(Ge) 

 

87.91±0.6 
0.67±0.7 

 

0.88±0.3 
98.71±0.5 

 

11.21±0.4 
0.62±0.2 

 

 
5.6456±0.0003 

 

 
 

 

4. 

44.35 Bi 

49.17 Ge 
6.48 In 

L 

(Ge) 
(Bi) 

 

(Ge) 
(Bi) 

69.32±0.8 

0.50±0.4 
98.18±0.3 

3.18±0.1 

98.28±0.1 
0.98±0.8 

27.50±0.2 

1.22±0.8 
0.84±0.6 

 

5.6578±0.0001 
4.5565±0.0004 

 

 
11.8143 

±0.0004 

5. 

70.18 Bi 
10.85 Ge 

18.97 In 

L 
(Ge) 

(Bi) 

 
(Ge) 

(Bi) 

71.98±0.4 
1.26±0.4 

97.87±0.7 

2.36±0.9 
98.25±0.6 

1.23±0.3 

25.66±0.4 
0.49±0.9 

0.90±0.7 

 
5.6821±0.0009 

4.5378±0.0002 

 
 

11.8345 

±0.0006 

 

Within the five investigated samples, two different phase regions were detected. 

One is L+(Ge) two-phase region and one is L+(Ge)+(Bi) three-phase region. Samples 1, 

2 and 3 belong to the L+(Ge) phase region while samples 4 and 5 to the L+(Ge)+(Bi) 

phase region. As in samples 1-5, the content of the bismuth increases, from 9.36 at.% 

(sample 1) to 70.18 at.% (sample 5); this leads to the microstructural changes and 

appearance of (Bi) solid solution in samples rich with Bi. In all the samples L phase is 

stable, as well as the (Ge) solid solution. Nonetheless, the stability of (Bi) solid solution 

changes. So, in samples 4 and 5, (Bi) solid solution is stable. Determined lattice 

parameters of the (Ge) and (Bi) solid solutions are compared with literature values [17, 

18]. 

SEM micrographs of microstructures of the two samples annealed at 200 °C are 

presented in Figure 1 as an illustration. 

Phases detected by EDS and XRD analysis are marked on the given micrographs. 

The microstructure of sample 3 consists of two phases: L as a gray phase and (Ge) solid 

solution as a dark phase. Sample 5 contains three phases in microstructure: L as a gray 

phase, (Ge) solid solution as a dark phase and solid solution (Bi) as a dark gray phase.  

Figure 2 shows a comparison of EDS results summarized in Table 2 and a 

calculated isothermal section at 200 °C. The obtained experimental results are marked 

with the same symbol but in a different color to distinguish the results of different 

samples. 
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Fig. 1. SEM micrographs of the samples annealed at 200 ºC 

 a) sample 3 and b) sample 5. 

 

Fig. 2. The calculated isothermal section at 200 °C  

compared with EDS results given in Table 2. 

The calculated isothermal section at 200 °C consists of two different phase regions, 

one is two phase region L+(Ge) and the other is three phase region (Ge)+L+(Bi). Both 

were experimentally confirmed by analysis of the samples annealed at 200 °C. Samples 

1, 2, and 3 are located in L+(Ge) two-phase region, whereas samples 4 and 5 are located 

in (Ge)+L+(Bi) three-phase region, in the same phase regions as experimentally proved.  
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Isothermal section at 300 °C 

For the second selected isothermal section of Bi-Ge-In system at 300 °C, five ternary 

samples annealed at 300 °C were experimentally analyzed and the obtained results (SEM-

EDS and XRD) are summarized in Table 3. 

 

Table 3. Combined results of SEM-EDS and XRD analyzes of the selected 

 Bi-Ge-In alloys annealed at T=300 °C. 

N. 

Composition 

 of samples 
 (at. %) 

Determined phases Compositions of phases (at. %) Lattice 
 parameters (Å) 

EDS XRD Bi Ge In a=b=c 

1. 

11.41 Bi 

65.14 Ge 

23.45 In 

L 

(Ge) 

 

 

(Ge) 

 

56.32±0.4 

1.65±0.6 

 

2.76±0.2 

97.66±0.1 

 

40.92±0.8 

0.69±0.8 

 

 

5.6556±0.0002 

 

2. 
9.65 Bi 
39.84 Ge 

50.51 In 

L 
(Ge) 

 

 
(Ge) 

 

66.67±0.6 
0.52±0.6 

 

0.83±0.5 
98.43±0.3 

 

32.50±0.2 
1.05±0.2 

 

 
5.6512±0.0005 

 

3. 
29.96 Bi 
17.49 Ge 

52.55 In 

L 
(Ge) 

 

 
(Ge) 

 

45.78±0.1 
0.80±0.8 

 

1.24±0.7 
99.07±0.3 

 

52.98±0.2 
0.13±0.1 

 

 
5.6435±0.0002 

 

4. 

46.45 Bi 

40.50 Ge 
13.05 In 

L 

(Ge) 
 

 

(Ge) 
 

72.78±0.6 

0.98±0.7 
 

1.65±0.2 

98.08±0.1 
 

25.57±0.1 

0.94±0.6 
 

 

5.6587±0.0006 
 

5. 

58.81 Bi 

10.85 Ge 
26.18 In 

L 

(Ge) 
 

 

(Ge) 
 

83.34±0.7 

1.47±0.2 
 

0.78±0.6 

97.25±0.6 
 

15.88±0.5 

1.28±0.8 
 

 

5.6556±0.0005 
 

 

As shown in Table 5, in all tested samples, the same two phases L and (Ge) solid 

solution were detected. The EDS results show that (Ge) solid solution is expectedly rich 

with germanium and dissolves a negligible amount of indium and bismuth. L phase is 

rich in bismuth and indium and dissolves a negligible amount of germanium. 

SEM micrograph of the sample annealed at 300 °C is presented in Figure 3. 

 

 
Fig. 3. SEM micrograph of the sample annealed at 300 ºC (sample 3). 
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Out of the two phases visible in the microstructure of sample 3 (Fig. 3) one is (Ge) 

solid solution and the other is L phase. 

Since the tested samples were annealed at 300 °C, EDS results of the tested 

samples (Table 3) are compared with a calculated isothermal section at 300 °C. Figure 4, 

presents the calculated isothermal section at 300 °C compared with the EDS results. 

 

 
Fig. 4. The calculated isothermal section at 300 °C compared with EDS results given in 

Table 3. 

 

The calculated isothermal section at 300 °C consists of two phase regions. One is 

single phase region L and the other is two-phase region L+(Ge). All of the tested samples 

are located in two-phase region L+(Ge). EDS compositions of the phases are in close 

agreement with the calculated compositions of the phases. 

 

Microstructural analysis of slowly-cooled samples 

Light optical microscope was used for microstructure observations on 12 alloy 

samples. The samples’ compositions are positioned along three vertical sections Bi-GeIn, 

Ge-BiIn, and In-BiGe. From each section, four samples were prepared and marked with 

numbers from 1 to 12. The first four samples are from Bi-GeIn section; another four 

samples are from Ge-BiIn section and the samples marked from 9 to12 are from In-BiGe 

section. Figure 5 shows compositions of the 12 studied ternary alloy samples and the 

calculated isothermal section at 25 ºC. 
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Fig. 5. The predicted isothermal section at 25 ºC  

and composition of 12 ternary samples. 

 

According to the calculations, sample 1 belongs to the BiIn2+(Ge) region, samples 

2-4 and 9 to the (Ge) + (Bi) + BiIn region, samples 5-8 to the (Ge) + BiIn, sample 10 to 

the (Ge) + Bi3In5 + BiIn region, the samples marked with numbers 11 and 12 belong to 

the BiIn2 + (Ge) + (In) three-phase region. The obtained XRD results support these 

findings and are in agreement with calculated phase regions. 

These samples were used for measurements of mechanical and electrical 

properties. Two microstructures of samples 2 and 11 are given in Figure 6. 

 

  
a)      b) 

 

Fig. 6. LOM micrographs of a) sample 2 and b) sample 11. 

 

Phases that appear in microstructures are marked at presented micrographs. 
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Brinell hardness measurements 

Twelve ternary samples and three binary samples were subjected to the Brinell 

hardness measurements. Based on the repeated measurements, the mean values of Brinell 

hardness were calculated and presented in Table 4. Literature values of hardness for pure 

elements [19] are also shown in Table 4 for comparison. 

 

Table 4. Compositions of the investigated samples at room 

 temperature and measured Brinell hardness values. 

N. 
Alloy nominal composition (at.%) Measured value (MN/m2) Mean value 

 (MN/m2) 
x(Bi) x(Ge) x(In) 1 2 3 

B1 0 0.5 0.5 243.80 249.60 246.30 246.43 

1 0.2 0.4 0.4 7.30 7.10 7.20 7.20 

2 0.4 0.3 0.3 8.20 7.30 9.60 8.36 

3 0.6 0.2 0.2 9.60 10.10 9.30 9.66 

4 0.8 0.1 0.1 10.40 10.30 10.50 10.40 

Bi 1 0 0  94.20[19] 

B2 0.5 0 0.5 93.20 94.10 92.30 93.20 

5 0.4 0.2 0.4 1.60 1.80 2.30 1.90 

6 0.3 0.4 0.3 4.80 3.60 3.30 3.90 

7 0.2 0.6 0.2 4.80 5.30 4.70 4.93 

8 0.1 0.8 0.1 9.80 10.00 11.60 10.46 

Ge 0 1 0  973.40[19] 

B3 0.5 0.5 0 213.20 215.60 217.40 215.40 

9 0.4 0.4 0.2 9.30 7.80 8.30 8.46 

10 0.3 0.3 0.4 7.80 4.90 5.60 6.10 

11 0.2 0.2 0.6 4.90 4.60 4.50 4.66 

12 0.1 0.1 0.8 4.10 3.80 3.70 3.86 

In 0 0 1  8.83 [19] 

 

In addition to the tabular presentation, the obtained values for hardness are also 

presented graphically. Figure 7 shows a graphical representation of the relationship 

between the hardness and the composition of the tested alloys. 

From the obtained results, shown in Table 4, as well as graphically shown in Figure 

7 it can be seen that the binary samples Ge50In50 and Bi50Ge50 have the highest hardness 

values. Among the other tested ternary samples, the highest hardness value of 10.46 

MN/m2 was recorded for sample 8 (Bi10Ge80In10), which is understandable due to the 

presence of high Ge content in the alloy. In this sample, two phases are stable (Ge)+BiIn; 

however, the content of (Ge) solid solution phase is much higher than that of BiIn phase. 

These two phases are also stable in samples 5, 6, and 7 but in a different ratio. Depending 

on which phase predominates, BiIn or (Ge) hardness is changing. So in sample 5, the 

dominant phase is BiIn, and in sample 8 dominant phase is (Ge). The lowest value of 

hardness of 1.90 MN/m2 was measured for sample 5 (Bi40Ge20In40), due to the low content 

of Ge. 

In general, it can be noticed that with an increase of the Bi and Ge content in Bi-

Ge-In ternary alloys, the hardness increases. Conversely, an increase of In content in the 

ternary samples leads to a slight decrease in the hardness.  
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Response Surface Methodology - RSM was used to quantify the relationship 

between independent input parameters and the dependent variable (response) [20-24]. 

Data processing was done in the software package Design Expert v.9.0.6.2. By using the 

results given in Table 4, a mathematical model for Brinell hardness was developed. Using 

all possible canonicals or Scheffe models, a Special Cubic model has been suggested. The 

diagnosis of the statistical properties of the assumed model found that the distribution of 

residuals is not normal and that it is necessary to transform the mathematical model in 

order to meet the conditions of normality. The Box-Cox diagnostics recommends the 

”Inverse Square Root“ transformation for the variance stabilization. 

 

    
a)      b) 

 
c) 

Fig. 7. Graphical presentation of Brinell hardness vs. composition and phase 

fraction: a) vertical section Bi-GeIn, b) vertical section Ge-BiIn, 

 and c) vertical section In-BiGe. 

 

The final equation of the predictive model in terms of real components is (1):  

 

1/Sqrt(HB+1.00) = 0.130602071∙(Bi) + 0.102462155∙(Ge) + 0.370110518∙(In)  

- 0.05470384∙(Bi)∙(Ge) - 0.31283672∙(Bi)∙(In) - 0.44269865∙(Ge)∙(In)  

+ 9.202504558∙(Bi)∙(Ge)∙(In)     1 

 

The repeated analysis for Inverse Square Root model transformation confirms the 

significance of the Transformed Special Cubic model. In this case, ANOVA confirms the 

Reduced Special Cubic Mixture model (Table 5). 



A. Đorđević et al.- Effect of chemical composition on the microstructure, hardness… 423 

 
 

 

Table 5. ANOVA for Special Cubic Mixture model. 

Source Sum of Squares df Mean Square 
F 

Value 

p-value 

Prob > F 

Model 0.2976 6 0.0496 4.3057 0.0177 

Linear Mixture 0.0626 2 0.0313 2.7185 0.1098 

AB 0.0001 1 0.0001 0.0115 0.9167 

AC 0.0043 1 0.0043 0.3747 0.5529 

BC 0.0086 1 0.0086 0.7504 0.4048 

ABC 0.1338 1 0.1338 11.6180 0.0058 

Residual 0.1267 11 0.0115   

Cor Total 0.4243 17    

 

The F-value of the Model is 4.30. R-squared and other statistics values are listed 

in Table 6. 

 

Table 6. R-squared and other statistics after the ANOVA. 
Std. Dev. 0.10733 R-Squared 0.70137 

Mean 0.29367 Adj R-Squared 0.53847 

C.V. % 36.54931 Pred R-Squared 0.36179 

PRESS 0.68656 Adeq Precision 5.24704 

 

The diagnosis of the statistics shows that the distribution of residuals is normal. 

The value of λ is -0.5, the optimum value of λ is -0.37 and the 95% confidence interval 

for λ (Low C.I.=-0.76, High C.I.=-0.01) contains the value -0.5, thus proving the 

justification of the model transformation (Figure 8). 
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Figure 8. The Box-Cox plot for power transforms. 

 

Figure 9 shows Brinell hardness defined by equation 1. 

 

 
Fig. 9. Calculated iso-lines of Brinell hardness in ternary 

 Bi-Ge-In  system with R2 = 0.701. 

 

Electrical conductivity measurements 

Measurements of electrical conductivity were performed on the same group of 

samples used for the hardness test, and the results are given in Table 7. Besides measured 

values, Table 7 also includes calculated mean values and literature values of electrical 

conductivity for pure elements [25]. 
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Table 7. Compositions of the investigated samples at room temperature and the 

measured electrical conductivity values. 

N. 

Alloy nominal composition 
 (at.%) 

Value (MS /m) Mean value 

 (MS/m) 
x(Bi) x(Ge) x(In) 1 2 3 4 

B1 0 0.5 0.5 3.6362 3.8328 3.4332 3.5983 3.6251 
1 0.2 0.4 0.4 0.3169 0.3200 0.3098 0.3182 0.3162 

2 0.4 0.3 0.3 0.3233 0.3180 0.3193 0.3158 0.3191 

3 0.6 0.2 0.2 0.3222 0.3193 0.3281 0.3233 0.3232 
4 0.8 0.1 0.1 0.3396 0.3289 0.3401 0.3395 0.3370 

Bi 1 0 0  0.77 [25] 
B2 0.5 0 0.5 0.2630 0.2840 0.2990 0.2380 0.2710 

5 0.4 0.2 0.4 0.2935 0.3159 0.3269 0.3278 0.3160 

6 0.3 0.4 0.3 0.3385 0.3289 0.3258 0.3188 0.3280 
7 0.2 0.6 0.2 0.3366 0.3419 0.3313 0.3487 0.3396 

8 0.1 0.8 0.1 0.3596 0.3623 0.3496 0.3554 0.3567 

Ge 0 1 0  0.002 [25] 
B3 0.5 0.5 0 0.3430 0.3410 0.3530 0.3440 0.3452 

9 0.4 0.4 0.2 0.3555 0.4189 0.4266 0.3999 0.4002 

10 0.3 0.3 0.4 0.6540 0.6799 0.6702 0.6635 0.6669 
11 0.2 0.2 0.6 0.9630 0.9562 0.9988 1.1023 1.0050 

12 0.1 0.1 0.8 1.4530 1.6140 1.5030 1.6483 1.5545 

In 0 0 1  12 [25] 

 

For a more straightforward overview of the results, Figure 10 presents a graphical 

presentation of the obtained results (mean values) given in Table 7. 

It is known that the chemical composition of alloys has a strong influence on 

electrical conductivity. In the studied ternary Bi-Ge-In alloys, a high value of electrical 

conductivity was detected in alloys with a high amount of indium. Out of the studied 

ternary samples, the highest electrical conductivity of 1.5545 MS/m was obtained for 

Bi10Ge10In80 alloy. However, in addition to the composition of the alloy, the phase 

components and their amount can also significantly affect the electrical conductivity. For 

example, in samples 11 and 12 the same three phases are in equilibrium BiIn2, (Ge), and 

(In). In samples 11 and 12, ratios between BiIn2, (Ge), and (In) is different, and this has 

a direct effect on the electrical conductivity. So in sample 12 where (In) solid solution 

phase is dominant electrical conductivity is high. 

A quadratic Mixture model was suggested as a final equation for the prediction of 

electrical conductivity. The distribution of residuals is not normal and that it is necessary 

to transform the mathematical model in order to meet the conditions of normality. The 

Box-Cox diagnostics recommends the ”Natural Log“ transformation for the variance 

stabilization. 
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a)       b) 

 
c) 

Fig. 10. Graphical presentation of electrical conductivity vs. composition and phase 

fraction a) vertical section Bi-GeIn, b) vertical section Ge-BiIn, and c) vertical section 

In-BiGe. 

 

The final equation of the predictive model in terms of Real components is: 

Ln(σ + 0.10) = - 0.0125953∙(Bi) - 1.9440351∙(Ge) + 2.2392631∙(In) - 

9.6950768∙(Bi)∙(In) +2.8577311∙(Ge)∙(In)    2 

The repeated analysis for Natural Log model transformation confirms the 

significance of the Transformed Quadratic Mixture model. In this case, ANOVA 

confirms the adequacy of the Quadratic Mixture model (Table 8). 

 

Table 8. ANOVA for Quadratic Mixture model. 

Source Sum of Squares df Mean Square F Value 
p-value 

Prob > F 

Model 16.56761 4 4.1419 32.93354 0.000001 

Linear Mixture 10.58847 2 5.2942 42.09611 0.000002 

AC 5.79625 1 5.7962 46.08778 0.000013 

BC 0.50360 1 0.5036 4.00429 0.066712 

Residual 1.63495 13 0.1258   

Cor Total 18.20256 17    
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The F-value of the Model is 32.93 and it implies that the model is significant. R-

squared and other statistics after the ANOVA have good values, which confirm the 

justification of the choice of the adopted mathematical model (Table 9). 

 

Table 9. R-squared and other statistics after the ANOVA. 
Std. Dev. 0.35463 R-Squared 0.91018 

Mean -0.41859 Adj R-Squared 0.88254 

C.V. % 84.72114 Pred R-Squared 0.72134 

PRESS 5.07231 Adeq Precision 22.38151 

 

The diagnosis of the statistical properties shows that the distribution of residuals is 

normal. The value of λ is 0.0, the optimum value of λ is -0.14 and the 95% confidence 

interval for λ (Low C.I.=-0.42, High C.I.=0.13) contains the value 0.0, thus proving the 

justification of the model transformation (Figure 11). 

 

 
Fig. 11. The Box-Cox plot for power transforms. 

Iso-lines contour plot for Electrical conductivity of Bi-Ge-In alloys defined by 

equation 1 is shown in Fig. 12. 
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Fig. 12. Calculated iso-lines of Electrical conductivity 

 in the ternary Bi-Ge-In system with R2 =0.91. 

 

Conclusion 
The ternary Bi-Ge-In system has been experimentally investigated by using 

appropriate experimental techniques. The EDS results were matched to the calculated 

isothermal sections at 200 °C and 300 °C, and a close agreement was observed. The 

existence of a ternary compound was not detected in the tested ternary samples. On the 

same alloy samples, microstructural, hardness, and electrical conductivity tests were 

performed. Experimentally determined phases by XRD analysis were compared with the 

calculated isothermal section at 25 °C, and agreement between the results was reached. 

By using ANOVA analysis and the experimentally obtained Brinell hardness and 

electrical conductivity values, an appropriate mathematical model was suggested to 

calculate properties along with each composition range. 
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