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The gut microbiome has a very important role in human health and its influence on the 
development of numerous diseases is well known. In this study, we investigated the effect 
of high fat diet (HFD) on the onset of dysbiosis, gingival blood flow decreases, and the 
periodontal matrix remodeling. We established a dysbiosis model (HFD group) and 
probiotic model by Lactobacillus rhamnosus GG (LGG) treatment for 12 weeks. Fecal 
samples were collected 24 h before mice sacrificing, while short chain fatty acids (SCFA) 
analysis, DNA extraction, and sequencing for metagenomic analysis were performed 
afterwards. After sacrificing the animals, we collected periodontal tissues and conducted 
comprehensive morphological and genetic analyses. While HFD reduced Bacteroidetes, 
SCFA, and gingival blood flow, this type of diet increased Firmicutes, lipopolysaccharide 
(LPS) binding protein, TLR4, pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), matrix 
metalloproteinases (MMP-2 and MMP-9) expression, and also altered markers of bone 
resorption (OPG and RANKL). However, LGG treatment mitigated these effects. Thus, it 
was observed that HFD increased molecular remodeling via inflammation, matrix 
degradation, and functional remodeling and consequently cause reduced gingival blood 
flow. All of these changes may lead to the alveolar bone loss and the development of 
periodontal disease.

Keywords: gut microbiota, lipopolysaccharide, matrix metalloproteinases, Laser Doppler flowmetry, periodontal 
disease, Lactobacillus rhamnosus, blood flow

INTRODUCTION

Changes in lifestyle influence usual diet habits and it is already established that consumption 
of diets with a high content of fats, proteins, and sugars modulate the gut microbiota and 
consequently affect the whole organism (Tremaroli and Bäckhed, 2012). Gastrointestinal tract 
presents one of the primary sites for bacterial colonization. More than 1,000 species of bacteria 
form intestinal flora which is primarily composed of anaerobes that make up more than 99% 
of gut microbes including Firmicutes, Bacteroidetes, Proteobacteria, Archaebacteria, and Actinomycetes. 
More than 90% of those mentioned are Firmicutes and Bacteroidetes (Zhang and Yang, 2016). 
The ratio of Firmicutes and Bacteroidetes differs depending on age evolves according to the 
different age group. For newborns, ratio of 0.4 was measured, 10.9 for adults, and 0.6 for the 
elderly (Mariat et  al., 2009). High fat diet (HFD) leads to a reduction in Bacteroidetes and an 
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increase in Firmicutes levels (Murphy et al., 2015). These changes 
have been implicated in a numerous diseases (Murphy et  al., 
2015), including periodontitis (Chen et  al., 2017; Jia et  al., 
2019; Yu et  al., 2019; Curtis et  al., 2020). In addition, HFD 
increases the number of pathogenic bacteria in the gut, 
resulting in enhanced lipopolysaccharide (LPS) and 
lipopolysaccharide binding protein (LBP) production (Hersoug 
et  al., 2018). Furthermore, HFD increases gut permeability, 
inflammatory response, and oxidative stress. At the same time, 
this diet decreases the production of short chain fatty acids 
(SCFA; Lu et  al., 2018).

Moreover, HFD upsets the balance in good and bad gut 
bacteria, LPS production (Potter et  al., 2016; Hersoug et  al., 
2018), decreases SCFA production (Lu et al., 2018), and affects 
blood vessels and blood flow (Wilde et  al., 2000; Bui et  al., 
2010). Periodontium, gingiva, periodontal ligament, as well as 
alveolar bone, are greatly vascularized tissues. Adequate blood 
supply, as well as a healthy vascular endothelial system, is 
necessary for their function and nutrition (Nguyen et al., 2015; 
Veronesi et al., 2018; Komaki, 2019). Maintaining the equilibrium 
between matrix metalloproteinases (MMP) and their inhibitors 
in the tissues has a crucial role in keeping the endothelial 
system in good condition (Donnini et  al., 2004; Rodrigues 
and Granger, 2015). Disturbance in  local vascular flow is in 
correlation with inhibition of tissue oxygenation and reduction 
of microvascular blood flow. Disorder of blood flow activity 
is noted to be an early marker for progression of microvascular 
pathology (Clough et  al., 2017; Mitra et  al., 2018; Ohsugi 
et  al., 2019). HFD contributes to endothelial dysfunction and 
loss of integrity (Clough et al., 2017; Mitra et al., 2018; Münch 
et  al., 2019) it has been shown that 2 h after a fatty meal, 
HFD causes endothelial damage by vascular occlusion and 
leads to decreased blood flow (Bui et  al., 2010; Münch et  al., 
2019). Reduced blood flow in periodontal tissue, especially in 
gingiva, can lead to periodontal disease.

According to available literature data, periodontal disease 
is a dysbiosis condition of the oral microbiome (Payne et al., 2019). 
Qualitatively and quantitatively altered oral microorganisms 
induce an enhanced immune response (Gao et al., 2018; Graves 
et al., 2019). Thus, modified microorganisms can cause systemic 
inflammation by reaching microorganisms in the gut thorough 
swallowing and hematogenously dissemination of proinflammatory 
cytokines [Interleukin-1 Beta (IL-1β), Interleukin-6 (IL-6), Tumor 
Necrosis Factor Alpha (TNF-α)] or bacteria. Gut dysbiosis causes 
an increase in the gut mucosa permeability resulting in 
endotoxemia and systemic inflammation (Torres et  al., 2017) 
which consequently causes intensified bone resorption. The 
production of proinflammatory cytokines, TNF-α, IL-1β, 

Interleukin-17 (IL-17) promotes survival, proliferation, osteoclasts 
activity, and suppression of osteoblasts activity. The cytokines 
IL-1β, TNF-α, and IL-17 cause osteoblasts to enhance the 
receptor activator of nuclear factor kappa-Β ligand (RANKL) 
release. RANKL binds to RANK on osteoclasts precursors and 
promotes osteoclastogenesis. Increscent in number of osteoclasts 
leads to resorption of the bone (Hajishengallis, 2015; Torres 
et  al., 2017). HFD also promotes the formation of periodontal 
disease (Li et  al., 2015; Virto et  al., 2018a) via an increase in 
cytokine levels and alveolar bone loss (Fujita and Maki, 2016; 
Virto et  al., 2018a,b). Virto et  al. (2018a) indicated an increase 
in alveolar bone loss by 27.71% (2.28 μm) in the HFD group 
compared to the control group.

It would be  very useful to improve and supplement the 
diet with probiotics with the aim of obtaining a healthy 
gut microbiota, prevention, and treatment of gastrointestinal 
diseases. This will also be beneficial in sense of maintaining 
gingival blood flow at basal level with consequent prevention 
of periodontitis development. Lactobacillus rhamnosus GG 
(LGG) is a Gram-positive rod-shaped facultative anaerobe, 
capable of surviving low levels of pH in the stomach and 
bile acids in the duodenum. It is one of the most used 
probiotics microorganisms in the world. Studies also proved 
its beneficial effect in the prevention and treatment of 
atopic dermatitis (Huang et al., 2017), hypercholesterolemia 
(Shimizu et  al., 2015), and obesity (Sanchez et  al., 2014). 
This probiotic does not ferment sucrose and lactose, so it 
has been suggested that this anaerobe could significantly 
reduce the risk of caries (Gruner et  al., 2016; Jiang et  al., 
2018). Moreover, LGG possesses significant in vivo anti-
inflammatory properties (Lin et  al., 2009). However, its 
effect in the treatment of gingival blood flow and periodontitis 
has not been fully investigated. Given its non-cariogenic 
and anti-inflammatory properties, LGG turned out to be  a 
good candidate in the prevention and treatment of periodontal 
disease (Gatej et  al., 2018). The aim of this study was to 
prove the influence of HFD and LGG on the state of the 
gut microbiota, gingival blood flow, and the development 
of periodontal disease (Figure  1).

MATERIALS AND METHODS

Animal Maintenance and Diet Protocol
Male wild-type (C57BL/6 J) mice were purchased from the 
Jackson Laboratory (Bar Harbor, ME). All animals were 
8 weeks-old and maintained in 12:12 h light-dark cycle in 
the animal facility of the University of Louisville. All animal 
protocols and care were carried out according to the 
guidelines of the National Institute of Health (NIH) and 
were approved by the Institutional Animal Care and 
Use Committee (IACUC #19592) of the University of 
Louisville, KY.

Animals were divided into four experimental groups: (1) 
Wild-type C57BJ/L6 mice (WT), (2) HFD-supplemented 
wild-type mice (HFD), (3) LGG-supplemented wild-type 
mice (LGG), and (4) HFD and LGG-supplemented wild-type 

Abbreviations: ABC, Alveolar bone crest; CEJ, Cement enamel junction; DNA, 
Deoxyribonucleic acid; ECM, Extracellular matrix; H&E, Hematoxylin and eosin; 
HFD, High fat diet; IL-1β, Interleukin-1 beta; IL-6, Interleukin-6; LBP, 
Lipopolysaccharide binding protein; LGG, Lactobacillus rhamnosus GG; LPS, 
Lipopolysaccharide; MMP, Matrix metalloproteinase; OPG, Osteoprotegerin; PBS, 
Phosphate-buffered saline; P. gingivalis, Porphyromonas gingivalis; RANKL, Receptor 
activator of nuclear factor kappa-Β ligand; RNA, Ribonucleic acid; RT-PCR, Real-
time polymerase chain reaction; SCFA, Short chain fatty acids; TLR4, Toll-like 
receptor 4; TNF-α, Tumor necrosis factor alpha.
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mice (HFD  +  LGG; n  =  5/groups). To create dysbiosis 
condition, the mice were fed with an HFD (TD.88137; Harlan 
Laboratories Inc., Indianapolis, IN, United  States) for a 
period of 12 weeks, and with or without oral probiotic – 
LGG @ 2.5 × 105 CFU for a period of 12 weeks in drinking 
water (Gatej et  al., 2018; He et  al., 2018; George et  al., 
2020). Mice in the control group were fed with the standard 
chow diet. The standard diet contained 20% protein, 53% 
starch, 9% fat, and 5% fiber, while the HFD contained 15.3% 
protein, 42.7% starch, and 42.0% fat (TD.88137; Harlan 
Laboratories Inc., Indianapolis, IN, United States). Appropriate 
diets (standard or HFD, depending on the group) and water 
are provided ad libitum.

Measurement of Blood Glucose Levels
Glucose levels in all examined groups were measured according 
to manufacturer’s instructions for commercially available kit 
(OneTouch Ultra2, LifeScan, Inc).

Gingival Blood Flow Measurement
Gingival blood flow was measured as it was previously described, 
in break before procedure animals were under an intraperitoneal 
combination of anesthetics: ketamine (Ketamine 80 mg/kg) 
and xylazine (Xylazine; 10 mg/kg). The gingival blood flow 
was measured by Laser Doppler using Speckle Contrast Imager 
(Moor FLPI, Wilmington, DE) at room temperature. The camera 

FIGURE 1 | Schematic representation of the study aim. High fat diet (HFD) causes gut dysbiosis (via decreased short chain fatty acids (SCFA) and 
Bacteroides, and increased Firmicutes and Proteobacteria) resulting in increased lipopolysaccharide (LPS) production and LPS/TLR4 pathway activation in 
the oral cavity and gastrointestinal tract. Consequently, molecular remodeling occurs by increasing proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and 
matrix metalloproteinases (MMP-2 and MMP-9). Due to the mentioned consequences, functional remodeling occurs, by an increase of proinflammatory 
cytokines, RANKL, and the decrease of OPG. Osteoclastogenesis and alveolar bone loss are promoted by disturbance in expression and activity of MMPs, 
matrix degradation, and gingival blood flow. This together cause periodontal disease and possibility of tooth loss. Probiotics maids mitigate all these 
consequences.
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(580 9 752 resolution) was positioned 15 cm from the buccal 
surface of the gingiva (Clarke and Shephard, 1984; 
Baab and Oberg, 1987; George et  al., 2018).

Microbiota Analysis
Fecal samples were collected 24 h before animal sacrifice and 
subsequently analyzed at Microbiome Insights Inc.; Vancouver, 
BC V6R 4K6; Canada. The following analyzes were performed 
to detect gut dysbiosis: analysis of SCFA, Deoxyribonucleic acid 
(DNA) extraction and sequencing, and sample preparation 
according to an already existing database [DNA Extraction + 
Library preparation and sequencing on the Illumina Next Seq 
(2× 150 BP); Zhao et al., 2006; Kozich et al., 2013; Bolger et al., 2014; 
Clarke et  al., 2019; Wood et  al., 2019].

Measurement of LBP
Determination of LBP concentration from serum was archived 
by using ELISA kit with following all already established 
manufacturer’s protocol. We used Mouse LBP ELISA Kit (ab213876, 
Sigma-Aldrich, St. Louis, Missouri, United States; Chivero et al., 2019).

Gelatin Zymography Analysis
Activity of MMP was measured using gelatin gel zymography as 
described previously (Stanisic et al., 2020). For this analysis, we used 
samples of periodontal tissue and the gels were stained with the 
Coomassie R-250 brilliant blue dye. The clear digested regions 
represent MMP activity which were quantified densitometrically 
using the Un-Scan-It software (Silk Scientific Inc., Orem, UT).

RT-PCR Analysis
Real-time polymerase chain reaction (RT-PCR) analysis was 
conducted as it is previously described (Livak and Schmittgen, 2001; 
George et  al., 2018).

We used the right mandibula (periodontal tissue; n  =  5 
per group) which were homogenized in a solution of TRIzol 
reagent (cat no. 15596018; Invitrogen; Thermo Fisher Scientific, 
Inc., Waltham, MA, United States) The sequences of the primers 
are shown in Table  1.

Histology and Histomorphometric Analysis
The mandibular bone and surrounding intact tissues from 
each euthanized animal were dissected and fixed in 4% freshly 

prepared paraformaldehyde (Sigma-Aldrich, St. Louis, MO) 
from there we  used standard procedure which is previously 
described (Stanisic et  al., 2020). In each area of interest, 
the total number of cells [the fibroblasts were counted 
manually from images captured at 60x magnification on 
Hematoxylin and eosin (H&E) stained sections]. All 
quantification and calculations of areas of interest are described 
previously (Stanisic et  al., 2020).

Statistical Analysis
Data analyses and graphical presentations were performed with 
GraphPad Prism, version 8 (GraphPad Software, Inc., La Jolla, 
CA). Data are represented as mean values ± standard deviation 
(SD) in five independent experiments in all cases. The 
experimental groups were compared by one-way analysis of 
variance (ANOVA) assuming that the values were sampled 
from Gaussian distributions. For a set of data, if ANOVA 
indicated a significant difference (p  <  0.05); Tukey-Kramer 
multiple comparison tests were used to compare group means. 
Posttest was only performed if p  <  0.05. If the p  <  0.05 
considered statistically significant.

RESULTS

HFD Effects on the Weight Gain and Blood 
Glucose Levels
Values for body weight are shown in Table  2. The significant 
difference in the values of these parameters was observed 
between groups in body weights after treatment, while no 
significant difference was observed in the weight before treatment. 
A significant increase body weight was observed in the HFD 
group compared to the control group (Table  2). Moreover, in 
the group fed with HFD increscent in blood glucose level is 
obvious compared to control, however, values remain under 
defined diabetic values and LGG treatment did not statistically 
affected these levels (Figure  2).

Gut Microbiota Alterations Occur Due to 
the HFD
Deoxyribonucleic acid sequencing were done for stool samples 
from each of the four groups at the end of the experimental 
protocol to archive an overview of each phylum. We  did not 

TABLE 1 | Primers used for RT-PCR.

Target gene Forward primer sequences (5'-3') Reverse primer sequences (5'-3')

TLR4 CAA GGG ATA AGA ACG CTG AGA GCA ATG TCT CTG GCA GGT GTA
IL-1β GAAATGCCATTTGACAGTG CTGGATGCTCTCACTAGGACA
IL-6 CTGCAAGAGACTTCCATCCA CAGGTCTGTTGGGAGTGGT
TNF-α CATCTTCTCAAATTCGAGTGACAA TGGGAGTAGACAAGGTACAACCC
MMP-2 CTGATGGCACCCATTTACACCT GATCTGAGCGATGCCATCAAA
MMP-9 AGAGATGCGTGGAGAGTCGAA AAGGTTTGGAATCTGCCCAGG
TIMP-2 CAAGTTCTTCGCCTGCATCAA TCGAAACCCTTGGAGGCTT
RANKL CAGCATCGCTCTGTTCCTGTA CTGCGTTTTCATGGAGTCTCA
OPG ACCCAGAAACTGGTCATCAGC CTGCAATACACACACTCATCACT
GAPDH AGGTCGGTGTGAACGGTTTG TGTAGACCATGTAGTTGAGGTCA
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find a significant shift in the relative abundance of Firmicutes 
or Bacteroidetes in the control (relative abundance of Firmicutes 
was 19.62% and of Bacteroidetes was 24.73%; Figures  3A,B). 
However, the abundance of Firmicutes was increased in the 
HFD group (42.52%) with an accompanying decrease in 
Bacteroidetes abundance (21.74%; Figures  3A,B). Over and 
above, LGG treatment alone reduced the number of Firmicutes 
and increased the number of Bacteroidetes with especially 
affected HFD + LGG group where the ratio of these bacteria 
was almost normalized.

The results of our study showed a significant reduction in 
acetic (Figure 3C), propionic (Figure 3D), butyric (Figure 3E), 
valeric (Figure  3F), and isovaleric acids (Figure  3G) in stool 
samples in the HFD group (Figures  3C-G) compared to the 
control group. Also, a statistically significant increase in propionic, 

butyric, valeric, and isovaleric acids was observed in the groups 
treated with LGG compared to the control and HFD groups 
(Figures  3D-G), while values of acetic acid were not changed 
(Figure  3C).

HFD Contributes Endotoxemia
Because of an HFD, there is an increased production of LPS 
by oral and gut bacteria. The spread of LPS through the 
bloodstream is made possible by LBP. Levels of LBP were 
measured in mice in all experimental groups. Compared to 
the control group, the data showed that the level of LBP 
significantly increased in the HFD group (p  <  0.05). Also, 
data showed that the level of LBP significantly decreased in 
HFD + LGG group (p  <  0.05) as compared to HFD mice 
(Figure  4). These results suggest that HFD, due to changes 
in the microbiota, affects the increased production of LPS and 
its spread throughout the whole body.

HFD Causes Expression and Activity 
Changes in Several Inflammation 
Pathways in Periodontal Tissues
We measured the mRNA expression of TNFα, IL-1β, IL-6, 
TLR4, MMP-2, MMP-9, TIMP-2, RANKL, and osteoprotegerin 
(OPG). TNF-α, IL-1β, and IL-6 are the most important 
inflammation markers of periodontal disease, and its increase 
has been very well explained in periodontitis (Yucel et  al., 
2015) as a response to infection with the periodontal pathogens 
(Porphyromonas gingivalis, etc.). MMP-2, MMP-9, and TIMP-2 
are responsible for extracellular matrix (ECM) degradation in 
periodontal tissue (Stanisic et  al., 2019, 2020). RANKL and 
OPG are one of the key indicators of periodontal disease. 
OPG is osteoclastogenesis inhibitory factor and RANKL is an 
apoptosis regulator gene, a binding partner of OPG, and 
osteoclast differentiation factor. The data showed that TNF-α, 
IL-1β, IL-6, TLR4, MMP-2, MMP-9, and RANKL all peaked 
in periodontal tissue in the HFD group of mice. The LGG 
significantly decreased the expression of TNF-α, IL-1β, IL-6, 
TLR4, MMP-2, and MMP-9, indicating that LGG treatment 
attenuated the inflammation of periodontal tissue (Figures 5A-F). 
LGG did not affect RANKL expression (Figure  5H). OPG 
and TIMP-2 mRNA expression levels were significantly less 
in the HFD mice than WT mice (Figures  5G,I).

HFD Contributes Matrix Degradation in 
Periodontal Tissue
In our study, we  demonstrated a significant increase in the 
MMP-9 activity in HFD mice in the periodontal tissue samples 
(Figures  6A,B). This increased MMP-9 activity provoked the 

TABLE 2 | Body weight measurements, before and after treatment, presented as mean ± SD.

Group WT HFD LGG HFD + LGG

BW before (g) 20.17 ± 0.5 21.27 ± 0.83 19.93 ± 0.72 21.43 ± 0.47
BW after (g) 32.93 ± 0.4* 39.33 ± 0.86*# 34.97 ± 0.15* 36.9 ± 0.36*

BW before vs. BW after treatment *p < 0.05; WT after vs. HFD after #p < 0.05; n = 5.

FIGURE 2 | Effect of HFD and Lactobacillus rhamnosus GG (LGG) treatment 
on the glucose level (ng/ml). WT, Wild-type C57BJ/L6 mice; HFD, HFD-
supplemented wild-type mice; LGG, LGG-supplemented wild-type mice; HFD 
+ LGG, HFD, and LGG-supplemented wild-type mice. Values remain under 
defined diabetic values. All data represent means ± SD, WT vs. HFD group 
*p < 0.05; HFD vs. HFD + LGG nsp > 0.05, n = 5.
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degradation of matrix proteins resulting endothelial disorder of 
blood vessels and at the same time a disorder at the level of 
the periodontium, gingiva, and the alveolar bone. MMPs helped 
the degradation of the arterial matrix and caused decreased 
gingival blood flow (Figures  7A,B). The activity of MMP-9 was 
found to be  significantly increased in the HFD mice compared 
to the WT and HFD + LGG groups of mice (Figure  6B).

HFD Reduces Gingival Blood Flow
Gingival blood flow is required for conservation of periodontal 
tissue and tooth function. In the current study, we  measured 
gingival blood flow (Figure 7A). Our results indicate that HFD 
significantly reduced blood flow (215.2  ±  10.9) in the gingiva 
compared to control mice (264.6  ±  9.5; Table  3). Interestingly, 
LGG treatment alone significantly recover gingival blood flow 
to basal levels which indicated the same trend in the HFD + 
LGG group of mice (247.7 ± 9.1), suggesting that LGG improves 
gingival blood flow in experimental mice treated with HFD.

HFD Promotes the Development of 
Periodontal Disease via Losing Alveolar 
Bone, Loss of Epithelial Downgrowth, and 
Reducing the Number of Fibroblasts
Periodontal tissue was stained and observed under a lens with 
60x (200 μm) to analyze the distance between cement enamel 

junction to the alveolar bone crest (CEJ-ABC), epithelial 
downgrowth (ED), and fibroblasts. ED was measured by the 
distance of the apical migration of epithelial attachment relative 
to the CEJ (Figure  8A). H&E staining with histomorphometric 
analysis showed a smaller number of fibroblasts, an increase in 
ED, and increased distance between CEJ-ABC in the HFD group 
(Figures  8B,C). Results in the HFD group showed ED, and 
alveolar bone-loss compared to the control group (Figures 8B,C). 
LGG treatment improved all the above parameters (Figures 8B,C). 
Our results showed a significant reduction in the number of 
fibroblasts in the HFD group compared to the control group 
(Figure  8D), which indicates destruction of periodontal tissue 
and promotes the development of periodontal disease.

DISCUSSION

Gut microbiota officiates important functions in human 
physiology and its composition is dependent on environmental 
factors, including personal hygiene, diet, drug use, and presence 
of toxins, as well as genetic factors (Turnbaugh et  al., 2007; 
Lozupone et  al., 2012; Jandhyala et  al., 2015; Semenkovich 
et  al., 2015; Bai et  al., 2016). Alteration of the gut microbiome 
has been implicated in a number of diseases, including 
periodontitis (Greiner and Backhed, 2011; Komazaki et al., 2017; 
De Luca and Shoenfeld, 2019; Jia et al., 2019; Curtis et al., 2020). 

A

C D E F G

B

FIGURE 3 | Microbiota analysis of stool in all examined groups. WT, Wild-type C57BJ/L6 mice; HFD, HFD-supplemented wild-type mice; LGG, LGG-supplemented 
wild-type mice; HFD + LGG, HFD and LGG-supplemented wild-type mice. (A) Relative abundance of total bacteria at the phylum level in each treatment group (%); 
(B) Relative abundance of Bacteroides and Firmicutes at the phylum level in each treatment group (%); (C) Analysis of acetic acid; (D) Analysis of propionic acid; 
(E) Analysis of butyrate acid; (F) Analysis of valeric acid; (G) Analysis of isovaleric acid. All data represent means ± SD, WT vs. HFD group *p < 0.05; HFD vs. HFD + 
LGG nsp > 0.05, HFD vs. HFD + LGG #p < 0.05, n = 5.
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Bacteroidetes and Firmicutes represent two of the most important 
phyla which are involved in the gut microbiome. However, a 
shift in the proportion of bacteria Bacteroidetes and Firmicutes 
are associated with periodontitis (Chen et  al., 2017; Yu et  al., 
2019). The pivotal role in the composition of the gut microbiota 
has diet (Scott et  al., 2013). After consumption of specific 
dietary component, the human gut flora composition may 
significantly change within just a couple of days (Ng et  al., 
2014). Besides increscent in body weight (Table  2), long 
exposition to HFD has also been shown to ameliorate gut 
physiology, leading to changes in the composition of gut 
microbiota, specifically influenced by overexpression of Firmicutes 
(Turnbaugh et al., 2008). Results of our study are in correlation 
with previously mentioned (Figures 3A,B). We found that HFD 
significantly increased the total number of Firmicutes, but with 
remarkable decrease of Bacteroidetes (Figures  3A,B). On the 
other hand, LGG supplementation significantly reduced the 
overall abundance of Firmicutes while substantially increased 
Bacteroidetes (Figures  3A,B). Moreover, primates have more 
similar gut microbiota to human and studies of Becker et  al. 
(2019a) on an African green monkey showed increased numbers 
of Prevotellaceae and Bacteroidetes-Prevotella-Porphiromonas in 
the established new model of Crohn’s disease. Furthermore, they 

investigated mutual changes in the structure of the intestine 
and suggested the influence of Firmicutes, Bacteroidetes, 
Proteobacteria, Archaebacteria, and Actinomycetes on cytokines 
and its mediators (Becker et  al., 2019b). Those observations 
were in consistence with the results of our study (Figures 3A,B). 
It still remains unclear how this enrichment influences 
periodontitis state, making this topic at the high range of 
interest in scientific world. Taking everything above into 
consideration, we  can possibly say that even small classes and 
bacteria can have an impact on microbiome in such an essential 
way that those effects will not be just reflected at the phyla level.

The change in the microbiota composition gives different 
amounts of metabolites that are produced in the gut (Yang 
et al., 2019). SCFA are one of the major categories of metabolites 
produced in the gut. Gut microbiota produces the following 
SCFA, butyrate, acetate, propionate, valeric, and isovaleric acid 
(Lu et  al., 2014). SCFA play significant roles in many diseases 
and metabolic disorders such as diabetes (Tolhurst et al., 2012) 
and obesity-related inflammation (Al-Lahham et  al., 2011). 
Moreover, fermentation of anaerobic bacteria can lead to 
production of SCFA and might establish themselves in places 
which are associated with pathology such as periodontal disease 
(Niederman et  al., 1997; Tsuda et  al., 2010). The results of 
our study had shown a significant reduction in acetic, propionic, 
butyric, valeric, and isovaleric acids in fecal samples in the 
HFD group compared to the control group. Also, a significant 
increase in propionic, butyric, valeric, and isovaleric acids was 
observed in the groups treated with LGG compared to the 
control and HFD groups (Figures  3D-G), while acetic acid 
was not significant altered (Figure 3C). This observation suggests 
that, in our case, HFD through reduction of SCFA can support 
the reduction of gingival blood flow and the occurrence of 
periodontal disease (Figures  1, 7; Table  3). Furthermore, in 
gingival crevicular fluid of patients with chronic periodontitis 
low levels of propionic and butyric acids were found (Niederman 
et  al., 1997; Qiqiang et  al., 2012), and this can prevent tight-
binding potential of epithelial cells resulting in penetration of 
bacterias and destruction of periodontal tissue (Takigawa et al., 
2008). Periodontopathogen bacteria is responsible for the 
production of butyric acid which is mainly involved in the 
development of periodontal disease onset (Cueno and Ochiai, 
2018). Interestingly, direct application of butyric acid in gingival 
tissue causes activation of NF-κB in the blood only after 60 
to 180 min (Cueno et  al., 2016), indicating its short-term 
immediate effect. Also, Cueno and Ochiai (2018) studies indicate 
that elevated values of butyric acid in the gingiva caused the 
quantity of representative inflammatory markers (Caspases 12 
and 1, IL-1β, and TNF-α) to decrease. The results of our 
study prove precisely that SCFA (Figures  3C-G), reduction 
increases inflammatory markers such as IL-1β and TNF-α in 
periodontal tissue (Figures  5B,C). However, the effect of gut 
butyric acid and periodontal disease has not been sufficiently 
elucidated and investigated. The reduction of SCFA in the 
stool affected gut permeability and consequently helped to 
change the gingival blood flow and the occurrence of 
inflammation of periodontal tissue. Additional research on the 
effects of individual action of gut SCFA and periodontal disease 

FIGURE 4 | Effect of HFD and LGG treatment on the lipopolysaccharide 
binding protein concentration in mice serum (ng/ml). WT, Wild-type C57BJ/L6 
mice; HFD, HFD-supplemented wild-type mice; LGG, LGG-supplemented 
wild-type mice; HFD + LGG, HFD, and LGG-supplemented wild-type mice. 
All data represent means ± SD, WT vs. HFD group *p < 0.05; HFD vs. HFD + 
LGG #p < 0.05, n = 5.
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is needed to elucidate the mechanisms of their action. In 
summary, we can observe that HFD can support the reduction 
of gingival blood flow and the occurrence of periodontal disease 
through reduction of SCFA.

Live bacterias and LPS as bacterial component, can change 
location from the gut lumen to other tissue sites (Scheithauer 
et  al., 2016). LPS, as the most important component of the 
Gram-negative bacteria membrane, binds to Toll-like receptor 
4 (TLR4) and activates innate immune response. In our study, 
elevated level of this receptor expression was observed in the 
HFD group (Figure  5A; Wei et  al., 2020). LPS transfer to the 
TLR4 is catalyzed by local and systemically LPS binding protein. 
Furthermore, hepatocytes are responsible for the production 
of LBP which blood levels are increased in chronic and aggressive 
periodontitis (Soolari et  al., 1999; Wohlfeil et  al., 2012). 
We  measured the level of LBP in the mice serum in order 
to detect another potential route of periodontal disease (HFD gut 

dysbiosis-LPS/TLR4 pathway-gingival blood flow-periodontal 
disease). The results of our study showed that LBP was 
significantly increased in HFD group compared to the control 
group, while in the HFD + LGG group a decrease of LBP 
levels compared to the HFD group was observed (Figure  4).

According to a recent study, we  also have investigated the 
role of HFD during inflammation and its possibility to cause 
periodontal tissue damage (Muluke et al., 2016). The expression 
of TNFα, IL-1β, IL-6, TLR4, RANKL, and OPG in periodontal 
tissue of mice was measured. HFD promotes the development 
of gingivitis and periodontitis by systemic and local inflammatory 
response. Blasco-Baque et al. (2012) showed that TNF-α, IL-1β, 
and IL-6 periodontal tissue expression were increased in the 
periodontal tissue of HFD mice. It has been shown that 
inflammatory cytokines such as TNF-α, IL-1β, IL-6 are in 
tight correlation with development of periodontal disease 
(Pacios et al., 2012; Cekici et al., 2014). Jin et al. (2013) showed 
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FIGURE 5 | Effect of HFD and LGG treatment on the molecular remodeling in periodontal tissues. WT, Wild-type C57BJ/L6 mice; HFD, HFD-supplemented wild-
type mice; LGG, LGG-supplemented wild-type mice; HFD + LGG, HFD, and LGG-supplemented wild-type mice. Quantitative RT-PCR analysis for (A) TLR4, 
(B) TNFα, (C) IL-1β, (D) IL-6, (E) MMP-2, (F) MMP-9, (G) TIMP-2, (H) RANKL, and (I) OPG mRNA expression. The results are presented as the expression of the 
individual mRNAs with normalization GAPDH, using the 2−ΔΔCq method. All data represent means ± SD, Fold change vs. WT group. All data represent means ± SD, 
WT vs. HFD group *p < 0.05; HFD vs. HFD + LGG; nsp > 0.05, HFD vs. HFD + LGG #p < 0.05, n = 5.
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LPS/TLR4 pathway might have a pivotal role when it comes 
to exposure of macrophages to LPS due to palmitic acid which 
may provoke increased production of inflammatory cytokines 
specifically through this pathway. Our study of periodontal 
tissue overlaying areas of alveolar bony defects revealed that 
HFD animals indeed exhibited higher expression of TNF-α, 

TNFα, IL-1β, IL-6, TLR4, and RANKL (Figures  5A-D,H) and 
lower expression of OPG (Figure  5I) compared with control 
animals, suggesting that HFD promotes local inflammatory 
activation in response to infection.

Elevated proinflammatory cytokines production induces 
increased activity and expression of MMP. Previously conducted 
experimental studies have found that HFD causes loss of vascular 
elasticity, primarily due to deposition of harmful substances in 
the walls of blood vessels, which in turn leads to reduction of 
blood flow (Declèves et  al., 2013; Mitra et  al., 2018; Yuan et  al., 
2019). Since MMPs are one of the factors causing the occlusion 
as well as damage of blood vessels and periodontal tissue, MMP-2, 
MMP-9, and TIMP-2 expression was measured in periodontal 
mice tissue. MMPs are responsible for ECM degradation catalyzed 

A B

FIGURE 6 | Effect of HFD and LGG treatment on the MMP activity in periodontal tissues. WT, Wild-type C57BJ/L6 mice; HFD, HFD-supplemented wild-type mice; 
LGG, LGG-supplemented wild-type mice; HFD + LGG, HFD and LGG-supplemented wild-type mice. (A) Original zymography membrane. (B) Gelatin zymography 
analysis in periodontal tissue. All data represent means ± SD, WT vs. HFD group *p < 0.05; HFD vs. HFD + LGG #p < 0.05, n = 5.

A

B

FIGURE 7 | Effect of HFD and LGG treatment on the gingival blood flow. WT, Wild-type C57BJ/L6 mice; HFD, HFD-supplemented wild-type mice; LGG, LGG-
supplemented wild-type mice; HFD + LGG, HFD, and LGG-supplemented wild-type mice. (A) Buccal view of the exposed right mandibular gingiva in first molar 
area. (B) Blood flow imaging at the surface of the buccal right mandibular gingiva in first molar area via Doppler laser. The black arrows indicate the gingival blood 
flow measurement site.

TABLE 3 | Gingival blood flow measurements presented as mean ± SD.

Group WT HFD LGG HFD + LGG

Flux statistic 
(PU)

264.6 ± 9.5 215.2 ± 10.9* 247.5 ± 8.3 247.7 ± 9.1#

WT vs. HFD group *p < 0.05; HFD vs. HFD + LGG #p < 0.05; n = 5.
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by zinc-dependent endopeptidases. MMPs can selectively digest 
pathological ECMs in different models of disease or injury. 
Additionally, improper digestion of ECMs can lead to fibrosis 
in different tissues (Chen and Li, 2009). The results of this 
study showed that MMP-2 and MMP-9 were significantly increased 
in the HFD group, while the HFD + LGG group reduced mRNA 
levels from MMPs (MMP-2 and MMP-9) compared to HFD 
groups (Figures 5E,F). Moreover, it was noticed that the expression 
and activity of MMP-9 were increased in experimental 
periodontitis, regardless of the method of periodontitis induction 
(Barreiros et  al., 2018). These studies indicated the importance 
of ECM degradation as one of the factors in the periodontal 
disease development. In our study, MMP-9 activity was measured 
by gelatin zymography in periodontal mice tissue. The results 
showed that MMP-9 activity was significantly increased in the 
HFD group, while the LGG treatment reduced the level of 
MMP-9 activity compared to the HFD group (Figure  6A).

Previously conducted study had shown that HFD causes 
endothelial damage after 2 h of meal via vascular occlusion, 
leading to a reduction in blood flow, which is consistent with 
our results (Bui et  al., 2010; Münch et  al., 2019). We  used 
HFD to determine its effect on periodontal tissues, which can 
be  direct on the oral cavity, or indirect on the blood vessels, 
blood flow, and gastrointestinal tract (Figure  1). Blood flow 
in the gingiva indicates circulation in the gingival and periodontal 
tissue and their nutrition and function. We  measured gingival 

blood flow by using Laser Doppler. In the buccal gingiva region 
of the first right mandibular molar, GBF was 215.2  ±  10.9 
flux units in the HFD group, while in the control group it 
was 264.6  ±  9.5 flux units (Table  3). Because of HFD, there 
was a reduction in gingival blood flow while LGG in the 
HDF + LGG group improved gingival blood flow (247.5  ±  9.1 
flux unit). For the first time in our study, it has been shown 
the influence of HFD on gingival blood flow in mice 
(Figures  7A,B). Baab and Oberg (1987) suggested that some 
significant morphological and changes in vascularization occurred 
as an early sign of gingivitis in dogs while measured blood 
flow in the inflamed gingiva did not show very convincing 
evidence. Furthermore, in previous experimental studies, it was 
hypothesized that there are three predisposing factors for 
gingivitis occurrence, including vascular stasis, stress, and 
smoking. These studies also found a reduction in the gingival 
blood flow during ischemia in rabbits infused with epinephrine 
and nicotine (Clarke et  al., 1981; Clarke and Shephard, 1984).

Numerous disorders lie in the pathology of periodontal 
disease development. Firstly, HFD causes periodontal disease 
(Blasco-Baque et  al., 2012), which was also confirmed in our 
study (Figures  8A-D). We  used histomorphometric analysis 
as reported in previous studies (Semenoff et  al., 2008). ED 
and CEJ-BC were chosen thus their previous correlation with 
attachment loss and bone-loss (Susin and Rösing, 2003; 
Breivik et  al., 2006). Histomorphometric analysis revealed an 

A
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FIGURE 8 | Representative images of hematoxylin-eosin (H&E) staining of periodontal tissue and histomorphometric analysis of alveolar bone loss, ED, and 
number of fibroblasts per 45 × 50 μm. WT, Wild-type C57BJ/L6 mice; HFD, HFD-supplemented wild-type mice; LGG, LGG-supplemented wild-type mice; HFD + 
LGG, HFD, and LGG-supplemented wild-type mice. (A) Representative depiction of histological sections. Images were captured at 20× (200 μm) magnification after 
H&E staining. Blue lines represent alveolar bone crest (ABC), and cement enamel junction (CEJ). Red lines represent the alveolar bone loss. Black arrows show the 
apical extent of the epithelial downgrowth (ED). (B) Alveolar bone-loss was measured as the distance between the CEJ and the ABC. (C) ED was defined by 
measuring the distance from the cementoenamel junction (CEJ) to the apical extent of the junctional epithelium. Results are expressed in μm. (D) Bars shows mean 
number of fibroblasts per 45 × 50 μm. Scale bars = 200 μm. All data represent means ± SD, WT vs. HFD group *p < 0.05; HFD vs. HFD + LGG #p < 0.05, n = 5.
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increase in the distance of CEJ-ABC in the HFD group, which 
indicates the existence of periodontal disease (Figure  8B). For 
histomorphometric analysis, the mean distance from the 
CEJ-ABC and the mean ED in μm was statistically significantly 
higher in the HFD mice group (p < 0.05 vs. WT; Figures 8A-C). 
Based on studies of similar design and obtaining the values 
for the distance CEJ-ABC, we  can conclude that periodontal 
disease exists in our mice. In our study, we  discovered the 
difference in periodontium between these four groups of mice, 
and the influence of HFD and dysbiosis on the periodontium, 
as well as the occurrence of periodontal disease. HFD mice 
showed an increase in the periodontal breakdown by molecular 
remodeling (Figures 5A-I), matrix degradation (Figures 6A,B), 
decreased gingival blood flow (Table  3), alveolar bone loss 
(Figure 8B), and decreased number of fibroblasts (Figure 8D). 
These findings as well are in correlation with previously described. 
Decreased fibroblast levels were observed in the experimental 
model of periodontitis in mice compared to healthy controls 
from wild type group (Alshammari and Amar, 2019).

Our hypothesis was established on the effects of HFD 
in sense of inducing chronic inflammation throughout 
increscent of TNF-α, IL-1β, and IL-6 levels and on such a 
way initiating destruction of the periodontium thus reduced 
the number of fibroblasts. In addition to the above, increased 
expression of organic acids might be  interpreted as the 
important factor for suppressing nuclear factor kappa-B and 
inflammation overall. On the other hand, HFD, by suppressing 
this pathway leads to more intense inflammation and 
periodontal disease.

The results of this study indicate for the first time the 
influence of HFD and dysbiosis on gingival blood flow. Also, 
the results of this study suggest that oral LGG therapy may 
regulate gingival blood flow. With this study, we  provided 
theoretical evidence for the dysbiotic mechanism of decreased 

blood flow and their impact on the development of periodontal 
disease as well as support for the treatment of LGG gingival 
blood flow. However, the specific mechanisms and clinical effect 
of HFD and LGG on periodontal disease require further research.
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