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Abstract: This study was designed to investigate che-
mical and antioxidant properties, as well as the antimi-
crobial and antibiofilm behaviour of Cinnamomum cassia

essential oil (CCEO). MALDI-TOF MS Biotyper mass
spectrometry was applied to evaluate the biofilms of
Stenotrophonomonas maltophilia and Bacillus subtilis,
while the antibiofilm ability of CCEO was assessed on
wooden and glass surfaces. The antimicrobial activity
by disc diffusion method, microdilution method, and
vapour phase for two biofilm-producing bacteria and
three Penicillium spp. were used. Antimicrobial and anti-
biofilm properties were assessed using the agar micro-
dilution protocol. The vapour phase of Penicillium citrinum,
P. crustosum, P. expansum, S. maltophilia, and B. subtilis on
bread, carrot, potato, sweet potato, and apple in situ was
studied. Specific molecular variations related to the biofilm
formation and genetic analogies were evaluated with MSP
spectra dendrograms of S. maltophilia and B. subtilis profiles
were grown on different days. The results of disc diffusion
and broth diffusion methods showed that CCEO was
strongly effective against all tested microorganisms and
the vapour phase method was effective and active against
all Penicillium spp., but not strongly effective against bac-
teria in food preservation of food matrices.
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1 Introduction

The genus Cinnamomum (Laureaceae family) consists of
250 species of wooden plants native to China, Southeast
Asia, and Australia [1]. Trees and shrubs of the genus
may be found in rainforests located within a wide range
of altitudes, but are rare in latitudes with a typical sea-
sonal climate [2]. Damp and well-drained locations are
preferable for plant growth [2].

Essential oils (EOs) ofCinnamomumcassia, Cinnamomum
zeylanicum, and Cinnamomum camphora are widely recog-
nized for their various applications in the medicine and
food industries [3,6]. The exact composition of the cin-
namon EOs depends on the geographical origin and pro-
cessing procedure. Cinnamon EOs have been used in med-
ical remedies for centuries and their positive effects on the
treatment of respiratory, gastrointestinal cardiovascular,
and urinary disorders are well-described. EOs possess aph-
rodisiac, antihelminthic, antibacterial, insecticidal, anti-
oxidant, antimutagenic activities, and tonic properties
[3,6]. EOs from the leaves of Cinnamomum osmophloeum
exhibit strong activity against bacteria, termites, mosqui-
toes, mildew, and other biological agents [4]. According
to Verspohl et al. [5], the EO of C. cassia has expressed
antidiabetic effects via the insulin-enhancing activity
in vitro [6].

Cinnamon is a common ingredient in seasonings,
sauces, bakery, confectionery, and drinks; the Food and
Drug Administration has recognized cinnamon as a safe
food additive [7].

Strong antifungal activity of cinnamon EOs was
attributed to cinnamaldehyde abundance in the EO com-
position with up to 76.34% of the total of EO compounds.
Antimicrobial activities against molds, e.g. Rhizopus
nigricans, Aspergillus flavus, and Penicillum expansum,
and bacteria, e.g. Staphylococcus aureus and foodborne
pathogens, were studied previously [7–10].

Cinnamomum EOs may exhibit a significant antibio-
film activity: the EO from the trunk bark of C. burmannii
interfered with planktonic cell growth and inhibited
development of S. aureus and P. aeruginosa biofilms
[11]. Trans-cinnamaldehyde has been shown to delay
the formation of E. coli biofilm in urinary catheters [12].

The main objectives of this study were to study the
chemical characteristics and antioxidant properties of

Cinamomum cassia essential oil, the antibiofilm and mole-
cular profile of biofilm formation of C. cassia, and the
antimicrobial effectivity of C. cassia essential oil in vitro
as well as in situ.

2 Materials and methods

2.1 Essential oil

Cinnamomun casia essential oil (CCEO) was obtained
from Hanus, a.s. (Nitra, Slovakia). In our study, chemical
characterization was performed and antioxidant activity
of the essential oil was measured as well. Thereafter, the
antimicrobial, antibiofilm activity, and molecular profile
of biofilm were evaluated.

2.2 Chemical composition of the
essential oil

Gas chromatographic-mass spectrometric analysis (GC
Agilent 7890B and MS Agilent 5977A, Agilent Technologies
Inc., Santa Clara, CA, USA) of CCEO was done as reported
previously [13,14]. Prior to the analysis, a CCEO sample was
diluted in hexane (HPLC ≥97%, SigmaAldrich GmbH, Darm-
stad, Germany) to a concentration of 10 µL/mL. One micro-
litre of the diluted sample was injected into the inlet (250°C)
operated in split mode 1:10. The separation was achieved
using a HP-5ms capillary column (30m × 0.25mm × 0.25µm
film; Agilent Technologies). The oven temperature program
was set to 50°C for the first 5 min, and subsequently
increased to 240°C at the rate of 3°C/min, where it was
kept constant for 2min. Helium was used as a carrier gas
at a constant flow (1.2mL/min). The mass detector para-
meters were as follows: ionization energy of the filament–
70 eV, transfer line temperature– 250°C, MS source tem-
perature– 230°C, quadrupole temperature– 150°C. The mass
spectrometer was programmed under electron impact (EI) in
a full scan mode at m/z 40–350 with a scanning rate of
2.4 scans/s. The identification of compounds was carried
out by comparing mass spectra (over 80% match) with a
commercial database NIST® 2017, and Wiley library, reten-
tion times of reference standards (D-limonene, β-myrcene,
and γ-terpinene; Sigma-Aldrich GmbH) comparison of data
on the occurrence in CCEO with the literature [15–21]. The
relative content of the identified compounds was calculated
by dividing the individual peak area by the total area of all
peaks. Each sample was measured in triplicate. The results
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were expressed as the means of three injections ± standard
errors (SE).

2.3 Radical scavenging activity – DPPH
method

The radical scavenging activity of CCEO was evaluated by
the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay [13–22].

2.4 Microorganisms

Stenotrophomonas maltophilia and Bacillus subtilis were
obtained from amilk producer, while Penicillium expansum,
P. crustosum and P. citrinum were isolated from grapes.
MALDI-TOF MS Biotyper (Brucker, Daltonic, Germany),
16S rRNA, and ITS sequencing were used for the
identification.

2.5 Antimicrobial activity

The disc diffusion method was applied for detection of anti-
microbial activity. S. maltophilia and B. subtiliswere cultured
in the Mueller Hinton broth (MHB, Oxoid, Basingstoke, UK)
at 37°C overnight, while P. expansum, P. crustosum, and
P. citrinum were incubated in Sabouraud dextrose broth
(SDB, Oxoid, Basingstoke, United Kingdom) at 25°C for
48 h. Mueller–Hinton agar (MHA) and Sabouraud agar
were inoculated with microbial suspension of tested species
of 0.5 McFarland turbidity (densitometer Erba Lachema
s.r.o., Brno, Czech Republic). Discs were impregnated with
CCEO (10 µL/disc) and inoculates agars were incubated at
4°C for 1–2 h, later at 37 and 25°C for 18–24 and 48 h for
bacteria and Penicillium spp., respectively. The zone of
growth inhibition was measured. Fluconazole and chloram-
phenicol (30 µg, Oxoid, Basingstoke, UK) were used for the
positive controls.

2.6 Minimum inhibitory and fungicidal
concentration (MIC/MFB)

Minimum inhibitory concentration (MIC) andminimum fun-
gicidal concentration (MBC/MFC)were detected according to
the National Committee for Clinical Laboratory Standards
[23] as described by Kačániová et al. [13,14]. Chloram-
phenicol and nystatin, and DMSO served as positive and

negative controls, respectively. MIC was detected at 570 nm
with a spectrophotometer (Promega Inc., Madison, USA).

2.7 Minimum biofilm inhibitory
concentration (MBIC)

MBIC against S. maltophilia was performed in microtitra-
tion plate [24]. Bacterial suspension preparation, incuba-
tion with CCEO, staining with crystal violet and acetic
acid, and the evaluation of results were described pre-
viously [13,14,25]. MBIC was defined as the concentration
of CCEO with absorbance less or equal to the negative
control. The test was performed in triplicate.

2.8 Bread making process

The baking formula included 250 g wheat flour T650,
150mL water, 2.5 g sucrose, 5 g salt, and yeast. The dough
was fermented in a fermentation cabinet (MIWE cube;
Pekass s.r.o., Plzeň; Czech Republic) at 32°C, with relative
humidity 85% for 40min. The loaves were baked at 180°C
for 17 min with 160mL of water, then at 210°C for 10min
in a steamy oven (MIWE cube). Freshly baked bread was
left to rest at room temperature for 2 h.

2.9 Water activity and moisture content

Water activity (aw) was assessed in cooled breadcrumbs
(Lab Master aw Standard, Novasina; Switzerland) at 25 ±
0.3°C. The moisture content was detected by moisture ana-
lyser (Kern DBS 60-3, Kern & Sohn GmbH; Germany)
at 120°C.

2.10 In situ antifungal analysis of bread

The bread was sliced (150 mm of thickness) and placed
into 0.5 L sterile glass jars (Bormioli Rocco, Italy). A 5 µL
of suspension of fungal spores (1 × 106 spores/mL) in
sterile PBS with 0.5% Tween 80 with density of 1–1.2
McFarland was applied for bread inoculation. CCEO con-
centrations of 125, 250, and 500 µL/L (EO + ethyl acetate)
were used for the impregnation of sterile paper discs
(6 cm). The discs were inserted into the jar lid and jars
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were tightly closed. The sample material was incubated
at 25 ± 1°C for 14 days in the dark and microbial colonies
with visible mycelial growth were selected for confirma-
tion [26].

2.11 Vapour phase of antimicrobial assay
with vegetables and apple

An amount of 5 µL of inoculum was applied on 5mm of
thickness carrot slices, which were placed onto PDA
(potato dextrose agar, Oxoid, Basingstoke, UK) agar.
The dilution of CCEO in ethyl acetate (1:1) to a final
volume of 125, 250, and 500 μL was used for the impreg-
nation of a 55mm sterile filter paper disc. After evapora-
tion of ethyl acetate, the discs were placed between the
lid and agar and incubated at 37°C for 18–24 h and at 25°C
for 72 h for bacteria and fungi, respectively [14].

2.12 Biofilm development and molecular
characteristics on different surfaces
with MALDI-TOF MS biotyper

Pre-inoculated S. maltophilia and B. subtilis cultures were
grown on a glass slide and a wooden toothpick with the
addition of 1% CCEO. Sampling was done at 3, 5, 7, 9, 12,
and 14 days of incubation on a shaker (170 rpm, 37°C)
with a sterile cotton swab. The control samples were
obtained from the planktonic cell suspension. MALDI-
TOF MicroFlex analysis (Bruker Daltonics, Germany) with
a standard global spectrum (MSP) produced by the MALDI
Biotyper 3.0 software (Bruker Daltonics) was processed
to the dendrogram method using Euclidean distances [27].
The obtained spectra were processed with FlexAnalysis 3.0
(Bruker Daltonics).

2.13 Statistical analysis

All experiments were performed in triplicate. Microsoft™
Excel® was used for data analysis. MBIC50 and MBIC90
(concentration for 50 or 90% reduction of bacterial bio-
film) were evaluated with logit analysis.

Ethical approval: The conducted research is not related to
either human or animal use.

3 Results and discussion

3.1 Chemical characterization of
Cinnamomum cassia essential oil (CCEO)

Earlier reports have shown that CCEO obtained from dif-
ferent parts of plants, e.g. leaves and bark, differ in their
composition [28,29]. Age of the trees, growing seasons

Table 1: Chemical composition of Cinnamomum cassia essential
oil (CCEO)

Compound name RTa Relative content
(% ± SE)b

Cinnamene 7.97 0.18 ± 0.03
3-Carene 9.86 0.16 ± 0.02
Camphene 10.53 0.10 ± 0.01
Benzaldehyde 11.07 1.75 ± 0.13
o-Cymene 14.28 0.07 ± 0.00
D-Limonene 14.48 0.06 ± 0.00
Benzyl alcohol 14.75 0.08 ± 0.00
2-Hydroxy-benzaldehyde 15.12 0.80 ± 0.08
Acetophenone 16.33 0.08 ± 0.00
β-Phenethyl alcohol 18.68 1.29 ± 0.12
2-Methyl-benzofuran 20.12 0.37 ± 0.01
Benzenepropanal 21.11 1.01 ± 0.07
Endo-borneol 21.24 0.18 ± 0.02
3-Phenylpropanol 24.39 0.09 ± 0.01
2-Methoxy-benzaldehyde 24.91 0.84 ± 0.05
Phenetyl acetate 25.68 0.24 ± 0.02
Cinnamaldehyde 26.79 61.6 ± 2.58
Trans-cinnamyl alcohol 27.86 0.30 ± 0.04
Copaene 30.93 0.97 ± 0.05
Caryophyllene 32.77 0.20 ± 0.01
o-Hydroxy-cinnamic acid 33.45 4.12 ± 0.16
Cinnamyl acetate 33.91 5.35 ± 0.27
(+)-Ledene 34.48 0.20 ± 0.01
γ-Cadinene 35.16 0.21 ± 0.01
α-Curcumen 35.43 0.13 ± 0.03
β-Guaiene 35.90 0.10 ± 0.00
α-Muurolene 36.12 0.13 ± 0.00
β-Bisabolene 36.47 0.15 ± 0.01
β-Copaene 36.67 0.13 ± 0.00
Cadina-1(10),4-diene 37.05 0.34 ± 0.06
Trans-4-
methoxycinnamaldehyde

37.43 13.8 ± 0.54

Farnesol 38.64 0.31 ± 0.01
(−)-Spathulenol 39.15 0.22 ± 0.01
β-Costol 39.36 0.25 ± 0.01
4-Epi-cubedol 41.58 0.08 ± 0.00
Benzyl benzoate 45.94 0.07 ± 0.00

aRT, Retention time (min). bValues represent means of three repli-
cate determinations.
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or months, and sampled material (bark or xylem) were
reported to affect the chemical composition of the CCEO
[30–33]. Individual constituents of CCEO may be also
affected by growing seasons or months for branches and
leaves [32], as well as a natural variety of the sampled parts
of the branches [33]. In our study, the main volatile com-
pounds of CCEO were cinnamaldehyde (61.57%), trans-4-
methoxycinnamaldehyde (13.78%), cinnamyl acetate (5.35%),
and o-hydroxy-cinnamic acid (4.12%) (Table 1).

The main volatile compounds of the EO of bark at
different growing seasons and age were trans-cinnamal-
dehyde (33.95–76.4%), cinnamyl alcohol acetate (0.09–
49.63%), 2′-methoxycinnamaldehyde (0.09–6.69%), and
copaene (1.09–14.3%) [15]. Phenolic materials with func-
tionalized loop structures revealed higher antifungal
and antibacterial activities [34]. Antifungal activity of
cinnamaldehyde was reported previously [35]. Cinna-
maldehyde (74–88%) has been found to be a major
compound of CCEO [16,17] with wide application

opportunities in medicine [18,19], food production, and
chemical industry [20,21].

3.2 Antioxidant potential of CCEO

The DPPH radical inhibition value for CCEO was identi-
fied to be 42.04 ± 0.42%. The antioxidant properties
of different parts of plant have been investigated with
notable antioxidant properties reported [3]. Significant
DPPH scavenging activity of C. cassia oil (92.4%) was
detected previously [35].

3.3 Antimicrobial properties of CCEO

Strong antibacterial activity of CCEO was found against
Stenotrophomonas maltophilia 27.33 ± 0.58mm and

Figure 1: In situ antifungal assessment of bread inoculated with Penicillium crustosum, P. expansum, and P. citrinum in vapour phase.
(a) control samples of bread; (b) bread inoculated with P. crustosum, P. expansum, and P. citrinum with the CCEO in concentration of 125,
250, and 500 µL/L.
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Bacillus subtilis (20.33 ± 1.53mm). A lesser degree of activity
was reported against P. citrinum (13.53 ± 1.15mm), P. crus-
tosum (10.64 ± 0.58mm), and P. expansum (10.33 ± 1.53mm).
Antibacterial activity of CCEO against bacteria, including
food-borne pathogens such as Staphylococcus aureus,
Listeria monocytogenes, Streptococcus oralis, S. angi-
nosus, Escherichia coli, and B. subtilis, was reported
[36–38]. Strong bacterial inhibitory effects in the present
study support the findings on the antibacterial activities
of CCEO. Antimicrobial activities were reported in other
Cinnamomum plants, and Chinese cinnamon EO was

reported to inhibit the growth of molds in foods with
potential practical applications [39].

3.4 Minimum inhibitory concentration
of CCEO

CCEO showed the highest activity against the S. malto-
philia (MIC = 0.05 μL/mL) and against B. subtilis (MIC =
0.10 μL/mL). The high activity against P. citrinum (MFC =

Figure 2: In situ antimicrobial evaluations of vegetables with Penicillum spp. in vapour phase. (a) control sample of carrot inoculated with
fungi; (b) experimental group of carrot inoculated with P. crustosum, P. citrinum, and P. expansum at a concentration of 125, 250, and
500 µL/plate; (c) control sample of potato inoculated with molds; (d) experimental group of carrot with P. crustosum, P. citrinum, and
P. expansum in a concentration of 125, 250, and 500 µL/plate; (e) control sample of sweet potato with inoculated with molds; (f) experi-
mental group of sweet potato inoculated with P. crustosum, P. citrinum, and P. expansum in concentration of 125, 250, and 500 µL/plate.
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0.78 μL/mL), P. crustosum (MFC = 0.39 μL/mL), and P.
expansum (MFC = 0.20 μL/mL) was found which was
in agreement with previous studies [36,38]. Our results
showed that the best antimicrobial activity of CCEO was
found against biofilm-producing strains of S. maltophilia
and the worst antiicrobial activity was reported against
microscopic filamentous fungus P. citrinum. The MIC
extracts of C. cassia against S. aureus were in the range
of 0.3–2.0 mg/mL [34]. Bud and bark extracts expressed
higher antimicrobial activity against S. aureus and
A. baumannii in comparison with the leaf extracts [34].
According to Manso et al. [40], the MIC and MFC of CCEO
(100 and 200 ppm) were lower than 400 and 800 ppm
recorded for oregano EO.

3.5 Moisture content and water activity

The moisture content of the bread was 42.23 ± 0.54% and
water activity −0.9435 ± 0.005. Moisture content and
water activity may alter the shelf-life of the bakery with
elevated parameters and may enhance the microbial
growth [41–44]. For white bread, the aw value was reported
to bewithin the range of 0.94–0.97 [45], making the product
more susceptible to microbial spoilage, especially molds.

Intermediate moisture between 35 and 42% [46–49]
is typical for bread, and that was in agreement with
our data.

Aspergillus, Rhizopus, Penicillium,Mucor,Monilia, and
Eurotium were common molds in bread [50]. P. expansum
maywithstand harsh environmental conditions which was

a prerequisite of application of the mold in the experi-
ment [51].

3.6 In situ antifungal activity of the CCEO in
bread

MID50 and MID90 of the CCEO against Penicillium
citrinum in the bread were 100.34 and 121.23 µL/L against
P. crustosum of 121.12 and 135.25 µL/L, and against
P. expansum of 101.12 and 119.84 µL/L, respectively.
MID50 and MID90 for coriander EOs under identical
conditions for same species of microscopic fungi were
367.19 and 445.92 µL/L [13]. MID50 and MID90 of the
bitter orange EO against P. crustosum were 98.71 and
123.39, against P. citrinum of 136.52 and 188.40, and
against P. expansum of 353.12 and 564.99, respectively
[14] (Figure 1).

3.7 In situ antifungal activity of CCEO on
vegetables

The highest antifungal activity of the CCEO on carrot was
recorded against all tested fungi at a concentration of
125 µL/L, on potato at a concentration of 250 µL/L, and
on sweet potato at a concentration of 500 µL/L (Figure
2a–f). The growth of Aspergillus niger was inhibited using
500, 1,000, and 2,000 μL of CCEO/L of air; doses of 300,

Figure 3: In situ antimicrobial activity of CCEO on vegetables in vapour phase. (a) control sample of carrot, potato, and apple contaminated with
B. subtilis; (b) effect of CCEO at 125 µL/plate on carrot, potato, and apple contaminated with B. subtilis; (c) effect of CCEO at 125 µL/plate on
carrot, potato, and apple contaminated with B. subtilis; (d) effect of CCEO at 125 µL/plate on carrot, potato, and apple contaminated with
B. subtilis; (e) control sample of carrot, potato, and apple contaminated with S. maltophilia; (f) effect of CCEO at 125 µL/plate on carrot, potato,
and apple contaminated with S. maltophilia; (g) effect of CCEO at 250 µL/plate on carrot, potato, and apple contaminated with S. maltophilia;
(h) effect of CCEO at 500 µL/plate on carrot, potato, and apple contaminated with S. maltophilia.
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800, and 1,500 μL of CCEO/L of air were reported as the
MIC against P. expansum [52].

3.8 In situ antibacterial activity of CCEO on
carrot, potato, and apple

A higher antibacterial effect of CCEO at 500 µL/plate was
recorded against B. subtilis (Figure 3a–h) on the carrot,
potato, and apple. Contrasting results for Citrus auran-
tium essential oils (CAEO) were obtained in the previous
in situ research; there the high antimicrobial potential of
CAEO against B. subtilis was found to be at 62.5 µL/plate

of CAEO concentration. EO of the bark of C. cassia regu-
lated proliferation of L. monocytogenes in meats without
sensorial changes of the product. Specifically, CCEO has
reduced the microbial growth under laboratory condi-
tions in comparison with naturally contaminated sam-
ples [53].

Previous studies were focused on the antibacterial
activity of cinnamon against meat food-borne pathogens,
including Escherichia coli, Salmonella Typhimurium,
Staphylococcus aureus, Arcobacter butzeiri, and Arcobacter
skirrowii [54–56]. In cheese, the antibacterial activity of the
CEEO against L. monocytogenes, S. aureus, and Salmonella
enterica was more profound at ∼23°C, indicating a possible
application as a natural food preservative [57].

Figure 4: B. subtilis MALDI-TOF mass spectra after CCEO treatment, days of experiment: (a) 3th, (b) 5th, (c) 7th, (d) 9th, (e) 12th, (f) 14th.
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The results of in vitro studies showed that the same
concentrations of EOs exhibited different antifungal
activity when tested on fruits in vivo [58]. Host/anti-
fungal/pathogen interaction and different extrinsic fac-
tors can lead to divergent results in in vitro and in vivo
experiments. Alteration of site action [59] or structural
changes due to hydrolysis, degradation, and polymeriza-
tion [60] of fruits under in vivo condition may explain the
differences in recorded results. Similar results have been
previously reported [61,62].

3.9 Antibiofilm properties of CCEO

MBIC50 and MBIC90 (minimal biofilm inhibition concen-
tration) values were 3.71 and 5.36 μL/mL for B. subtilis,
and 4.94 and 6.21 μL/mL for S. maltophilia, respectively.
Commercially available Cinnamomum zeylanicum EO was
effective in the inhibition of the biomass and viable
counts of P. aeruginosa in biofilm at concentrations of
0.12–1.92 mg/mL. Biomass was completely inhibited at
1.92 mg/mL and the significant reduction of viable cells
was recorded [63]. C. zeylanicum EO exhibited effect on
41.7 and 33.3% of P. aeruginosa and S. aureus bio-
films [64].

3.10 Biofilm formation and molecular profile
on surface following treatment
with CCEO

The development of B. subtilis biofilm is shown in Figure 4.
Spectra of the growing biofilms were presented in pairs for
analysis of development on different surfaces.

Significant differences in spectra between the glass
and planktonic spectrum were found on the 3rd day of
experiment. Furthermore, significant differences between
both experimental and control groups were identified on
5th day (Figure 4b). Differences between experimental
and control groups were recorded during the 7–14th days
of experiment (Figure 4c–f). The development stages of
spectra of B. subtilis and S. maltophilia were similar to pre-
viously reported aftertreatment with different essential oils
[13,14].

A dendrogram was constructed to make a grouping
pattern of B. subtilis for analysed experimental groups
(Figure 5). Two main clusters were generated at level
0.94 which were divided into six subclusters. No specific
grouping was there, but most of glass samples together
with control were grouped in the wider main cluster. The
highest similarity of subclusters was seen for samples on
the 3rd, 12th, and 14th day of experiment. All control
groups were included in the same cluster, which showed

Figure 5: Dendrogram of B. subtilis generated using the MSP for the planktonic cells and all experimental groups. Sample name abbre-
viations: K, control; BS, Bacillus subtilis; S, glass; D, wood; P, planktonic cells.
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larger MSP distances when compared. The separation of
the experimental group in the cluster was due to changes
in the biofilm structure after the CCEO application.

MALDI-TOF mass spectra of S. maltophilia biofilms
are shown in Figure 6. Spectra (a–f)were paired according
to the day of biofilm development. Similarities between
experimental and control samples were observed during
the 3rd and 7th days of experiment (Figure 6a–c). Inhibi-
tion of pattern of experimental spectra was identified at the
9th up to the 12 days of the experiment (Figures 6d and e),
after which CCEO interrupted the expansion of S. maltophilia
biofilm. Spectra of the 14th day of experiment indicated
complete degradation of the biofilm (Figure 6f).

The dendrogram of S. maltophilia consisted of three
main clusters with the highest similarity of MSP found for

control and wood samples on the 12th and 14th days of
the experiment. The constructed dendrogram (Figure 7)
shows the highest diversity for KSM samples on the 5th
and 9th, and for SMD samples on the 3rd day of experi-
ment. The other samples expressed relatively different
spectra.

4 Conclusions

CCEO showed a satisfactory biological activity and strong
inhibitory effect on microorganisms with significant influ-
ence in the food models. The main component of the
CCEO was cinnamaldehyde which is known for strong

Figure 6: MALDI-TOF mass spectra of S. maltophilia after the CCEO treatment, days: (a) 3th, (b) 5th, (c) 7th, (d) 9th, (e) 12th, (f) 14th.
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inhibitory antimicrobial and antifungal action. The anti-
biofilm of CCEO was found to have the strongest antibio-
film action and was reported during the 7–14 days of
experiments. Evaluation of CCEO revealed antioxidant
and antimicrobial properties of CCEO. The vapour phase
method is to be used for studies of inhibitory activities of
bacteria and molds in the food model. According to the
obtained results, CCEO could be suitable to reduce the
damage caused by the fungi and biofilm-forming bac-
teria. EOs were obtained from edible plants and are safe
for humans and environment. However, in order to be
used as the organic alternative to chemical fungicides,
deeper investigations about the absence of whatever
form of toxicity are needed.
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