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Abstract: This paper presents new methodology for determining the actual stress–strain diagram
based on analytical equations, in combination with numerical and experimental data. The first step
was to use the 3D digital image correlation (DIC) to estimate true stress–strain diagram by replacing
common analytical expression for contraction with measured values. Next step was to estimate the
stress concentration by using a new methodology, based on recently introduced analytical expressions
and numerical verification by the finite element method (FEM), to obtain actual stress–strain diagrams,
as named in this paper. The essence of new methodology is to introduce stress concentration factor
into the procedure of actual stress evaluation. New methodology is then applied to determine actual
stress–strain diagrams for two undermatched welded joints with different rectangular cross-section
and groove shapes, made of martensitic steels X10 CrMoVNb 9-1 and Armox 500T. Results indicated
that new methodology is a general one, since it is not dependent on welded joint material and
geometry.

Keywords: actual stress–strain diagram; undermatching weld; martensitic steel; DIC; FEM

1. Introduction

The tensile diagram, commonly used in practice, is called engineering stress–strain
diagram, with both stress and strain defined with respect to the initial, cross-section A0
and gauge length l0. For many engineering problems this approximation is good enough,
because stresses and strains are close to their true values, as long as contraction and plastic
strains are not significant. Anyhow, in the opposite case, true stress–strain diagram is a
better option. In its simplest form, true stress and strains are defined as follows, [1]:

σt =
F
A

= σeng
(
1 + εeng

)
(1)

εt =
∆l
l

= ln
(
1 + εeng

)
(2)

where σt and εt denote the so-called true stress and strain, respectively, F is the acting nor-
mal force, A current cross-section, which takes into account the contraction, ∆l elongation,
l current referent length, l = l0 + ∆l, l0 initial length, while σeng and εeng denote engineering
stress and strain, respectively. It should be noted that terms true stress and strain are used
here to emphasize the difference with respect to engineering stress and strain, and should
not be understood literally. As a matter of fact, modifications of these equations have been
in the focus of many researchers for the past few decades.
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To start with, based on the fact that contraction is not the only contribution to true
stress, couple of other formulas have been proposed, like the formula for equivalent true
stress, as defined by Bridgman, [2]:

σeq =
σt

CB
(3)

where CB is the correction factor:

CB =

[(
1 +

2R
a

)1/2
ln

{
1 +

a
R
+

(
2a
R

)1/2(
1 +

a
2R

)1/2
}
− 1

]
(4)

with a and R representing the ligament and the radius of curvature at the site of contraction.
The same approach is used by Ostsemin [3], with a different correction factor CO:

σeq =
σt

CO
(5)

CO =
(

1 +
a

5R

)
(6)

In [3], a procedure is suggested for calculating the correction for neck formation for
round and plane specimens made of homogeneous material. Other correction factors
were used in [4] for deriving equivalent stress–strain curve with axisymmetric notched
tensile specimens, with experimental verification and good agreement with the Bridgman
correction at large strains. Another approach is based on equivalent strain, as defined by
Scheider [5]:

ε =

√
4
3

(
ε2

x + εxεy + ε2
y

)
(7)

leading to:

σ =
F

A0
e(εx) (8)

By measuring the mean value of axial strain, formula for the true stress was ob-
tained, [5]:

σt =
F

A0
e(εx) (9)

One should notice that homogeneous material with rectangular cross-section was
analyzed in [4,6], where the tensile properties of FH550 and X80 steels were investigated
using rectangular cross-section specimens with different thicknesses, respectively.

Tensile diagrams for welded joints have been determined in [7], using novel methods
for determining true stress–strain curves for homogenous materials with rectangular cross-
section and weldments with round cross-section. In the first case, the relation between the
total area reduction and the thickness reduction was derived, consisting of three parts—
geometry function, material function, and basic necking curve. In the latter case the central
idea was to force plastic deformation at a notch in the material zone of interest, and to
obtain the true stress–strain curve of that material zone from the recorded load versus
diameter reduction curve.

The same topic was considered in [8], but for different shape of welded joint, the
so-called tailor-welded blank weldment. It was concluded that the predicted strain distri-
butions were in good agreement with the measured ones, thus demonstrating the validity
of the proposed experimental method to accurately determine the true stress–strain values
of the weldment.

More conventional, notched cross weld tensile testing for determining true stress–
strain curves for weldments was considered in [9], whereas a method for determining
material’s equivalent stress–strain curve with any axisymmetric notched tensile specimens
without Bridgman correction was considered in [10]. Further in [11] the stress–strain
relation for the weld metal is determined through experimental investigations of round
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tensile specimens. The true stress–strain curve was developed by using the modified
version of the weighted average method. Yet another overmatched welded joint was
considered in [12], where mechanical behavior with planar type laminations in the base
metal (BM), heat-affected zone (HAZ), and welding bead (WB) was studied. By using
HV data, an equivalent true stress–strain curve in the HAZ was estimated, based on
corresponding hardness value obtained from the BM and WB. In [13] a method to determine
the mechanical properties for the weldment of two dual phase (DP) steels is discussed.
Inverse numerical simulation was used to simulate the indentation tests to determine and
verify the parameters of a nonlinear isotropic material model for the weldment. Results
are presented for tensile tests on smooth, notched, and notched-welded specimens. It
was shown that the yield and tensile strengths of the notched specimens are higher than
the strength of the smooth specimens of the base material due to the additional notch
stresses. Similar research is presented in [14], where the microstructure, macro and micro-
mechanical properties of dissimilar A302/Cr5Mo were investigated by metallographic
experiments, tensile and nanoindentation tests. Based on inversion analysis, elastoplastic
properties were estimated for parent metal, weld metal, as well as fine and coarse grain
heat-affected zones.

In neither case, presented here, material heterogeneity of a welded joint was not taken
into account if a weldment cross-section was rectangular at the same time. The only such
a case known to these authors is the welded joint with true stress–strain curves obtained
in a special iterative procedure for all local zones (base metal—BM, weld metal—WM,
heat-affected zone—HAZ), have different properties, as shown in a series of papers, [15–17].
Anyhow, the iterative procedure presented in [15–17] is not an option here, since it does not
lead directly to the result and requires both numerical analysis and experimental testing,
not only to verify numerical results, but also to obtain them.

Here, attention is focused to the so-called undermatched welded joint, meaning that
the yield stress is lower in a weld metal than in a base metal. One should notice that the
plastic strain in undermatched weld metal will appear even with relatively low level of
loading, not only due to lower yield stress, but also due to stress concentration, as shown
in [18,19]. Once plastic strain becomes significant, cross-section is changed and contraction
becomes important, although not the only factor affecting the stress increase. Namely, as it
will be shown in this paper, the stress concentration is equally important for this analysis.
Therefore, we will use the term actual for the stress–strain diagram exclusively for the case
when the stress concentration is taken into account, in addition to contraction.

Toward this aim, one important issue tackled here is the true stress evaluation, which
is based on Equation (1), and on contraction values measured by using DIC. As it is
shown in this paper, there are significant differences between analytical and measured
values of contraction, leading to different true stress–strain curves. For that reason, the
term true stress–strain curve is used here for curves obtained by using DIC, whereas the
curves obtained by using Equation (1) only are referred to as “true” stress–strain curves.
Taking this difference into account, the actual stress–strain curves, as presented here, are
based on true stress–strain curves obtained by using DIC, and finally, corrected for the
stress concentration.

One should notice that this procedure is a general one, since it will be shown that
it does not dependent on welded joint materials and geometry, so it can be applied to
overmatched welded joints, as well. Anyhow, since the contraction and plastic strain in
that case will be shifted to the base metal, there is almost no practical interest for such an
analysis from the point of view of welded joints.

In this work the actual stress–strain diagrams of undermatched welded joints with
rectangular cross-section, made of martensitic steel X10 CrMoVNb 9-1 and martensitic
armored steel Armox 500T are determined. The goal was to check if different levels of un-
dermatching and different shapes of cross-section, as well as different geometry of welded
joint, affect actual stress–strain curve, determined by using formulas proposed in this paper.
During the experiment, strains were measured in three dimensions using 3D DIC and
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software Aramis, to evaluate contraction of rectangular cross-section, i.e., to calculate the
current cross section of a specimen, so that true stress–strain diagram can be obtained.
Finally, correction for the stress concentration is made, using analytical expressions intro-
duced in [20] and verified by comparison with the results of finite element analysis, but
only in the case of one material (Armox 500T) and one geometry (specimen P1-1).

Manuscript structure, after the introduction, comprises materials and methods, results,
discussion, and conclusions.

2. Materials and Methods

Rectangular test specimens are made of martensitic steel X 10CrMoVNb 9-1 (1.4903–by
EN 10216) cut from a pipe, and martensitic steel Armox 500T (SSAB, OxelÖsund, Sweden),
cut from a plate. In both cases, a combination of TIG and MMA welding process was
used for pipe and plate welding. In both cases S Ni 6082 (EN ISO 18274) was used as
filler material for the root and hot pass, and filler material E 19.12.3 Nb R 26 (ISO 3581)
was used for filling passes. Chemical compositions of base and filler metals are shown in
Tables 1 and 2, respectively.

Table 1. Chemical compositions of base metals.

[%] C Mn Si Ni Cr Mo B Cu V Ti Zr Altot Nb N P S

1.4903 0.08–
0.12

0.3–
0.6

0.2–
0.5 ≤0.4 8–

9.5
0.85–
1.05 / ≤0.3 0.18–

0.25 / 0.01 ≤0.04 0.06–
0.1

0.03–
0.07 <0.02 <0.01

Armox
500T 0.32 1.2 0.4 1.8 1.0 0.7 0.005 / / / / / / / 0.01 0.003

Table 2. Chemical compositions of the filler metals.

[%] C Si Mn Cr Ni Mo Nb Cu Ti P S

S Ni 6082 max 0.01 max 0.1 3.2 20.8 72.9 / 2.5 max 0.1 0.3 0.003 0.001

E 19.12.3 Nb R 26 0.02 0.9 0.7 18.0 12.0 2.7 0.4 max 0.5 / 0.02 0.02

From Table 1 it can be concluded that the base metals used, although both of marten-
sitic microstructure, have significantly different chemical compositions. This is the case
because the martensitic microstructure is not obtained in the same way. For 1.4903 steel,
martensite was achieved by alloying and consequent heat treatment, whereas for Armox
500T increased carbon content was used, as well as the heat treatment. Materials will
not behave in the same way under loading, and this can be concluded by comparing the
mechanical properties presented in Table 3 for the base metals and in Table 4 for the filler
metals. Materials with different mechanical properties are used to find out if undermatch-
ing level affects the proposed formula for stress evaluation. Namely, as one can see from
Tables 3 and 4, the undermatching coefficient, defined the ratio between weld metal and
base metal yield stress (Rp0,2), is significantly different, circa 0.9 for steel 1.4903 (400/450)
and circa 0.32 (400/1250) for Armox 500T.

Table 3. Mechanical characteristics of the base metals (BM).

BM Yield Stress [MPa] min Tensile Strength [MPa] A [%] min

1.4903 450 630–830 19

Armox 500T 1250 1450–1750 8
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Table 4. Mechanical characteristics of the filler metals (FM).

FM Yield Stress
[MPa]

Tensile
Strength [MPa] A5 [%] KV [J], 20 ◦C

S Ni 6082 min 400 min 620 min 35 min 150

E 19.12.3 Nb R 26 min 400 min 590 min 30 min 47

Test specimens were made with “V” joint for 1.4093 steel and with “X” joint for Armox
500T, as shown in Figure 1. Dimension ratios for C1 specimens (steel 1.4903) are 8/10 = 0.8,
and for P1 specimens (Armox 500T) are 7.4/7.5 = 0.99, which is practically square. Different
shapes of the specimen cross-sections and grooves are also used to find out eventual effects
of welded joint geometry on the proposed formulas for stress evaluation.
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Figure 1. Dimensions [mm] of the specimens for steel 1.4903 (C1) and for Armox 500T (P1).

Digital image correlation (DIC) is a powerful non-contact technique for measuring
surface displacement/strain fields, [21]. Simple geometric shapes can be treated by 2D
analysis, while more advanced, 3D analysis, should be used for more complex geometric
shapes, including welded joints, as applied and presented in [22–24]. The force during the
experiment was controlled by strain, with the rate 2 mm/min. Setup of the experiment
with the position of cameras is shown in Figure 2. Using DIC method with two cameras
(3D deformation measurement) and the Aramis software (Version 2M, GOM GmbH, Braun-
schweig, Germany) the current cross-section area can be determined. Accuracy of this
method for strain measurement is very high, in order of micrometers, so it is a suitable
method for the experiment performed here.
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Finite element method (FEM) is nowadays a widely accepted numerical tool to get
stress and strain distribution for many engineering problems, including elastic-plastic
analysis of welded joints, even in the presence of cracks, and for other complex prob-
lems, [25,26].

Here, 3D FEM is used to evaluate stress concentration. Mesh was made with 3D
linear elements, C3D8, with 8 nodes, with decreasing size in the weld metal down to
0.4 × 0.2 mm, as shown in Figure 3, where one example of meshes deformed in weld
metal is given. One quarter of specimen was modeled due to two planes of symmetry and
appropriate boundary conditions applied (one rotation and two translations fixed). Load is
defined as the negative pressure, according to the force applied and remote cross-section.
More detailed description is given in [20].
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3. Results

Typical result for strain measurement by DIC is shown in Figure 4, as obtained by the
post-processing, using software Aramis.
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The current cross-section area of the specimen was calculated using data obtained by
Aramis, as shown in Figure 5 for specimen P1-1. One of the sides was actually measured,
the opposite one taken as the mirror image, and two remaining are obtained by rotating
the measured one for 90◦ and −90◦.
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Figure 5. Initial (marked by line) and final (green) cross-section area of specimen P1-1.

Figure 6 shows three stress–strain diagrams for both specimens, types C1 and P1,
including engineering diagram, obtained by standard tensile test, marked in black. Re-
maining two diagrams represent true stress–strain curves, one determined according to
Equations (1) and (2), marked in red, and the other one determined using measured cross-
section areas of the specimen by DIC, marked in blue. One can see that the true stress is
increased, if contraction measured by DIC (Figure 5) is taken as relevant. This is why red
curves in Figure 6 are marked as “true” and blue ones as true.
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Results of FEM calculation are shown in Figure 7 for specimen C1-1 as an example of
the procedure applied. Results for C1-1 specimen, with deformed weld metal according to
strains and contraction obtained by DIC, show equivalent stress distribution, Figure 7a,
and normal stresses distribution, Figure 7b, for the applied load 4 KN, producing remote
tensile stress 100 MPa in the narrow part of the specimen, away from the welded joint area.
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From Figure 7 it can be concluded that the difference between maximum Misses
equivalent stress and maximum normal stress is just 3.91 MPa (215.9–212 MPa) or 1.84%.
This leads to the conclusion that the equivalent stress is not the dominant parameter for
stress increase, but it is rather the stress concentration due to contraction. To calculate
the actual stress with the stress concentration taken into account, the authors propose the
following equations:

σactual
max = σTCNM (10)

where CNM is the stress concentration factor and σT is calculated as:

σT =
F

Acurrent
(11)

Stress concentration factor CNM can be separated into two factors, as follows:

CNM = CZS + CEP (12)

where Czs takes into account the welded joint geometry and CEP stands for reduction of
thickness. According to [22], Czs can be expressed for point 1, as follows:

CZS1 = 1 +
b1

2(R1 + b1)
(13)

where b1 and R1 are defined in Figure 8 for two characteristic points in a weld metal,
together with their counterparts, b2 and R2, used for calculating Czs for point 2.
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Likewise, CEP can be defined as, [22]:

CEP =
∆t

2W0
=

∆t/t0

2W0/t0
(14)

where t0 and W0 are initial values of thickness t and width W, Figure 8. Therefore, the final
expression for the stress concentration factor is:

CNM =

(
1 +

b
2(R + b)

+
∆t

2W0

)
(15)

The current cross-sectional area of the specimen (Acurrent) was calculated using the
data obtained by the DIC.

In the further analysis, numerical verification of coefficients for specimens C1-1 and
P1-1 is shown for strains immediately before the fracture:

• Specimen C1-1

C1-1
t0 = 8
[mm]

W0 = 10
[mm]

F = 48342.18
[N]

Acurrent = 63.23293
[mm2]

σT =
764.50957

[MPa]

∆t =
1.0487
[mm]

Point 1 b1 = 18.866 [mm] R1 = 58.0536 [mm] CNM1 = 1.17507091 σactual
max1

= σTCNM1 = 898.353 [MPa]

Point 2 b2 = 8.2363 [mm] R2 = 11.3768 [mm] CNM2 = 1.262405968 σactual
max2

= σTCNM2 = 965.121 [MPa]

• Specimen P1-1

P1-1
t0 = 7.5
[mm]

W0 = 7.4
[mm]

F = 35885.96
[N]

Acurrent = 46.20984
[mm2]

σT =
776.587
[MPa]

∆t =
0.412963
[mm]

Point 1 b1 = 10.2741 [mm] R1 = 35.14171 [mm] CNM1 = 1.168917692 σactual
max1

= σTCNM1 = 907.766 [MPa]

Point 2 b2 = 10.2595 [mm] R2 = 35.042 [mm] CNM2 = 1.169041427 σactual
max2

= σTCNM2 = 907.862 [MPa]

The values obtained in ABAQUS for the quarter of the specimen C1-1 and P1-1 at
the characteristic points (1 and 2) are shown in Figure 9. Stress for specimen C1-1, the
maximum equivalent stresses (von Misses) are:

SMisses1 = 901.605 MPa, i.e., SMisses2 = 1004.67 MPa (16)

For specimen P1-1, the maximum equivalent stresses (Misses) by Abaqus are:

SMisses1 = 884.737 MPa, i.e., SMisses2 = 884.888 MPa (17)
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The equivalent stress values, obtained by ABAQUS and the stresses calculated by the
formulas (10)–(15), are given in Table 5. One should notice difference between stress values
in points 1 and 2 for specimen C1-1 and almost the same stress values in these two points
for specimen P1-1.

Table 5. Comparison of the maximal stresses for the specimen C1-1 and P1-1.

Specimen Calculated
σactual

max1

Abaqus
Point 1 Difference [%] Calculated

σactual
max2

Abaqus
Point 2 Difference [%]

C1-1 898.4 901.6 0.36 965.1 1004.7 4.1

P1-1 907.8 884.7 2.6 907.9 884.9 2.6

In Figures 10 and 11, actual, true, and engineering stress–strain diagrams are presented
for the specimen C1-1 and for the specimen P1-1, respectively.
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4. Discussion

In this research the new methodology for true stress–strain curves are applied to
undermatched welded joints made of different base metals, with different geometries
(cross section and groove shape). One should notice that both base metals, used in this
research, are low plasticity materials, especially Armox 500T (elongation A = 8%). Therefore,
using only Equations (1) and (2) for determining the true stress–strain diagram produced
questionable result, since the force drop is followed by the stress drop, as shown in Figure 6
for both base metals. Thus, the real contraction, as measured by 3D DIC, should be also
taken into account, providing more realistic true stress–strain curves for both base metals,
also shown in Figure 6. As already mentioned, at this stage of development, one side of the
specimen was actually measured, and the opposite one taken as the mirror image, while
the remaining two sides are obtained by rotation. Anyhow, this issue will be tackled in
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future work by using at least four cameras to measure the two sides, and get the other
two as mirror images. Measuring all the sides is probably too complicated, but it will be
considered, as well.

Anyhow, in addition to previous, stress concentration due to geometry change should
also be taken into account. Toward this end, new analytical expressions, i.e., formulas
(10)–(15) have been introduced in the scope of this research, and verified by using the
FEM. This was enabled by using results for strains and contraction, as obtained by DIC,
to form FE models with different geometries of weld metal for different load levels, as
explained in more detail in [20] using one base metal and one welded joint geometry. Here,
this methodology is applied to both base metal and welded joint geometries to investigate
eventual effects on actual stress–strain curves.

From Figures 10 and 11 one can see that actual stresses σactual
max1

and σactual
max2

differ in
specimen C1-1, while in the specimen P1-1 they are almost the same. Clearly, this is the
effect of joint shape, since V joint (specimen C1-1) has different dimensions b1 and b2, and
thus different radii of curvature R1 and R2, leading to different stress concentration factors,
as well. For the specimen P1-1, difference between σactual

max1
and σactual

max2
is negligible due to

the symmetry of joint shape (X), having approximately same values of b1 and b2, and radii
of curvature, R1 and R2, leading to almost the same stress concentration factors.

It is also important to notice that differences in stresses calculated by the proposed
formulas (10)–(15) and equivalent stresses obtained by Abaqus for the moment immedi-
ately before the fracture, Figure 9, do not exceed 4.10% (specimen C1-1, Table 5). With
this in mind, it can be considered that the proposed formulas evaluate the actual stress
correctly for different levels of undermatching and different types of weld groove, as well
as different shape ratio of the specimen cross section. Therefore, it was proved here that
the proposed methodology is a general one, and can be applied to different materials and
welded joint geometries.

One should notice that these effects are important for undermatched welded joints,
since only in this case plastic strain and stress concentration develop in the weld metal,
contrary to the overmatching welded joint, where they shift to the base metal, i.e., out of
the critical zones of welded joint. Anyhow, it is still important to analyze overmatching
effect in future research, since it is the most often case in practice.

5. Conclusions

The proposed Equations (10)–(15) proved to be sound basis to determine the actual
stress–strain diagrams for undermatching the welded joints made of different base metals
with different welded joint geometries. Actual stresses obtained by these formulas are
in good agreement with the equivalent stresses obtained by Abaqus using finite element
meshes constructed according to the geometry obtained by DIC.

It can be concluded that the actual value of the tensile strength of a welded joint is
far above the value obtained by the standard tensile testing, presented by engineering
stress–strain curves. This difference is a consequence of cross-section contraction and stress
concentration in the most deformed zone, being the weld metal in the case of undermatched
welded joint.

Cross-section contraction turned out to be an important factor in the case of low
plasticity material, as used in this research, since the usual formulas for “true” stress–
strain curves provide questionable behavior with drop of stress after maximum tensile
force is reached.

The differences in normal and equivalent stress in rectangular specimens are not
significant, leading to the conclusion that the dominant effect in rectangular specimens is
not triaxial stress state, but the stress concentration due to contraction.

Further analysis should use more ductile material to analyze their behavior with
respect to cross-section contraction and stress concentration, as well as other types of
welded joints, such as overmatching joints and different welded joint geometries, to suggest
eventual corrections to the proposed formulas.
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zones of welded joints. Teh. Vjesn. Tech. Gaz. 2016, 23, 19–24. [CrossRef]

25. Sedmak, A. Computational fracture mechanics: An overview from early efforts to recent achievements. Fatigue Fract. Eng. Mater.
Struct. 2018, 41, 2438–2474. [CrossRef]

26. Banks-Sills, L.; Sedmak, A. Linear elastic and elasto-plastic aspects of interface fracture mechanics. Struct. Integr. Life 2020, 20,
203–210.

http://doi.org/10.1016/j.prostr.2018.12.337
http://doi.org/10.17559/tv-20140123151546
http://doi.org/10.1111/ffe.12912

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	Conclusions 
	References

