ON STRONGLY REGULAR GRAPHS WITH $m_{2}=q m_{3}$ AND $m_{3}=q m_{2}$ WHERE $q \in \mathbb{Q}$

Mirko Lepović

Abstract

We say that a regular graph G of order n and degree $r \geqslant 1$ (which is not the complete graph) is strongly regular if there exist non-negative integers τ and θ such that $\left|S_{i} \cap S_{j}\right|=\tau$ for any two adjacent vertices i and j, and $\left|S_{i} \cap S_{j}\right|=\theta$ for any two distinct non-adjacent vertices i and j, where S_{k} denotes the neighborhood of the vertex k. Let $\lambda_{1}=r, \lambda_{2}$ and λ_{3} be the distinct eigenvalues of a connected strongly regular graph. Let $m_{1}=1, m_{2}$ and m_{3} denote the multiplicity of r, λ_{2} and λ_{3}, respectively. We here describe the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=\frac{3}{2}, \frac{4}{3}, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}, \frac{6}{5}$.

1. Introduction

Let G be a simple graph of order n with vertex set $V(G)=\{1,2, \ldots, n\}$. The spectrum of G consists of the eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}$ of its (0,1) adjacency matrix A and is denoted by $\sigma(G)$. We say that a regular graph G of order n and degree $r \geqslant 1$ (which is not the complete graph K_{n}) is strongly regular if there exist non-negative integers τ and θ such that $\left|S_{i} \cap S_{j}\right|=\tau$ for any two adjacent vertices i and j, and $\left|S_{i} \cap S_{j}\right|=\theta$ for any two distinct non-adjacent vertices i and j, where $S_{k} \subseteq V(G)$ denotes the neighborhood of the vertex k. We know that a regular connected graph G is strongly regular if and only if it has exactly three distinct eigenvalues [1] (see also [3]). Let $\lambda_{1}=r, \lambda_{2}$ and λ_{3} denote the distinct eigenvalues of a connected strongly regular graph G. Let $m_{1}=1, m_{2}$ and m_{3} denote the multiplicity of r, λ_{2} and λ_{3}. Further, let $\bar{r}=(n-1)-r, \bar{\lambda}_{2}=-\lambda_{3}-1$ and $\bar{\lambda}_{3}=-\lambda_{2}-1$ denote the distinct eigenvalues of the strongly regular graph \bar{G}, where \bar{G} denotes the complement of G. Then $\bar{\tau}=n-2 r-2+\theta$ and $\bar{\theta}=n-2 r+\tau$ where $\bar{\tau}=\tau(\bar{G})$ and $\bar{\theta}=\theta(\bar{G})$.

Remark 1.1. (i) if G is a disconnected strongly regular graph of degree r then $G=m K_{r+1}$, where $m H$ denotes the m-fold union of the graph H; (ii) G is a disconnected strongly regular graph if and only if $\theta=0$.

[^0]REMARK 1.2. (i) a strongly regular graph G of order $n=4 k+1$ and degree $r=2 k$ with $\tau=k-1$ and $\theta=k$ is called a conference graph; (ii) a strongly regular graph is a conference graph if and only if $m_{2}=m_{3}$ and (iii) if $m_{2} \neq m_{3}$ then G is an integrall graph.

We have recently started to investigate strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$, where q is a positive integer [4]. In the same work we have described the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=2,3,4$. Besides, (i) we have described in [5] the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=5,6,7,8$; (ii) we have described in 6] the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=9,10$ and (iii) we have described in 7 the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=11,12$. We now proceed to investigate strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$, where q is a positive rational number. In particular, we here describe the parameters of strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=\frac{3}{2}, \frac{4}{3}, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}, \frac{6}{5}$, as follows. First,

Proposition 1.1 (Elzinga [2]). Let G be a connected or disconnected strongly regular graph of order n and degree r. Then

$$
\begin{equation*}
r^{2}-(\tau-\theta+1) r-(n-1) \theta=0 \tag{1.1}
\end{equation*}
$$

Proposition 1.2 (Elzinga [2]). Let G be a connected strongly regular graph of order n and degree r. Then

$$
\begin{equation*}
2 r+(\tau-\theta)\left(m_{2}+m_{3}\right)+\delta\left(m_{2}-m_{3}\right)=0 \tag{1.2}
\end{equation*}
$$

where $\delta=\lambda_{2}-\lambda_{3}$.
Second, in what follows (x, y) denotes the greatest common divisor of integers $x, y \in \mathbb{N}$, while $x \mid y$ means that x divides y.

REMARK 1.3. We note that ($m_{2}=q m_{3}$ and $m_{3}=q m_{2}$) is equivalent to the assertion that $\left(m_{2}=q^{-1} m_{3}\right.$ and $\left.m_{3}=q^{-1} m_{2}\right)$. In view of this we may assume that $q=\frac{a}{b}$ so that $(a, b)=1$ and $a>b$.

Using a similar procedure applied in 4, we can establish the parameters n, r, τ and θ for strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for any fixed value $q \in \mathbb{Q}$, where $q=\frac{a}{b}$ so that $(a, b)=1$ and $a>b$, as follows. First, let $m_{3}=p$ and $m_{2}=\left(\frac{a}{b}\right) p$, where p is a positive integer. Since $(a, b)=1$ it follows that $b \mid p$. Replacing p with $b p$ we obtain $m_{3}=b p$ and $m_{2}=a p$. Since $m_{2}+m_{3}=n-1$ we obtain $n=(a+b) p+1$. Next, since $\tau-\theta=\lambda_{2}+\lambda_{3}$ and $\delta=\lambda_{2}-\lambda_{3}$ using (1.2) we obtain $r=p\left(b\left|\lambda_{3}\right|-a \lambda_{2}\right)$. Let $b\left|\lambda_{3}\right|-a \lambda_{2}=t$ wher ${ }^{3} t=1,2, \ldots, a+b-1$. Let

[^1]$\lambda_{2}=k$ where k is a positive integer. Then (i) $\lambda_{3}=-\frac{a k+t}{b}$; (ii) $\tau-\theta=-\frac{(a-b) k+t}{b}$; (iii) $\delta=\frac{(a+b) k+t}{b}$ and (iv) $r=p t$. Since $\delta^{2}=(\tau-\theta)^{2}+4(r-\theta)$ (see [2]) we obtain (v) $\theta=p t-\frac{a k^{2}+k t}{b}$. Using (ii), (iv) and (v), we can easily see that (1.1) reduces to
\[

$$
\begin{equation*}
(b p+1) t^{2}-b((a+b) p+1) t+a(a+b) k^{2}+2 a k t=0 \tag{1.3}
\end{equation*}
$$

\]

Second, let $m_{2}=b p, m_{3}=a p$ and $n=(a+b) p+1$ where $(a, b)=1$ and $a>b$. Using (1.2) we obtain $r=p\left(a\left|\lambda_{3}\right|-b \lambda_{2}\right)$. Let $a\left|\lambda_{3}\right|-b \lambda_{2}=t$ where $t=1,2, \ldots, a+b-1$.

Let $\lambda_{3}=-k$ where k is a positive integer. Then (i) $\lambda_{2}=\frac{a k-t}{b}$; (ii) $\tau-\theta=\frac{(a-b) k-t}{b}$; (iii) $\delta=\frac{(a+b) k-t}{b}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{a k^{2}-k t}{b}$. Using (ii), (iv) and (v) we can easily see that (1.1) reduces to

$$
\begin{equation*}
(b p+1) t^{2}-b((a+b) p+1) t+a(a+b) k^{2}-2 a k t=0 \tag{1.4}
\end{equation*}
$$

Using (1.3) and (1.4), we can obtain for $t=1,2, \ldots, a+b-1$ the corresponding classes of strongly regular graphs with $m_{2}=\left(\frac{a}{b}\right) m_{3}$ and $m_{3}=\left(\frac{a}{b}\right) m_{2}$, respectively. Finally, we arrive at the following two results.

2. Main results

Theorem 2.1. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=a p$ and $m_{3}=b p$, where $a, b, p \in \mathbb{N}$ so that $(a, b)=1$ and $a>b$. Then:
$\left(1^{0}\right) n=(a+b) p+1, \quad\left(2^{0}\right) r=p t, \quad\left(3^{0}\right) \tau=\left(p t-\frac{a k^{2}+k t}{b}\right)-\frac{(a-b) k+t}{b}$,
$\left(4^{0}\right) \theta=p t-\frac{a k^{2}+k t}{b}, \quad\left(5^{0}\right) \lambda_{2}=k, \quad\left(6^{0}\right) \lambda_{3}=-\frac{a k+t}{b}, \quad\left(7^{0}\right) \delta=\frac{(a+b) k+t}{b}$,
$\left(8^{0}\right)(b p+1) t^{2}-b((a+b) p+1) t+a(a+b) k^{2}+2 a k t=0$,
for $k \in \mathbb{N}$ and $t=1,2, \ldots, a+b-1$, where $\delta=\lambda_{2}-\lambda_{3}$.
THEOREM 2.2. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=b p$ and $m_{3}=a p$, where $a, b, p \in \mathbb{N}$ so that $(a, b)=1$ and $a>b$. Then:
$\left(1^{0}\right) n=(a+b) p+1, \quad\left(2^{0}\right) r=p t, \quad\left(3^{0}\right) \tau=\left(p t-\frac{a k^{2}-k t}{b}\right)+\frac{(a-b) k-t}{b}$,
$\left(4^{0}\right) \theta=p t-\frac{a k^{2}-k t}{b}, \quad\left(5^{0}\right) \quad \lambda_{2}=\frac{a k-t}{b}, \quad\left(6^{0}\right) \quad \lambda_{3}=-k, \quad\left(7^{0}\right) \delta=\frac{(a+b) k-t}{b}$,
$\left(8^{0}\right)(b p+1) t^{2}-b((a+b) p+1) t+a(a+b) k^{2}-2 a k t=0$,
for $k \in \mathbb{N}$ and $t=1,2, \ldots, a+b-1$, where $\delta=\lambda_{2}-\lambda_{3}$.
REMARK 2.1. Since $m_{2}(\bar{G})=m_{3}(G)$ and $m_{3}(\bar{G})=m_{2}(G)$, we note that if $m_{2}(G)=q m_{3}(G)$, then $m_{3}(\bar{G})=q m_{2}(\bar{G})$.

Remark 2.2. In Theorems 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8 the complements of strongly regular graphs appear in pairs in $\left(k^{0}\right)$ and $\left(\bar{k}^{0}\right)$ classes, where k denotes the corresponding number of a class.

REMARK 2.3. $\overline{\alpha K_{\beta}}$ is a strongly regular graph of order $n=\alpha \beta$ and degree $r=(\alpha-1) \beta$ with $\tau=(\alpha-2) \beta$ and $\theta=(\alpha-1) \beta$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-\beta$ with $m_{2}=\alpha(\beta-1)$ and $m_{3}=\alpha-1$.

Proposition 2.1. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{3}{2}\right) m_{3}$. Then G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or $\left(\overline{5}^{0}\right)$ represented in Theorem 2.3,

Proof. Let $m_{2}=3 p, m_{3}=2 p$ and $n=5 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{2}=k$ where k is a positive integer. Then according to Theorem [2.1, we have (i) $\lambda_{3}=-\frac{3 k+t}{2}$; (ii) $\tau-\theta=-\frac{k+t}{2}$; (iii) $\delta=\frac{5 k+t}{2}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{3 k^{2}+k t}{2}$, where $t=1,2, \ldots, 4$. In this case we can easily see that Theorem $2.1\left(8^{0}\right)$ reduces to

$$
\begin{equation*}
(2 p+1) t^{2}-2(5 p+1) t+15 k^{2}+6 k t=0 \tag{2.1}
\end{equation*}
$$

Case $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{3 k+1}{2}, \tau-\theta=-\frac{k+1}{2}, \delta=\frac{5 k+1}{2}, r=p$ and $\theta=p-\frac{3 k^{2}+k}{2}$. Using (2.1) we find that $8 p+1=3 k(5 k+2)$. Replacing k with $4 k-1$ we arrive at $p=30 k^{2}-12 k+1$. So we obtain that G is a strongly regular graph of order $n=6(5 k-1)^{2}$ and degree $r=30 k^{2}-12 k+1$ with $\tau=2 k(3 k-2)$ and $\theta=2 k(3 k-1)$.
CASE $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{3 k+2}{2}, \tau-\theta=-\frac{k+2}{2}, \delta=\frac{5 k+2}{2}, r=2 p$ and $\theta=2 p-\frac{3 k^{2}+2 k}{2}$. Using (2.1) we find that $4 p=k(5 k+4)$. Replacing k with $2 k$ we arrive at $p=k(5 k+2)$. So we obtain that G is a strongly regular graph of order $n=(5 k+1)^{2}$ and degree $r=2 k(5 k+2)$ with $\tau=4 k^{2}+k-1$ and $\theta=2 k(2 k+1)$.
CASE $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{3 k+3}{2}, \tau-\theta=-\frac{k+3}{2}, \delta=\frac{5 k+3}{2}, r=3 p$ and $\theta=3 p-\frac{3 k^{2}+3 k}{2}$. Using (2.1) we find that $4 p-1=k(5 k+6)$. Replacing k with $2 k-1$ we arrive at $p=k(5 k-2)$. So we obtain that G is a strongly regular graph of order $n=(5 k-1)^{2}$ and degree $r=3 k(5 k-2)$ with $\tau=9 k^{2}-4 k-1$ and $\theta=3 k(3 k-1)$.
CASE $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{3 k+4}{2}, \tau-\theta=-\frac{k+4}{2}, \delta=\frac{5 k+4}{2}, r=4 p$ and $\theta=4 p-\frac{3 k^{2}+4 k}{2}$. Using (2.1) we find that $8 p-8=3 k(5 k+8)$. Replacing k with $4 k$ we arrive at $p=30 k^{2}+12 k+1$. So we obtain that G is a strongly regular graph of order $n=6(5 k+1)^{2}$ and degree $r=4\left(30 k^{2}+12 k+1\right)$ with $\tau=2(3 k+1)(16 k+1)$ and $\theta=4(4 k+1)(6 k+1)$.

Proposition 2.2. Let G be a connected strongly regular graph of order n and degree r with $m_{3}=\left(\frac{3}{2}\right) m_{2}$. Then G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ represented in Theorem 2.3.

Proof. Let $m_{2}=2 p, m_{3}=3 p$ and $n=5 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{3}=-k$ where k is a positive integer. Then according to Theorem [2.2 we have (i) $\lambda_{2}=\frac{3 k-t}{2}$; (ii) $\tau-\theta=\frac{k-t}{2}$; (iii) $\delta=\frac{5 k-t}{2}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{3 k^{2}-k t}{2}$, where $t=1,2, \ldots, 4$. In this case we can easily see that Theorem $2.2\left(8^{0}\right)$ reduces to

$$
\begin{equation*}
(2 p+1) t^{2}-2(5 p+1) t+15 k^{2}-6 k t=0 \tag{2.2}
\end{equation*}
$$

CASE $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{3 k-1}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-1}{2}, \delta=\frac{5 k-1}{2}, r=p$ and $\theta=p-\frac{3 k^{2}-k}{2}$. Using (2.2) we find that $8 p+1=3 k(5 k-2)$. Replacing k with $4 k+1$ we arrive at $p=30 k^{2}+12 k+1$. So we obtain that G is a strongly regular graph of order $n=6(5 k+1)^{2}$ and degree $r=30 k^{2}+12 k+1$ with $\tau=2 k(3 k+2)$ and $\theta=2 k(3 k+1)$.
CASE $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{3 k-2}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-2}{2}, \delta=\frac{5 k-2}{2}, r=2 p$ and $\theta=2 p-\frac{3 k^{2}-2 k}{2}$. Using (2.2) we find that $4 p=k(5 k-4)$. Replacing k with $2 k$ we arrive at $p=k(5 k-2)$. So we obtain that G is a strongly regular graph of order $n=(5 k-1)^{2}$ and degree $r=2 k(5 k-2)$ with $\tau=4 k^{2}-k-1$ and $\theta=2 k(2 k-1)$.
CASE $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{3 k-3}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-3}{2}, \delta=\frac{5 k-3}{2}, r=3 p$ and $\theta=3 p-\frac{3 k^{2}-3 k}{2}$. Using (2.2) we find that $4 p-1=k(5 k-6)$. Replacing k with $2 k+1$ we arrive at $p=k(5 k+2)$. So we obtain that G is a strongly regular graph of order $n=(5 k+1)^{2}$ and degree $r=3 k(5 k+2)$ with $\tau=9 k^{2}+4 k-1$ and $\theta=3 k(3 k+1)$.
CASE $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{3 k-4}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-4}{2}, \delta=\frac{5 k-4}{2}, r=4 p$ and $\theta=4 p-\frac{3 k^{2}-4 k}{2}$. Using (2.2) we find that $8 p-8=3 k(5 k-8)$. Replacing k with $4 k$ we arrive at $p=30 k^{2}-12 k+1$. So we obtain that G is a strongly regular graph of order $n=6(5 k-1)^{2}$ and degree $r=4\left(30 k^{2}-12 k+1\right)$ with $\tau=2(3 k-1)(16 k-1)$ and $\theta=4(4 k-1)(6 k-1)$.

REMARK 2.4. We note that $\overline{3 K_{2}}$ is a strongly regular graph with $m_{2}=\left(\frac{3}{2}\right) m_{3}$. It is obtained from the class Theorem $2.3\left(5^{0}\right)$ for $k=0$.

Theorem 2.3. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{3}{2}\right) m_{3}$ or $m_{3}=\left(\frac{3}{2}\right) m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is the strongly regular graph $\overline{3 K_{2}}$ of order $n=6$ and degree $r=4$ with $\tau=2$ and $\theta=4$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-2$ with $m_{2}=3$ and $m_{3}=2$,
$\left(2^{0}\right) G$ is a strongly regular graph of order $n=(5 k-1)^{2}$ and degree $r=$ $2 k(5 k-2)$ with $\tau=4 k^{2}-k-1$ and $\theta=2 k(2 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=3 k-1$ and $\lambda_{3}=-2 k$ with $m_{2}=2 k(5 k-2)$ and $m_{3}=3 k(5 k-2) ;$
$\left(\overline{2}^{0}\right) G$ is a strongly regular graph of order $n=(5 k-1)^{2}$ and degree $r=$ $3 k(5 k-2)$ with $\tau=9 k^{2}-4 k-1$ and $\theta=3 k(3 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=2 k-1$ and $\lambda_{3}=-3 k$ with $m_{2}=3 k(5 k-2)$ and $m_{3}=2 k(5 k-2)$;
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=(5 k+1)^{2}$ and degree $r=$ $2 k(5 k+2)$ with $\tau=4 k^{2}+k-1$ and $\theta=2 k(2 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=2 k$ and $\lambda_{3}=-(3 k+1)$ with $m_{2}=3 k(5 k+2)$ and $m_{3}=2 k(5 k+2) ;$
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=(5 k+1)^{2}$ and degree $r=$ $3 k(5 k+2)$ with $\tau=9 k^{2}+4 k-1$ and $\theta=3 k(3 k+1)$, where $k \in \mathbb{N}$. Its
eigenvalues are $\lambda_{2}=3 k$ and $\lambda_{3}=-(2 k+1)$ with $m_{2}=2 k(5 k+2)$ and $m_{3}=3 k(5 k+2) ;$
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=6(5 k-1)^{2}$ and degree $r=$ $30 k^{2}-12 k+1$ with $\tau=2 k(3 k-2)$ and $\theta=2 k(3 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k-1$ and $\lambda_{3}=-(6 k-1)$ with $m_{2}=3\left(30 k^{2}-12 k+1\right)$ and $m_{3}=2\left(30 k^{2}-12 k+1\right)$;
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=6(5 k-1)^{2}$ and degree $r=$ $4\left(30 k^{2}-12 k+1\right)$ with $\tau=2(3 k-1)(16 k-1)$ and $\theta=4(4 k-1)(6 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k-2$ and $\lambda_{3}=-4 k$ with $m_{2}=$ $2\left(30 k^{2}-12 k+1\right)$ and $m_{3}=3\left(30 k^{2}-12 k+1\right)$;
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=6(5 k+1)^{2}$ and degree $r=$ $30 k^{2}+12 k+1$ with $\tau=2 k(3 k+2)$ and $\theta=2 k(3 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k+1$ and $\lambda_{3}=-(4 k+1)$ with $m_{2}=2\left(30 k^{2}+12 k+1\right)$ and $m_{3}=3\left(30 k^{2}+12 k+1\right)$;
$\left(\overline{5}^{0}\right) G$ is a strongly regular graph of order $n=6(5 k+1)^{2}$ and degree $r=$ $4\left(30 k^{2}+12 k+1\right)$ with $\tau=2(3 k+1)(16 k+1)$ and $\theta=4(4 k+1)(6 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k$ and $\lambda_{3}=-(6 k+2)$ with $m_{2}=3\left(30 k^{2}+12 k+1\right)$ and $m_{3}=2\left(30 k^{2}+12 k+1\right)$.

Proof. First, according to Remark 2.3 we have $2 \alpha(\beta-1)=3(\alpha-1)$, from which we find that $\alpha=3, \beta=2$. In view of this we obtain the strongly regular graph represented in Theorem 2.3 $\left(1^{0}\right)$. Next, according to Proposition 2.1 it turns out that G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or $\left(\overline{5}^{0}\right)$ if $m_{2}=\left(\frac{3}{2}\right) m_{3}$. According to Proposition 2.2 it turns out that G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(4^{0}\right)$ or $\left(5^{0}\right)$ if $m_{3}=\left(\frac{3}{2}\right) m_{2}$.

Proposition 2.3. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{4}{3}\right) m_{3}$. Then G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or ($\overline{5}^{0}$) or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ represented in Theorem 2.4.

Proof. Let $m_{2}=4 p, m_{3}=3 p$ and $n=7 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{2}=k$ where k is a positive integer. Then according to Theorem 2.1 we have (i) $\lambda_{3}=-\frac{4 k+t}{3}$; (ii) $\tau-\theta=-\frac{k+t}{3}$; (iii) $\delta=\frac{7 k+t}{3}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{4 k^{2}+k t}{3}$, where $t=1,2, \ldots, 6$. In this case we can easily see that Theorem 2.1 $\left(8^{0}\right)$ reduces to

$$
\begin{equation*}
(3 p+1) t^{2}-3(7 p+1) t+28 k^{2}+8 k t=0 \tag{2.3}
\end{equation*}
$$

CASE $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{4 k+1}{3}, \tau-\theta=-\frac{k+1}{3}, \delta=\frac{7 k+1}{3}, r=p$ and $\theta=p-\frac{4 k^{2}+k}{3}$. Using (2.3) we find that $9 p+1=2 k(7 k+2)$. Replacing k with $3 k-1$ we arrive at $p=14 k^{2}-8 k+1$. So we obtain that G is a strongly regular graph of order $n=2(7 k-2)^{2}$ and degree $r=14 k^{2}-8 k+1$ with $\tau=2 k(k-1)$ and $\theta=k(2 k-1)$.
Case $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{4 k+2}{3}, \tau-\theta=-\frac{k+2}{3}, \delta=\frac{7 k+2}{3}, r=2 p$ and $\theta=2 p-\frac{4 k^{2}+2 k}{3}$. Using (2.3) we find that $15 p+1=2 k(7 k+4)$. Replacing k with $15 k+4$ we arrive at $p=210 k^{2}+120 k+17$.

So we obtain that G is a strongly regular graph of order $n=30(7 k+2)^{2}$ and degree $r=2\left(210 k^{2}+120 k+17\right)$ with $\tau=120 k^{2}+65 k+8$ and $\theta=10(3 k+1)(4 k+1)$.
Case $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{4 k+3}{3}, \tau-\theta=-\frac{k+3}{3}, \delta=\frac{7 k+3}{3}, r=3 p$ and $\theta=3 p-\frac{4 k^{2}+3 k}{3}$. Using (2.3) we find that $9 p=k(7 k+6)$. Replacing k with $3 k$ we arrive at $p=k(7 k+2)$. So we obtain that G is a strongly regular graph of order $n=(7 k+1)^{2}$ and degree $r=3 k(7 k+2)$ with $\tau=9 k^{2}+2 k-1$ and $\theta=3 k(3 k+1)$.
Case $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{4 k+4}{3}, \tau-\theta=-\frac{k+4}{3}, \delta=\frac{7 k+4}{3}, r=4 p$ and $\theta=4 p-\frac{4 k^{2}+4 k}{3}$. Using (2.3) we find that $9 p-1=k(7 k+8)$. Replacing k with $3 k-1$ we arrive at $p=k(7 k-2)$. So we obtain that G is a strongly regular graph of order $n=(7 k-1)^{2}$ and degree $r=4 k(7 k-2)$ with $\tau=16 k^{2}-5 k-1$ and $\theta=4 k(4 k-1)$.
CASE $5(t=5)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{4 k+5}{3}, \tau-\theta=-\frac{k+5}{3}, \delta=\frac{7 k+5}{3}, r=5 p$ and $\theta=5 p-\frac{4 k^{2}+5 k}{3}$. Using (2.3) we find that $15 p-5=2 k(7 k+10)$. Replacing k with $15 k-5$ we arrive at $p=$ $210 k^{2}-120 k+17$. So we obtain that G is a strongly regular graph of order $n=30(7 k-2)^{2}$ and degree $r=5\left(210 k^{2}-120 k+17\right)$ with $\tau=10\left(75 k^{2}-43 k+6\right)$ and $\theta=5(10 k-3)(15 k-4)$.
CASE $6(t=6)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{4 k+6}{3}, \tau-\theta=-\frac{k+6}{3}, \delta=\frac{7 k+6}{3}, r=6 p$ and $\theta=6 p-\frac{4 k^{2}+6 k}{3}$. Using (2.3) we find that $9 p-9=2 k(7 k+12)$. Replacing k with $3 k$ we arrive at $p=14 k^{2}+8 k+1$. So we obtain that G is a strongly regular graph of order $n=2(7 k+2)^{2}$ and degree $r=6\left(14 k^{2}+8 k+1\right)$ with $\tau=(8 k+1)(9 k+4)$ and $\theta=6(3 k+1)(4 k+1)$.

Proposition 2.4. Let G be a connected strongly regular graph of order n and degree r with $m_{3}=\left(\frac{4}{3}\right) m_{2}$. Then G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ represented in Theorem 2.4.

Proof. Let $m_{2}=3 p, m_{3}=4 p$ and $n=7 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{3}=-k$ where k is a positive integer. Then according to Theorem 2.2 we have (i) $\lambda_{2}=\frac{4 k-t}{3}$; (ii) $\tau-\theta=\frac{k-t}{3}$; (iii) $\delta=\frac{7 k-t}{3}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{4 k^{2}-k t}{3}$, where $t=1,2, \ldots, 6$. In this case we can easily see that Theorem $2.2\left(8^{0}\right)$ reduces to

$$
\begin{equation*}
(3 p+1) t^{2}-3(7 p+1) t+28 k^{2}-8 k t=0 \tag{2.4}
\end{equation*}
$$

Case $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{4 k-1}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-1}{3}, \delta=\frac{7 k-1}{3}, r=p$ and $\theta=p-\frac{4 k^{2}-k}{3}$. Using (2.4) we find that $9 p+1=2 k(7 k-2)$. Replacing k with $3 k+1$ we arrive at $p=14 k^{2}+8 k+1$. So we obtain that G is a strongly regular graph of order $n=2(7 k+2)^{2}$ and degree $r=14 k^{2}+8 k+1$ with $\tau=2 k(k+1)$ and $\theta=k(2 k+1)$.
CASE $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{4 k-2}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-2}{3}, \delta=\frac{7 k-2}{3}, r=2 p$ and $\theta=2 p-\frac{4 k^{2}-2 k}{3}$. Using (2.4) we find that $15 p+1=2 k(7 k-4)$. Replacing k with $15 k-4$ we arrive at $p=210 k^{2}-120 k+17$.

So we obtain that G is a strongly regular graph of order $n=30(7 k-2)^{2}$ and degree $r=2\left(210 k^{2}-120 k+17\right)$ with $\tau=120 k^{2}-65 k+8$ and $\theta=10(3 k-1)(4 k-1)$.
CASE $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{4 k-3}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-3}{3}, \delta=\frac{7 k-3}{3}, r=3 p$ and $\theta=3 p-\frac{4 k^{2}-3 k}{3}$. Using (2.4) we find that $9 p=k(7 k-6)$. Replacing k with $3 k$ we arrive at $p=k(7 k-2)$. So we obtain that G is a strongly regular graph of order $n=(7 k-1)^{2}$ and degree $r=3 k(7 k-2)$ with $\tau=9 k^{2}-2 k-1$ and $\theta=3 k(3 k-1)$.
CASE $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{4 k-4}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-4}{3}, \delta=\frac{7 k-4}{3}, r=4 p$ and $\theta=4 p-\frac{4 k^{2}-4 k}{3}$. Using (2.4) we find that $9 p-1=k(7 k-8)$. Replacing k with $3 k+1$ we arrive at $p=k(7 k+2)$. So we obtain that G is a strongly regular graph of order $n=(7 k+1)^{2}$ and degree $r=4 k(7 k+2)$ with $\tau=16 k^{2}+5 k-1$ and $\theta=4 k(4 k+1)$.
CASE $5\left(t=5\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{4 k-5}{3}$ and $\lambda_{3}=$ $-k, \tau-\theta=\frac{k-5}{3}, \delta=\frac{7 k-5}{3}, r=5 p$ and $\theta=5 p-\frac{4 k^{2}-5 k}{3}$. Using (2.4) we find that $15 p-5=2 k(7 k-10)$. Replacing k with $15 k+5$ we arrive at $p=210 k^{2}+120 k+17$. So we obtain that G is a strongly regular graph of order $n=30(7 k+2)^{2}$ and degree $r=5\left(210 k^{2}+120 k+17\right)$ with $\tau=10\left(75 k^{2}+43 k+6\right)$ and $\theta=5(10 k+3)(15 k+4)$.

CASE $6(t=6)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{4 k-6}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-6}{3}, \delta=\frac{7 k-6}{3}, r=6 p$ and $\theta=6 p-\frac{4 k^{2}-6 k}{3}$. Using (2.4) we find that $9 p-9=2 k(7 k-12)$. Replacing k with $3 k$ we arrive at $p=14 k^{2}-8 k+1$. So we obtain that G is a strongly regular graph of order $n=2(7 k-2)^{2}$ and degree $r=6\left(14 k^{2}-8 k+1\right)$ with $\tau=(8 k-1)(9 k-4)$ and $\theta=6(3 k-1)(4 k-1)$.

REMARK 2.5. We note that $\overline{4 K_{2}}$ is a strongly regular graph with $m_{2}=\left(\frac{4}{3}\right) m_{3}$. It is obtained from the class Theorem $2.4\left(5^{0}\right)$ for $k=0$.

THEOREM 2.4. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{4}{3}\right) m_{3}$ or $m_{3}=\left(\frac{4}{3}\right) m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is the strongly regular graph $\overline{4 K_{2}}$ of order $n=8$ and degree $r=6$ with $\tau=4$ and $\theta=6$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-2$ with $m_{2}=4$ and $m_{3}=3$;
$\left(2^{0}\right) G$ is a strongly regular graph of order $n=(7 k-1)^{2}$ and degree $r=$ $3 k(7 k-2)$ with $\tau=9 k^{2}-2 k-1$ and $\theta=3 k(3 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k-1$ and $\lambda_{3}=-3 k$ with $m_{2}=3 k(7 k-2)$ and $m_{3}=4 k(7 k-2) ;$
$\left(\overline{2}^{0}\right) G$ is a strongly regular graph of order $n=(7 k-1)^{2}$ and degree $r=$ $4 k(7 k-2)$ with $\tau=16 k^{2}-5 k-1$ and $\theta=4 k(4 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=3 k-1$ and $\lambda_{3}=-4 k$ with $m_{2}=4 k(7 k-2)$ and $m_{3}=3 k(7 k-2) ;$
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=(7 k+1)^{2}$ and degree $r=$ $3 k(7 k+2)$ with $\tau=9 k^{2}+2 k-1$ and $\theta=3 k(3 k+1)$, where $k \in \mathbb{N}$. Its
eigenvalues are $\lambda_{2}=3 k$ and $\lambda_{3}=-(4 k+1)$ with $m_{2}=4 k(7 k+2)$ and $m_{3}=3 k(7 k+2) ;$
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=(7 k+1)^{2}$ and degree $r=$ $4 k(7 k+2)$ with $\tau=16 k^{2}+5 k-1$ and $\theta=4 k(4 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k$ and $\lambda_{3}=-(3 k+1)$ with $m_{2}=3 k(7 k+2)$ and $m_{3}=4 k(7 k+2) ;$
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=2(7 k-2)^{2}$ and degree $r=$ $14 k^{2}-8 k+1$ with $\tau=2 k(k-1)$ and $\theta=k(2 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=3 k-1$ and $\lambda_{3}=-(4 k-1)$ with $m_{2}=4\left(14 k^{2}-8 k+1\right)$ and $m_{3}=3\left(14 k^{2}-8 k+1\right)$;
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=2(7 k-2)^{2}$ and degree $r=$ $6\left(14 k^{2}-8 k+1\right)$ with $\tau=(8 k-1)(9 k-4)$ and $\theta=6(3 k-1)(4 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k-2$ and $\lambda_{3}=-3 k$ with $m_{2}=$ $3\left(14 k^{2}-8 k+1\right)$ and $m_{3}=4\left(14 k^{2}-8 k+1\right)$;
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=2(7 k+2)^{2}$ and degree $r=$ $14 k^{2}+8 k+1$ with $\tau=2 k(k+1)$ and $\theta=k(2 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k+1$ and $\lambda_{3}=-(3 k+1)$ with $m_{2}=3\left(14 k^{2}+8 k+1\right)$ and $m_{3}=4\left(14 k^{2}+8 k+1\right)$;
$\left(\overline{5}^{0}\right) G$ is a strongly regular graph of order $n=2(7 k+2)^{2}$ and degree $r=$ $6\left(14 k^{2}+8 k+1\right)$ with $\tau=(8 k+1)(9 k+4)$ and $\theta=6(3 k+1)(4 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=3 k$ and $\lambda_{3}=-(4 k+2)$ with $m_{2}=4\left(14 k^{2}+8 k+1\right)$ and $m_{3}=3\left(14 k^{2}+8 k+1\right)$;
$\left(6^{0}\right) G$ is a strongly regular graph of order $n=30(7 k-2)^{2}$ and degree $r=$ $2\left(210 k^{2}-120 k+17\right)$ with $\tau=120 k^{2}-65 k+8$ and $\theta=10(3 k-1)(4 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=20 k-6$ and $\lambda_{3}=-(15 k-4)$ with $m_{2}=3\left(210 k^{2}-120 k+17\right)$ and $m_{3}=4\left(210 k^{2}-120 k+17\right)$;
$\left(\overline{6}^{0}\right) G$ is a strongly regular graph of order $n=30(7 k-2)^{2}$ and degree $r=$ $5\left(210 k^{2}-120 k+17\right)$ with $\tau=10\left(75 k^{2}-43 k+6\right)$ and $\theta=5(10 k-3)(15 k-$ $4)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=15 k-5$ and $\lambda_{3}=-(20 k-5)$ with $m_{2}=4\left(210 k^{2}-120 k+17\right)$ and $m_{3}=3\left(210 k^{2}-120 k+17\right)$;
$\left(7^{0}\right) G$ is a strongly regular graph of order $n=30(7 k+2)^{2}$ and degree $r=$ $2\left(210 k^{2}+120 k+17\right)$ with $\tau=120 k^{2}+65 k+8$ and $\theta=10(3 k+1)(4 k+1)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=15 k+4$ and $\lambda_{3}=-(20 k+6)$ with $m_{2}=4\left(210 k^{2}+120 k+17\right)$ and $m_{3}=3\left(210 k^{2}+120 k+17\right)$;
$\left(\overline{7}^{0}\right) G$ is a strongly regular graph of order $n=30(7 k+2)^{2}$ and degree $r=$ $5\left(210 k^{2}+120 k+17\right)$ with $\tau=10\left(75 k^{2}+43 k+6\right)$ and $\theta=5(10 k+3)(15 k+$ 4), where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=20 k+5$ and $\lambda_{3}=-(15 k+5)$ with $m_{2}=3\left(210 k^{2}+120 k+17\right)$ and $m_{3}=4\left(210 k^{2}+120 k+17\right)$.

Proof. First, according to Remark 2.3 we have $3 \alpha(\beta-1)=4(\alpha-1)$, from which we find that $\alpha=4, \beta=2$. In view of this, we obtain the strongly regular graph represented in Theorem 2.4 (1^{0}). Next, according to Proposition 2.3 it turns out that G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or $\left(\overline{5}^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ if
$m_{2}=\left(\frac{4}{3}\right) m_{3}$. According to Proposition 2.4 it turns out that G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ if $m_{3}=\left(\frac{4}{3}\right) m_{2}$.

Proposition 2.5. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{5}{2}\right) m_{3}$. Then G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or ($\overline{5}^{0}$) or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ represented in Theorem 2.5.

Proof. Let $m_{2}=5 p, m_{3}=2 p$ and $n=7 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{2}=k$ where k is a positive integer. Then according to Theorem 2.1 we have (i) $\lambda_{3}=-\frac{5 k+t}{2}$; (ii) $\tau-\theta=-\frac{3 k+t}{2}$; (iii) $\delta=\frac{7 k+t}{2}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{5 k^{2}+k t}{2}$, where $t=1,2, \ldots, 6$. In this case we can easily see that Theorem 2.1 $\left(8^{0}\right)$ reduces to

$$
\begin{equation*}
(2 p+1) t^{2}-2(7 p+1) t+35 k^{2}+10 k t=0 \tag{2.5}
\end{equation*}
$$

CASE $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+1}{2}, \tau-\theta=-\frac{3 k+1}{2}, \delta=\frac{7 k+1}{2}, r=p$ and $\theta=p-\frac{5 k^{2}+k}{2}$. Using (2.5) we find that $12 p+1=5 k(7 k+2)$. Replacing k with $6 k-1$ we arrive at $p=105 k^{2}-30 k+2$. So we obtain that G is a strongly regular graph of order $n=15(7 k-1)^{2}$ and degree $r=105 k^{2}-30 k+2$ with $\tau=15 k^{2}-12 k+1$ and $\theta=3 k(5 k-1)$.

Case $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+2}{2}, \tau-\theta=-\frac{3 k+2}{2}, \delta=\frac{7 k+2}{2}, r=2 p$ and $\theta=2 p-\frac{5 k^{2}+2 k}{2}$. Using (2.5) we find that $4 p=k(7 k+4)$. Replacing k with $2 k$ we arrive at $p=k(7 k+2)$. So we obtain that G is a strongly regular graph of order $n=(7 k+1)^{2}$ and degree $r=2 k(7 k+2)$ with $\tau=4 k^{2}-k-1$ and $\theta=2 k(2 k+1)$.
Case $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+3}{2}, \tau-\theta=-\frac{3 k+3}{2}, \delta=\frac{7 k+3}{2}, r=3 p$ and $\theta=3 p-\frac{5 k^{2}+3 k}{2}$. Using (2.5) we find that $24 p-3=5 k(7 k+6)$. Replacing k with $12 k+3$ we arrive at $p=210 k^{2}+120 k+17$. So we obtain that G is a strongly regular graph of order $n=30(7 k+2)^{2}$ and degree $r=3\left(210 k^{2}+120 k+17\right)$ with $\tau=18(3 k+1)(5 k+1)$ and $\theta=6(3 k+1)(15 k+4)$. CASE $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+4}{2}, \tau-\theta=-\frac{3 k+4}{2}, \delta=\frac{7 k+4}{2}, r=4 p$ and $\theta=4 p-\frac{5 k^{2}+4 k}{2}$. Using (2.5) we find that $24 p-8=5 k(7 k+8)$. Replacing k with $12 k-4$ we arrive at $p=210 k^{2}-120 k+17$. So we obtain that G is a strongly regular graph of order $n=30(7 k-2)^{2}$ and degree $r=4\left(210 k^{2}-120 k+17\right)$ with $\tau=2\left(240 k^{2}-141 k+20\right)$ and $\theta=12(4 k-1)(10 k-3)$. CASE $5(t=5)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+5}{2}, \tau-\theta=-\frac{3 k+5}{2}, \delta=\frac{7 k+5}{2}, r=5 p$ and $\theta=5 p-\frac{5 k^{2}+5 k}{2}$. Using (2.5) we find that $4 p-3=k(7 k+10)$. Replacing k with $2 k-1$ we arrive at $p=k(7 k-2)$. So we obtain that G is a strongly regular graph of order $n=(7 k-1)^{2}$ and degree $r=5 k(7 k-2)$ with $\tau=25 k^{2}-8 k-1$ and $\theta=5 k(5 k-1)$.
CASE $6(t=6)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+6}{2}, \tau-\theta=-\frac{3 k+6}{2}, \delta=\frac{7 k+6}{2}, r=6 p$ and $\theta=6 p-\frac{5 k^{2}+6 k}{2}$. Using (2.5) we find that $12 p-24=5 k(7 k+12)$. Replacing k with $6 k$ we arrive at $p=105 k^{2}+30 k+2$. So we obtain that G is a strongly regular graph of order $n=15(7 k+1)^{2}$ and degree $r=6\left(105 k^{2}+30 k+2\right)$ with $\tau=9(5 k+1)(12 k+1)$ and $\theta=6(6 k+1)(15 k+2)$.

Proposition 2.6. Let G be a connected strongly regular graph of order n and degree r with $m_{3}=\left(\frac{5}{2}\right) m_{2}$. Then G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ represented in Theorem 2.5.

Proof. Let $m_{2}=2 p, m_{3}=5 p$ and $n=7 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{3}=-k$ where k is a positive integer. Then according to Theorem 2.2 we have (i) $\lambda_{2}=\frac{5 k-t}{2}$; (ii) $\tau-\theta=\frac{3 k-t}{2}$; (iii) $\delta=\frac{7 k-t}{2}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{5 k^{2}-k t}{2}$, where $t=1,2, \ldots, 6$. In this case we can easily see that Theorem $2.2\left(8^{0}\right)$ reduces to

$$
\begin{equation*}
(2 p+1) t^{2}-2(7 p+1) t+35 k^{2}-10 k t=0 \tag{2.6}
\end{equation*}
$$

CASE $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-1}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{3 k-1}{2}, \delta=\frac{7 k-1}{2}, r=p$ and $\theta=p-\frac{5 k^{2}-k}{2}$. Using (2.6) we find that $12 p+1=5 k(7 k-2)$. Replacing k with $6 k+1$ we arrive at $p=105 k^{2}+30 k+2$. So we obtain that G is a strongly regular graph of order $n=15(7 k+1)^{2}$ and degree $r=105 k^{2}+30 k+2$ with $\tau=15 k^{2}+12 k+1$ and $\theta=3 k(5 k+1)$.
CASE $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-2}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{3 k-2}{2}, \delta=\frac{7 k-2}{2}, r=2 p$ and $\theta=2 p-\frac{5 k^{2}-2 k}{2}$. Using (2.6) we find that $4 p=k(7 k-4)$. Replacing k with $2 k$ we arrive at $p=k(7 k-2)$. So we obtain that G is a strongly regular graph of order $n=(7 k-1)^{2}$ and degree $r=2 k(7 k-2)$ with $\tau=4 k^{2}+k-1$ and $\theta=2 k(2 k-1)$.
CASE $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-3}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{3 k-3}{2}, \delta=\frac{7 k-3}{2}, r=3 p$ and $\theta=3 p-\frac{5 k^{2}-3 k}{2}$. Using (2.6) we find that $24 p-3=5 k(7 k-6)$. Replacing k with $12 k-3$ we arrive at $p=210 k^{2}-120 k+17$. So we obtain that G is a strongly regular graph of order $n=30(7 k-2)^{2}$ and degree $r=3\left(210 k^{2}-120 k+17\right)$ with $\tau=18(3 k-1)(5 k-1)$ and $\theta=6(3 k-1)(15 k-4)$. CASE $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-4}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{3 k-4}{2}, \delta=\frac{7 k-4}{2}, r=4 p$ and $\theta=4 p-\frac{5 k^{2}-4 k}{2}$. Using (2.6) we find that $24 p-8=5 k(7 k-8)$. Replacing k with $12 k+4$ we arrive at $p=210 k^{2}+120 k+17$. So we obtain that G is a strongly regular graph of order $n=30(7 k+2)^{2}$ and degree $r=4\left(210 k^{2}+120 k+17\right)$ with $\tau=2\left(240 k^{2}+141 k+20\right)$ and $\theta=12(4 k+1)(10 k+3)$. CASE 5. ($t=5$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-5}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{3 k-5}{2}, \delta=\frac{7 k-5}{2}, r=5 p$ and $\theta=5 p-\frac{5 k^{2}-5 k}{2}$. Using (2.6) we find that $4 p-3=k(7 k-10)$. Replacing k with $2 k+1$ we arrive at $p=k(7 k+2)$. So we obtain that G is a strongly regular graph of order $n=(7 k+1)^{2}$ and degree $r=5 k(7 k+2)$ with $\tau=25 k^{2}+8 k-1$ and $\theta=5 k(5 k+1)$.
CASE $6(t=6)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-6}{2}$ and $\lambda_{3}=-k, \tau-\theta=\frac{3 k-6}{2}, \delta=\frac{7 k-6}{2}, r=6 p$ and $\theta=6 p-\frac{5 k^{2}-6 k}{2}$. Using (2.6) we find that $12 p-24=5 k(7 k-12)$. Replacing k with $6 k$ we arrive at $p=105 k^{2}-30 k+2$. So we obtain that G is a strongly regular graph of order $n=15(7 k-1)^{2}$ and degree $r=6\left(105 k^{2}-30 k+2\right)$ with $\tau=9(5 k-1)(12 k-1)$ and $\theta=6(6 k-1)(15 k-2)$.

REMARK 2.6. We note that $\overline{5 K_{3}}$ is a strongly regular graph with $m_{2}=\left(\frac{5}{2}\right) m_{3}$. It is obtained from the class Theorem $2.5\left(\overline{5}^{0}\right)$ for $k=0$.

Theorem 2.5. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{5}{2}\right) m_{3}$ or $m_{3}=\left(\frac{5}{2}\right) m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is the strongly regular graph $\overline{5 K_{3}}$ of order $n=15$ and degree $r=12$ with $\tau=9$ and $\theta=12$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-3$ with $m_{2}=10$ and $m_{3}=4$;
$\left(2^{0}\right) G$ is a strongly regular graph of order $n=(7 k-1)^{2}$ and degree $r=$ $2 k(7 k-2)$ with $\tau=4 k^{2}+k-1$ and $\theta=2 k(2 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k-1$ and $\lambda_{3}=-2 k$ with $m_{2}=2 k(7 k-2)$ and $m_{3}=5 k(7 k-2) ;$
$\left(\overline{2}^{0}\right) G$ is a strongly regular graph of order $n=(7 k-1)^{2}$ and degree $r=$ $5 k(7 k-2)$ with $\tau=25 k^{2}-8 k-1$ and $\theta=5 k(5 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=2 k-1$ and $\lambda_{3}=-5 k$ with $m_{2}=5 k(7 k-2)$ and $m_{3}=2 k(7 k-2)$;
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=(7 k+1)^{2}$ and degree $r=$ $2 k(7 k+2)$ with $\tau=4 k^{2}-k-1$ and $\theta=2 k(2 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=2 k$ and $\lambda_{3}=-(5 k+1)$ with $m_{2}=5 k(7 k+2)$ and $m_{3}=2 k(7 k+2) ;$
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=(7 k+1)^{2}$ and degree $r=$ $5 k(7 k+2)$ with $\tau=25 k^{2}+8 k-1$ and $\theta=5 k(5 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k$ and $\lambda_{3}=-(2 k+1)$ with $m_{2}=2 k(7 k+2)$ and $m_{3}=5 k(7 k+2) ;$
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=15(7 k-1)^{2}$ and degree $r=$ $105 k^{2}-30 k+2$ with $\tau=15 k^{2}-12 k+1$ and $\theta=3 k(5 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k-1$ and $\lambda_{3}=-(15 k-2)$ with $m_{2}=5\left(105 k^{2}-30 k+2\right)$ and $m_{3}=2\left(105 k^{2}-30 k+2\right) ;$
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=15(7 k-1)^{2}$ and degree $r=$ $6\left(105 k^{2}-30 k+2\right)$ with $\tau=9(5 k-1)(12 k-1)$ and $\theta=6(6 k-1)(15 k-2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=15 k-3$ and $\lambda_{3}=-6 k$ with $m_{2}=2\left(105 k^{2}-30 k+2\right)$ and $m_{3}=5\left(105 k^{2}-30 k+2\right)$;
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=15(7 k+1)^{2}$ and degree $r=$ $105 k^{2}+30 k+2$ with $\tau=15 k^{2}+12 k+1$ and $\theta=3 k(5 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=15 k+2$ and $\lambda_{3}=-(6 k+1)$ with $m_{2}=2\left(105 k^{2}+30 k+2\right)$ and $m_{3}=5\left(105 k^{2}+30 k+2\right) ;$
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=15(7 k+1)^{2}$ and degree $r=$ $6\left(105 k^{2}+30 k+2\right)$ with $\tau=9(5 k+1)(12 k+1)$ and $\theta=6(6 k+1)(15 k+2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k$ and $\lambda_{3}=-(15 k+3)$ with $m_{2}=5\left(105 k^{2}+30 k+2\right)$ and $m_{3}=2\left(105 k^{2}+30 k+2\right)$;
$\left(6^{0}\right) G$ is a strongly regular graph of order $n=30(7 k-2)^{2}$ and degree $r=$ $3\left(210 k^{2}-120 k+17\right)$ with $\tau=18(3 k-1)(5 k-1)$ and $\theta=6(3 k-1)(15 k-4)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=30 k-9$ and $\lambda_{3}=-(12 k-3)$ with $m_{2}=2\left(210 k^{2}-120 k+17\right)$ and $m_{3}=5\left(210 k^{2}-120 k+17\right) ;$
$\left(\overline{6}^{0}\right) G$ is a strongly regular graph of order $n=30(7 k-2)^{2}$ and degree $r=$ $4\left(210 k^{2}-120 k+17\right)$ with $\tau=2\left(240 k^{2}-141 k+20\right)$ and $\theta=12(4 k-1)(10 k-$
$3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=12 k-4$ and $\lambda_{3}=-(30 k-8)$ with $m_{2}=5\left(210 k^{2}-120 k+17\right)$ and $m_{3}=2\left(210 k^{2}-120 k+17\right)$;
$\left(7^{0}\right) G$ is a strongly regular graph of order $n=30(7 k+2)^{2}$ and degree $r=$ $3\left(210 k^{2}+120 k+17\right)$ with $\tau=18(3 k+1)(5 k+1)$ and $\theta=6(3 k+1)(15 k+4)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=12 k+3$ and $\lambda_{3}=-(30 k+9)$ with $m_{2}=5\left(210 k^{2}+120 k+17\right)$ and $m_{3}=2\left(210 k^{2}+120 k+17\right)$;
$\left(\overline{7}^{0}\right) G$ is a strongly regular graph of order $n=30(7 k+2)^{2}$ and degree $r=$ $4\left(210 k^{2}+120 k+17\right)$ with $\tau=2\left(240 k^{2}+141 k+20\right)$ and $\theta=12(4 k+1)(10 k+$ $3)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=30 k+8$ and $\lambda_{3}=-(12 k+4)$ with $m_{2}=2\left(210 k^{2}+120 k+17\right)$ and $m_{3}=5\left(210 k^{2}+120 k+17\right)$.
Proof. First, according to Remark 2.3 we have $2 \alpha(\beta-1)=5(\alpha-1)$, from which we find that $\alpha=5, \beta=3$. In view of this we obtain the strongly regular graph represented in Theorem 2.5 (1^{0}). Next, according to Proposition 2.5 it turns out that G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or $\left(\overline{5}^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ if $m_{2}=\left(\frac{5}{2}\right) m_{3}$. According to Proposition[2.6 it turns out that G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ if $m_{3}=\left(\frac{5}{2}\right) m_{2}$.

Proposition 2.7. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{5}{3}\right) m_{3}$. Then G belongs to the class $\left(\overline{1}^{0}\right)$ or $\left(2^{0}\right)$ or $\left(3^{0}\right)$ or $\left(\overline{4}^{0}\right)$ represented in Theorem 2.6.

Proof. Let $m_{2}=5 p, m_{3}=3 p$ and $n=8 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{2}=k$ where k is a positive integer. Then according to Theorem 2.1 we have (i) $\lambda_{3}=-\frac{5 k+t}{3}$; (ii) $\tau-\theta=-\frac{2 k+t}{3}$; (iii) $\delta=\frac{8 k+t}{3}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{5 k^{2}+k t}{3}$, where $t=1,2, \ldots, 7$. In this case we can easily see that Theorem 2.1 $\left(8^{0}\right)$ reduces to

$$
\begin{equation*}
(3 p+1) t^{2}-3(8 p+1) t+40 k^{2}+10 k t=0 \tag{2.7}
\end{equation*}
$$

CASE $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+1}{3}, \tau-\theta=-\frac{2 k+1}{3}, \delta=\frac{8 k+1}{3}, r=p$ and $\theta=p-\frac{5 k^{2}+k}{3}$. Using (2.7) we find that $21 p+2=10 k(4 k+1)$. Replacing k with $21 k-8$ we arrive at $p=840 k^{2}-630 k+118$. So we obtain that G is a strongly regular graph of order $n=105(8 k-3)^{2}$ and degree $r=840 k^{2}-630 k+118$ with $\tau=105 k^{2}-91 k+19$ and $\theta=7(3 k-1)(5 k-2)$.
CASE $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+2}{3}, \tau-\theta=-\frac{2 k+2}{3}, \delta=\frac{8 k+2}{3}, r=2 p$ and $\theta=2 p-\frac{5 k^{2}+2 k}{3}$. Using (2.7) we find that $18 p+1=10 k(2 k+1)$, a contradiction because $2 \nmid 18 p+1$.
CASE $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+3}{3}, \tau-\theta=-\frac{2 k+3}{3}, \delta=\frac{8 k+3}{3}, r=3 p$ and $\theta=3 p-\frac{5 k^{2}+3 k}{3}$. Using (2.7) we find that $9 p=2 k(4 k+3)$. Replacing k with $3 k$ we arrive at $p=2 k(4 k+1)$. So we obtain that G is a strongly regular graph of order $n=(8 k+1)^{2}$ and degree $r=6 k(4 k+1)$ with $\tau=9 k^{2}+k-1$ and $\theta=3 k(3 k+1)$.
CASE $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+4}{3}, \tau-\theta=-\frac{2 k+4}{3}, \delta=\frac{8 k+4}{3}, r=4 p$ and $\theta=4 p-\frac{5 k^{2}+4 k}{3}$. Using (2.7) we find that $12 p-1=10 k(k+1)$, a contradiction because $2 \nmid 12 p-1$.

Case $5(t=5)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+5}{3}, \tau-\theta=-\frac{2 k+5}{3}, \delta=\frac{8 k+5}{3}, r=5 p$ and $\theta=5 p-\frac{5 k^{2}+5 k}{3}$. Using (2.7) we find that $9 p-2=2 k(4 k+5)$. Replacing k with $3 k-1$ we arrive at $p=2 k(4 k-1)$. So we obtain that G is a strongly regular graph of order $n=(8 k-1)^{2}$ and degree $r=10 k(4 k-1)$ with $\tau=25 k^{2}-7 k-1$ and $\theta=5 k(5 k-1)$.
CASE $6(t=6)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+6}{3}, \tau-\theta=-\frac{2 k+6}{3}, \delta=\frac{8 k+6}{3}, r=6 p$ and $\theta=6 p-\frac{5 k^{2}+6 k}{3}$. Using (2.7) we find that $18 p-9=10 k(2 k+3)$, a contradiction because $2 \nmid 18 p-9$.
CASE $7(t=7)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+7}{3}, \tau-\theta=-\frac{2 k+7}{3}, \delta=\frac{8 k+7}{3}, r=7 p$ and $\theta=7 p-\frac{5 k^{2}+7 k}{3}$. Using (2.7) we find that $21 p-28=10 k(4 k+7)$. Replacing k with $21 k+7$ we arrive at $p=840 k^{2}+630 k+118$. So we obtain that G is a strongly regular graph of order $n=105(8 k+3)^{2}$ and degree $r=7\left(840 k^{2}+630 k+118\right)$ with $\tau=7\left(735 k^{2}+551 k+103\right)$ and $\theta=7(21 k+8)(35 k+13)$.

Proposition 2.8. Let G be a connected strongly regular graph of order n and degree r with $m_{3}=\left(\frac{5}{3}\right) m_{2}$. Then G belongs to the class $\left(1^{0}\right)$ or $\left(\overline{2}^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(4^{0}\right)$ represented in Theorem 2.6,

Proof. Let $m_{2}=3 p, m_{3}=5 p$ and $n=8 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{3}=-k$ where k is a positive integer. Then according to Theorem [2.2] we have (i) $\lambda_{2}=\frac{5 k-t}{3}$; (ii) $\tau-\theta=\frac{2 k-t}{3}$; (iii) $\delta=\frac{8 k-t}{3}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{5 k^{2}-k t}{3}$, where $t=1,2, \ldots, 7$. In this case we can easily see that Theorem $2.2\left(8^{0}\right)$ reduces to

$$
\begin{equation*}
(3 p+1) t^{2}-3(8 p+1) t+40 k^{2}-10 k t=0 \tag{2.8}
\end{equation*}
$$

CASE $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-1}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{2 k-1}{3}, \delta=\frac{8 k-1}{3}, r=p$ and $\theta=p-\frac{5 k^{2}-k}{3}$. Using (2.8) we find that $21 p+2=10 k(4 k-1)$. Replacing k with $21 k+8$ we arrive at $p=840 k^{2}+630 k+118$. So we obtain that G is a strongly regular graph of order $n=105(8 k+3)^{2}$ and degree $r=840 k^{2}+630 k+118$ with $\tau=105 k^{2}+91 k+19$ and $\theta=7(3 k+1)(5 k+2)$.
CASE $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-2}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{2 k-2}{3}, \delta=\frac{8 k-2}{3}, r=2 p$ and $\theta=2 p-\frac{5 k^{2}-2 k}{3}$. Using (2.8) we find that $18 p+1=10 k(2 k-1)$, a contradiction because $2 \nmid 18 p+1$.
CASE $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-3}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{2 k-3}{3}, \delta=\frac{8 k-3}{3}, r=3 p$ and $\theta=3 p-\frac{5 k^{2}-3 k}{3}$. Using (2.8) we find that $9 p=2 k(4 k-3)$. Replacing k with $3 k$ we arrive at $p=2 k(4 k-1)$. So we obtain that G is a strongly regular graph of order $n=(8 k-1)^{2}$ and degree $r=6 k(4 k-1)$ with $\tau=9 k^{2}-k-1$ and $\theta=3 k(3 k-1)$.
CASE $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-4}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{2 k-4}{3}, \delta=\frac{8 k-4}{3}, r=4 p$ and $\theta=4 p-\frac{5 k^{2}-4 k}{3}$. Using (2.8) we find that $12 p-1=10 k(k-1)$, a contradiction because $2 \nmid 12 p-1$.
CASE $5\left(t=5\right.$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-5}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{2 k-5}{3}, \delta=\frac{8 k-5}{3}, r=5 p$ and $\theta=5 p-\frac{5 k^{2}-5 k}{3}$. Using (2.8) we find
that $9 p-2=2 k(4 k-5)$. Replacing k with $3 k+1$ we arrive at $p=2 k(4 k+1)$. So we obtain that G is a strongly regular graph of order $n=(8 k+1)^{2}$ and degree $r=10 k(4 k+1)$ with $\tau=25 k^{2}+7 k-1$ and $\theta=5 k(5 k+1)$.
CASE $6(t=6)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-6}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{2 k-6}{3}, \delta=\frac{8 k-6}{3}, r=6 p$ and $\theta=6 p-\frac{5 k^{2}-6 k}{3}$. Using (2.8) we find that $18 p-9=10 k(2 k-3)$, a contradiction because $2 \nmid 18 p-9$.
CASE $7(t=7)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-7}{3}$ and $\lambda_{3}=-k, \tau-\theta=\frac{2 k-7}{3}, \delta=\frac{8 k-7}{3}, r=7 p$ and $\theta=7 p-\frac{5 k^{2}-7 k}{3}$. Using (2.8) we find that $21 p-28=10 k(4 k-7)$. Replacing k with $21 k-7$ we arrive at $p=840 k^{2}-630 k+118$. So we obtain that G is a strongly regular graph of order $n=105(8 k-3)^{2}$ and degree $r=7\left(840 k^{2}-630 k+118\right)$ with $\tau=7\left(735 k^{2}-551 k+103\right)$ and $\theta=7(21 k-8)(35 k-13)$.

THEOREM 2.6. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{5}{3}\right) m_{3}$ or $m_{3}=\left(\frac{5}{3}\right) m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is a strongly regular graph of order $n=(8 k-1)^{2}$ and degree $r=$ $6 k(4 k-1)$ with $\tau=9 k^{2}-k-1$ and $\theta=3 k(3 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k-1$ and $\lambda_{3}=-3 k$ with $m_{2}=6 k(4 k-1)$ and $m_{3}=10 k(4 k-1) ;$
$\left(\overline{1}^{0}\right) G$ is a strongly regular graph of order $n=(8 k-1)^{2}$ and degree $r=$ $10 k(4 k-1)$ with $\tau=25 k^{2}-7 k-1$ and $\theta=5 k(5 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=3 k-1$ and $\lambda_{3}=-5 k$ with $m_{2}=10 k(4 k-1)$ and $m_{3}=6 k(4 k-1) ;$
$\left(2^{0}\right) G$ is a strongly regular graph of order $n=(8 k+1)^{2}$ and degree $r=$ $6 k(4 k+1)$ with $\tau=9 k^{2}+k-1$ and $\theta=3 k(3 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=3 k$ and $\lambda_{3}=-(5 k+1)$ with $m_{2}=10 k(4 k+1)$ and $m_{3}=6 k(4 k+1) ;$
$\left(\overline{2}^{0}\right) G$ is a strongly regular graph of order $n=(8 k+1)^{2}$ and degree $r=$ $10 k(4 k+1)$ with $\tau=25 k^{2}+7 k-1$ and $\theta=5 k(5 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k$ and $\lambda_{3}=-(3 k+1)$ with $m_{2}=6 k(4 k+1)$ and $m_{3}=10 k(4 k+1) ;$
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=105(8 k-3)^{2}$ and degree $r=$ $840 k^{2}-630 k+118$ with $\tau=105 k^{2}-91 k+19$ and $\theta=7(3 k-1)(5 k-2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=21 k-8$ and $\lambda_{3}=-(35 k-13)$ with $m_{2}=5\left(840 k^{2}-630 k+118\right)$ and $m_{3}=3\left(840 k^{2}-630 k+118\right)$;
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=105(8 k-3)^{2}$ and degree $r=$ $7\left(840 k^{2}-630 k+118\right)$ with $\tau=7\left(735 k^{2}-551 k+103\right)$ and $\theta=7(21 k-$ $8)(35 k-13)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=35 k-14$ and $\lambda_{3}=$ $-(21 k-7)$ with $m_{2}=3\left(840 k^{2}-630 k+118\right)$ and $m_{3}=5\left(840 k^{2}-630 k+\right.$ 118);
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=105(8 k+3)^{2}$ and degree $r=$ $840 k^{2}+630 k+118$ with $\tau=105 k^{2}+91 k+19$ and $\theta=7(3 k+1)(5 k+2)$,
where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=35 k+13$ and $\lambda_{3}=-(21 k+8)$ with $m_{2}=3\left(840 k^{2}+630 k+118\right)$ and $m_{3}=5\left(840 k^{2}+630 k+118\right)$;
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=105(8 k+3)^{2}$ and degree $r=$ $7\left(840 k^{2}+630 k+118\right)$ with $\tau=7\left(735 k^{2}+551 k+103\right)$ and $\theta=7(21 k+$ 8) $(35 k+13)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=21 k+7$ and $\lambda_{3}=$ $-(35 k+14)$ with $m_{2}=5\left(840 k^{2}+630 k+118\right)$ and $m_{3}=3\left(840 k^{2}+630 k+\right.$ 118).

Proof. First, according to Remark 2.3 we have $3 \alpha(\beta-1)=5(\alpha-1)$, from which we find no integral solution for α and β. Next, according to Proposition 2.7 it turns out that G belongs to the class $\left(\overline{1}^{0}\right)$ or $\left(2^{0}\right)$ or $\left(3^{0}\right)$ or $\left(\overline{4}^{0}\right)$ if $m_{2}=\left(\frac{5}{3}\right) m_{3}$. According to Proposition 2.8 it turns out that G belongs to the class $\left(1^{0}\right)$ or $\left(\overline{2}^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(4^{0}\right)$ if $m_{3}=\left(\frac{5}{3}\right) m_{2}$.

Proposition 2.9. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{5}{4}\right) m_{3}$. Then G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or $\left(\overline{5}^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(9^{0}\right)$ represented in Theorem 2.7.

Proof. Let $m_{2}=5 p, m_{3}=4 p$ and $n=9 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{2}=k$ where k is a positive integer. Then according to Theorem 2.1 we have (i) $\lambda_{3}=-\frac{5 k+t}{4}$; (ii) $\tau-\theta=-\frac{k+t}{4}$; (iii) $\delta=\frac{9 k+t}{4}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{5 k^{2}+k t}{4}$, where $t=1,2, \ldots, 8$. In this case we can easily see that Theorem 2.1 $\left(8^{0}\right)$ reduces to

$$
\begin{equation*}
(4 p+1) t^{2}-4(9 p+1) t+45 k^{2}+10 k t=0 \tag{2.9}
\end{equation*}
$$

CASE $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+1}{4}, \tau-\theta=-\frac{k+1}{4}, \delta=\frac{9 k+1}{4}, r=p$ and $\theta=p-\frac{5 k^{2}+k}{4}$. Using (2.9) we find that $32 p+3=5 k(9 k+2)$. Replacing k with $8 k-1$ we arrive at $p=90 k^{2}-20 k+1$. So we obtain that G is a strongly regular graph of order $n=10(9 k-1)^{2}$ and degree $r=90 k^{2}-20 k+1$ with $\tau=2 k(5 k-2)$ and $\theta=2 k(5 k-1)$.
CASE $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+2}{4}, \tau-\theta=-\frac{k+2}{4}, \delta=\frac{9 k+2}{4}, r=2 p$ and $\theta=2 p-\frac{5 k^{2}+2 k}{4}$. Using (2.9) we find that $56 p+4=5 k(9 k+4)$. Replacing k with $28 k+6$ we arrive at $p=630 k^{2}+280 k+31$. So we obtain that G is a strongly regular graph of order $n=70(9 k+2)^{2}$ and degree $r=2\left(630 k^{2}+280 k+31\right)$ with $\tau=280 k^{2}+119 k+12$ and $\theta=14(4 k+1)(5 k+1)$.

Case $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+3}{4}, \tau-\theta=-\frac{k+3}{4}, \delta=\frac{9 k+3}{4}, r=3 p$ and $\theta=3 p-\frac{5 k^{2}+3 k}{4}$. Using (2.9) we find that $24 p+1=5 k(3 k+2)$. Replacing k with $12 k+1$ we arrive at $p=90 k^{2}+20 k+1$. So we obtain that G is a strongly regular graph of order $n=10(9 k+1)^{2}$ and degree $r=3\left(90 k^{2}+20 k+1\right)$ with $\tau=18 k(5 k+1)$ and $\theta=(6 k+1)(15 k+1)$.
CASE $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+4}{4}, \tau-\theta=-\frac{k+4}{4}, \delta=\frac{9 k+4}{4}, r=4 p$ and $\theta=4 p-\frac{5 k^{2}+4 k}{4}$. Using (2.9) we find that $16 p=k(9 k+8)$. Replacing k with $4 k$ we arrive at $p=k(9 k+2)$. So we obtain that G is a strongly regular graph of order $n=(9 k+1)^{2}$ and degree $r=4 k(9 k+2)$ with $\tau=16 k^{2}+3 k-1$ and $\theta=4 k(4 k+1)$.

CASE $5(t=5)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+5}{4}, \tau-\theta=-\frac{k+5}{4}, \delta=\frac{9 k+5}{4}, r=5 p$ and $\theta=5 p-\frac{5 k^{2}+5 k}{4}$. Using (2.9) we find that $16 p-1=k(9 k+10)$. Replacing k with $4 k-1$ we arrive at $p=k(9 k-2)$. So we obtain that G is a strongly regular graph of order $n=(9 k-1)^{2}$ and degree $r=5 k(9 k-2)$ with $\tau=25 k^{2}-6 k-1$ and $\theta=5 k(5 k-1)$.
CASE $6(t=6)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+6}{4}, \tau-\theta=-\frac{k+6}{4}, \delta=\frac{9 k+6}{4}, r=6 p$ and $\theta=6 p-\frac{5 k^{2}+6 k}{4}$. Using (2.9) we find that $24 p-4=5 k(3 k+4)$. Replacing k with $12 k-2$ we arrive at $p=90 k^{2}-20 k+1$. So we obtain that G is a strongly regular graph of order $n=10(9 k-1)^{2}$ and degree $r=6\left(90 k^{2}-20 k+1\right)$ with $\tau=3\left(120 k^{2}-27 k+1\right)$ and $\theta=2(12 k-1)(15 k-2)$.
Case $7(t=7)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{5 k+7}{4}, \tau-\theta=-\frac{k+7}{4}, \delta=\frac{9 k+7}{4}, r=7 p$ and $\theta=7 p-\frac{5 k^{2}+7 k}{4}$. Using (2.9) we find that $56 p-21=5 k(9 k+14)$. Replacing k with $28 k-7$ we arrive at $p=630 k^{2}-280 k+31$. So we obtain that G is a strongly regular graph of order $n=70(9 k-2)^{2}$ and degree $r=7\left(630 k^{2}-280 k+31\right)$ with $\tau=14(5 k-1)(49 k-12)$ and $\theta=7(14 k-3)(35 k-8)$.
CASE 8. ($t=8$). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-\frac{5 k+8}{4}, \tau-\theta=-\frac{k+8}{4}, \delta=\frac{9 k+8}{4}, r=8 p$ and $\theta=8 p-\frac{5 k^{2}+8 k}{4}$. Using (2.9) we find that $32 p-32=5 k(9 k+16)$. Replacing k with $8 k$ we arrive at $p=90 k^{2}+20 k+1$. So we obtain that G is a strongly regular graph of order $n=10(9 k+1)^{2}$ and degree $r=8\left(90 k^{2}+20 k+1\right)$ with $\tau=2\left(320 k^{2}+71 k+3\right)$ and $\theta=8(8 k+1)(10 k+1)$.

Proposition 2.10. Let G be a connected strongly regular graph of order n and degree r with $m_{3}=\left(\frac{5}{4}\right) m_{2}$. Then G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ or $\left(8^{0}\right)$ or $\left(\overline{9}^{0}\right)$ represented in Theorem 2.7.

Proof. Let $m_{2}=4 p, m_{3}=5 p$ and $n=9 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{3}=-k$ where k is a positive integer. Then according to Theorem 2.2 we have (i) $\lambda_{2}=\frac{5 k-t}{4}$; (ii) $\tau-\theta=\frac{k-t}{4}$; (iii) $\delta=\frac{9 k-t}{4}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{5 k^{2}-k t}{4}$, where $t=1,2, \ldots, 8$. In this case we can easily see that Theorem 2.2 (8^{0}) reduces to

$$
\begin{equation*}
(4 p+1) t^{2}-4(9 p+1) t+45 k^{2}-10 k t=0 \tag{2.10}
\end{equation*}
$$

Case $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-1}{4}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-1}{4}, \delta=\frac{9 k-1}{4}, r=p$ and $\theta=p-\frac{5 k^{2}-k}{4}$. Using (2.10) we find that $32 p+3=5 k(9 k-2)$. Replacing k with $8 k+1$ we arrive at $p=90 k^{2}+20 k+1$. So we obtain that G is a strongly regular graph of order $n=10(9 k+1)^{2}$ and degree $r=90 k^{2}+20 k+1$ with $\tau=2 k(5 k+2)$ and $\theta=2 k(5 k+1)$.
CASE $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-2}{4}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-2}{4}, \delta=\frac{9 k-2}{4}, r=2 p$ and $\theta=2 p-\frac{5 k^{2}-2 k}{4}$. Using (2.10) we find that $56 p+4=5 k(9 k-4)$. Replacing k with $28 k-6$ we arrive at $p=630 k^{2}-280 k+31$. So we obtain that G is a strongly regular graph of order $n=70(9 k-2)^{2}$ and degree $r=2\left(630 k^{2}-280 k+31\right)$ with $\tau=280 k^{2}-119 k+12$ and $\theta=14(4 k-1)(5 k-1)$.

Case $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-3}{4}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-3}{4}, \delta=\frac{9 k-3}{4}, r=3 p$ and $\theta=3 p-\frac{5 k^{2}-3 k}{4}$. Using (2.10) we find that $24 p+1=5 k(3 k-2)$. Replacing k with $12 k-1$ we arrive at $p=90 k^{2}-20 k+1$. So we obtain that G is a strongly regular graph of order $n=10(9 k-1)^{2}$ and degree $r=3\left(90 k^{2}-20 k+1\right)$ with $\tau=18 k(5 k-1)$ and $\theta=(6 k-1)(15 k-1)$.
CASE $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-4}{4}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-4}{4}, \delta=\frac{9 k-4}{4}, r=4 p$ and $\theta=4 p-\frac{5 k^{2}-4 k}{4}$. Using (2.10) we find that $16 p=k(9 k-8)$. Replacing k with $4 k$ we arrive at $p=k(9 k-2)$. So we obtain that G is a strongly regular graph of order $n=(9 k-1)^{2}$ and degree $r=4 k(9 k-2)$ with $\tau=16 k^{2}-3 k-1$ and $\theta=4 k(4 k-1)$.
Case $5(t=5)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-5}{4}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-5}{4}, \delta=\frac{9 k-5}{4}, r=5 p$ and $\theta=5 p-\frac{5 k^{2}-5 k}{4}$. Using (2.10) we find that $16 p-1=k(9 k-10)$. Replacing k with $4 k+1$ we arrive at $p=k(9 k+2)$. So we obtain that G is a strongly regular graph of order $n=(9 k+1)^{2}$ and degree $r=5 k(9 k+2)$ with $\tau=25 k^{2}+6 k-1$ and $\theta=5 k(5 k+1)$.
CASE $6(t=6)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-6}{4}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-6}{4}, \delta=\frac{9 k-6}{4}, r=6 p$ and $\theta=6 p-\frac{5 k^{2}-6 k}{4}$. Using (2.10) we find that $24 p-4=5 k(3 k-4)$. Replacing k with $12 k+2$ we arrive at $p=90 k^{2}+20 k+1$. So we obtain that G is a strongly regular graph of order $n=10(9 k+1)^{2}$ and degree $r=6\left(90 k^{2}+20 k+1\right)$ with $\tau=3\left(120 k^{2}+27 k+1\right)$ and $\theta=2(12 k+1)(15 k+2)$.
CASE $7(t=7)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-7}{4}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-7}{4}, \delta=\frac{9 k-7}{4}, r=7 p$ and $\theta=7 p-\frac{5 k^{2}-7 k}{4}$. Using (2.10) we find that $56 p-21=5 k(9 k-14)$. Replacing k with $28 k+7$ we arrive at $p=630 k^{2}+280 k+31$. So we obtain that G is a strongly regular graph of order $n=70(9 k+2)^{2}$ and degree $r=7\left(630 k^{2}+280 k+31\right)$ with $\tau=14(5 k+1)(49 k+12)$ and $\theta=7(14 k+3)(35 k+8)$.
CASE $8(t=8)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{5 k-8}{4}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-8}{4}, \delta=\frac{9 k-8}{4}, r=8 p$ and $\theta=8 p-\frac{5 k^{2}-8 k}{4}$. Using (2.10) we find that $32 p-32=5 k(9 k-16)$. Replacing k with $8 k$ we arrive at $p=90 k^{2}-20 k+1$. So we obtain that G is a strongly regular graph of order $n=10(9 k-1)^{2}$ and degree $r=8\left(90 k^{2}-20 k+1\right)$ with $\tau=2\left(320 k^{2}-71 k+3\right)$ and $\theta=8(8 k-1)(10 k-1)$.

REMARK 2.7. We note that $\overline{5 K_{2}}$ is a strongly regular graph with $m_{2}=\left(\frac{5}{4}\right) m_{3}$. It is obtained from class Theorem $2.7\left(\overline{6}^{0}\right)$ for $k=0$.

Theorem 2.7. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{5}{4}\right) m_{3}$ or $m_{3}=\left(\frac{5}{4}\right) m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is the strongly regular graph $\overline{5 K_{2}}$ of order $n=10$ and degree $r=8$ with $\tau=6$ and $\theta=8$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-2$ with $m_{2}=5$ and $m_{3}=4$;
$\left(2^{0}\right) G$ is a strongly regular graph of order $n=(9 k-1)^{2}$ and degree $r=$ $4 k(9 k-2)$ with $\tau=16 k^{2}-3 k-1$ and $\theta=4 k(4 k-1)$, where $k \in \mathbb{N}$. Its
eigenvalues are $\lambda_{2}=5 k-1$ and $\lambda_{3}=-4 k$ with $m_{2}=4 k(9 k-2)$ and $m_{3}=5 k(9 k-2) ;$
$\left(\overline{2}^{0}\right) G$ is a strongly regular graph of order $n=(9 k-1)^{2}$ and degree $r=$ $5 k(9 k-2)$ with $\tau=25 k^{2}-6 k-1$ and $\theta=5 k(5 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k-1$ and $\lambda_{3}=-5 k$ with $m_{2}=5 k(9 k-2)$ and $m_{3}=4 k(9 k-2)$;
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=(9 k+1)^{2}$ and degree $r=$ $4 k(9 k+2)$ with $\tau=16 k^{2}+3 k-1$ and $\theta=4 k(4 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=4 k$ and $\lambda_{3}=-(5 k+1)$ with $m_{2}=5 k(9 k+2)$ and $m_{3}=4 k(9 k+2) ;$
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=(9 k+1)^{2}$ and degree $r=$ $5 k(9 k+2)$ with $\tau=25 k^{2}+6 k-1$ and $\theta=5 k(5 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k$ and $\lambda_{3}=-(4 k+1)$ with $m_{2}=4 k(9 k+2)$ and $m_{3}=5 k(9 k+2) ;$
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=10(9 k-1)^{2}$ and degree $r=$ $90 k^{2}-20 k+1$ with $\tau=2 k(5 k-2)$ and $\theta=2 k(5 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=8 k-1$ and $\lambda_{3}=-(10 k-1)$ with $m_{2}=5\left(90 k^{2}-\right.$ $20 k+1)$ and $m_{3}=4\left(90 k^{2}-20 k+1\right)$;
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=10(9 k-1)^{2}$ and degree $r=$ $8\left(90 k^{2}-20 k+1\right)$ with $\tau=2\left(320 k^{2}-71 k+3\right)$ and $\theta=8(8 k-1)(10 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=10 k-2$ and $\lambda_{3}=-8 k$ with $m_{2}=4\left(90 k^{2}-20 k+1\right)$ and $m_{3}=5\left(90 k^{2}-20 k+1\right)$;
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=10(9 k-1)^{2}$ and degree $r=$ $3\left(90 k^{2}-20 k+1\right)$ with $\tau=18 k(5 k-1)$ and $\theta=(6 k-1)(15 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=15 k-2$ and $\lambda_{3}=-(12 k-1)$ with $m_{2}=4\left(90 k^{2}-20 k+1\right)$ and $m_{3}=5\left(90 k^{2}-20 k+1\right)$;
$\left(\overline{5}^{0}\right) G$ is a strongly regular graph of order $n=10(9 k-1)^{2}$ and degree $r=$ $6\left(90 k^{2}-20 k+1\right)$ with $\tau=3\left(120 k^{2}-27 k+1\right)$ and $\theta=2(12 k-1)(15 k-2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=12 k-2$ and $\lambda_{3}=-(15 k-1)$ with $m_{2}=5\left(90 k^{2}-20 k+1\right)$ and $m_{3}=4\left(90 k^{2}-20 k+1\right)$;
$\left(6^{0}\right) G$ is a strongly regular graph of order $n=10(9 k+1)^{2}$ and degree $r=$ $90 k^{2}+20 k+1$ with $\tau=2 k(5 k+2)$ and $\theta=2 k(5 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=10 k+1$ and $\lambda_{3}=-(8 k+1)$ with $m_{2}=4\left(90 k^{2}+\right.$ $20 k+1)$ and $m_{3}=5\left(90 k^{2}+20 k+1\right)$;
$\left(\overline{6}^{0}\right) G$ is a strongly regular graph of order $n=10(9 k+1)^{2}$ and degree $r=$ $8\left(90 k^{2}+20 k+1\right)$ with $\tau=2\left(320 k^{2}+71 k+3\right)$ and $\theta=8(8 k+1)(10 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=8 k$ and $\lambda_{3}=-(10 k+2)$ with $m_{2}=5\left(90 k^{2}+20 k+1\right)$ and $m_{3}=4\left(90 k^{2}+20 k+1\right)$;
$\left(7^{0}\right) G$ is a strongly regular graph of order $n=10(9 k+1)^{2}$ and degree $r=$ $3\left(90 k^{2}+20 k+1\right)$ with $\tau=18 k(5 k+1)$ and $\theta=(6 k+1)(15 k+1)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=12 k+1$ and $\lambda_{3}=-(15 k+2)$ with $m_{2}=5\left(90 k^{2}+20 k+1\right)$ and $m_{3}=4\left(90 k^{2}+20 k+1\right)$;
$\left(\overline{7}^{0}\right) G$ is a strongly regular graph of order $n=10(9 k+1)^{2}$ and degree $r=$ $6\left(90 k^{2}+20 k+1\right)$ with $\tau=3\left(120 k^{2}+27 k+1\right)$ and $\theta=2(12 k+1)(15 k+2)$,
where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=15 k+1$ and $\lambda_{3}=-(12 k+2)$ with $m_{2}=4\left(90 k^{2}+20 k+1\right)$ and $m_{3}=5\left(90 k^{2}+20 k+1\right)$;
$\left(8^{0}\right) G$ is a strongly regular graph of order $n=70(9 k-2)^{2}$ and degree $r=$ $2\left(630 k^{2}-280 k+31\right)$ with $\tau=280 k^{2}-119 k+12$ and $\theta=14(4 k-1)(5 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=35 k-8$ and $\lambda_{3}=-(28 k-6)$ with $m_{2}=4\left(630 k^{2}-280 k+31\right)$ and $m_{3}=5\left(630 k^{2}-280 k+31\right)$;
$\left(\overline{8}^{0}\right) G$ is a strongly regular graph of order $n=70(9 k-2)^{2}$ and degree $r=$ $7\left(630 k^{2}-280 k+31\right)$ with $\tau=14(5 k-1)(49 k-12)$ and $\theta=7(14 k-3)(35 k-$ $8)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=28 k-7$ and $\lambda_{3}=-(35 k-7)$ with $m_{2}=5\left(630 k^{2}-280 k+31\right)$ and $m_{3}=4\left(630 k^{2}-280 k+31\right)$;
$\left(9^{0}\right) G$ is a strongly regular graph of order $n=70(9 k+2)^{2}$ and degree $r=$ $2\left(630 k^{2}+280 k+31\right)$ with $\tau=280 k^{2}+119 k+12$ and $\theta=14(4 k+1)(5 k+1)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=28 k+6$ and $\lambda_{3}=-(35 k+8)$ with $m_{2}=5\left(630 k^{2}+280 k+31\right)$ and $m_{3}=4\left(630 k^{2}+280 k+31\right)$;
$\left(\overline{9}^{0}\right) G$ is a strongly regular graph of order $n=70(9 k+2)^{2}$ and degree $r=$ $7\left(630 k^{2}+280 k+31\right)$ with $\tau=14(5 k+1)(49 k+12)$ and $\theta=7(14 k+3)(35 k+$ $8)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=35 k+7$ and $\lambda_{3}=-(28 k+7)$ with $m_{2}=4\left(630 k^{2}+280 k+31\right)$ and $m_{3}=5\left(630 k^{2}+280 k+31\right)$.
Proof. First, according to Remark 2.3 we have $4 \alpha(\beta-1)=5(\alpha-1)$, from which we find that $\alpha=5, \beta=2$. In view of this we obtain the strongly regular graph represented in Theorem 2.7 $\left(1^{0}\right)$. Next, according to Proposition 2.9 it turns out that G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or $\left(\overline{5}^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(9^{0}\right)$ if $m_{2}=\left(\frac{5}{4}\right) m_{3}$. According to Proposition 2.10 it turns out that G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ or $\left(8^{0}\right)$ or $\left(\overline{9}^{0}\right)$ if $m_{3}=\left(\frac{5}{4}\right) m_{2}$.

Proposition 2.11. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{6}{5}\right) m_{3}$. Then G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or $\left(\overline{5}^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ or $\left(8^{0}\right)$ or $\left(\overline{9}^{0}\right)$ or $\left(\overline{10}^{0}\right)$ or $\left(11^{0}\right)$ represented in Theorem 2.8,

Proof. Let $m_{2}=6 p, m_{3}=5 p$ and $n=11 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{2}=k$ where k is a positive integer. Then according to Theorem 2.1] we have (i) $\lambda_{3}=-\frac{6 k+t}{5}$; (ii) $\tau-\theta=-\frac{k+t}{5}$; (iii) $\delta=\frac{11 k+t}{5}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{6 k^{2}+k t}{5}$, where $t=1,2, \ldots, 10$. In this case we can easily see that Theorem 2.1 (8^{0}) reduces to

$$
\begin{equation*}
(5 p+1) t^{2}-5(11 p+1) t+66 k^{2}+12 k t=0 \tag{2.11}
\end{equation*}
$$

CASE $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{6 k+1}{5}, \tau-\theta=-\frac{k+1}{5}, \delta=\frac{11 k+1}{5}, r=p$ and $\theta=p-\frac{6 k^{2}+k}{5}$. Using (2.11) we find that $25 p+2=3 k(11 k+2)$. Replacing k with $5 k-1$ we arrive at $p=33 k^{2}-12 k+1$. So we obtain that G is a strongly regular graph of order $n=3(11 k-2)^{2}$ and degree $r=33 k^{2}-12 k+1$ with $\tau=k(3 k-2)$ and $\theta=k(3 k-1)$.
CASE $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{6 k+2}{5}, \tau-\theta=-\frac{k+2}{5}, \delta=\frac{11 k+2}{5}, r=2 p$ and $\theta=2 p-\frac{6 k^{2}+2 k}{5}$. Using (2.11) we find that $15 p+1=k(11 k+4)$. Replacing k with $15 k-7$ we arrive at $p=165 k^{2}-150 k+34$.

So we obtain that G is a strongly regular graph of order $n=15(11 k-5)^{2}$ and degree $r=2\left(165 k^{2}-150 k+34\right)$ with $\tau=60 k^{2}-57 k+13$ and $\theta=6(2 k-1)(5 k-2)$.
Case $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{6 k+3}{5}, \tau-\theta=-\frac{k+3}{5}, \delta=\frac{11 k+3}{5}, r=3 p$ and $\theta=3 p-\frac{6 k^{2}+3 k}{5}$. Using (2.11) we find that $20 p+1=k(11 k+6)$. Replacing k with $10 k-3$ we arrive at $p=55 k^{2}-30 k+4$. So we obtain that G is a strongly regular graph of order $n=5(11 k-3)^{2}$ and degree $r=3\left(55 k^{2}-30 k+4\right)$ with $\tau=45 k^{2}-26 k+3$ and $\theta=3(3 k-1)(5 k-1)$.
CASE $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{6 k+4}{5}, \tau-\theta=-\frac{k+4}{5}, \delta=\frac{11 k+4}{5}, r=4 p$ and $\theta=4 p-\frac{6 k^{2}+4 k}{5}$. Using (2.11) we find that $70 p+2=3 k(11 k+8)$. Replacing k with $70 k+6$ we arrive at $p=$ $2310 k^{2}+420 k+19$. So we obtain that G is a strongly regular graph of order $n=$ $210(11 k+1)^{2}$ and degree $r=4\left(2310 k^{2}+420 k+19\right)$ with $\tau=2\left(1680 k^{2}+301 k+13\right)$ and $\theta=28(10 k+1)(12 k+1)$.
CASE $5(t=5)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{6 k+5}{5}, \tau-\theta=-\frac{k+5}{5}, \delta=\frac{11 k+5}{5}, r=5 p$ and $\theta=5 p-\frac{6 k^{2}+5 k}{5}$. Using (2.11) we find that $25 p=k(11 k+10)$. Replacing k with $5 k$ we arrive at $p=k(11 k+2)$. So we obtain that G is a strongly regular graph of order $n=(11 k+1)^{2}$ and degree $r=5 k(11 k+2)$ with $\tau=25 k^{2}+4 k-1$ and $\theta=5 k(5 k+1)$.
CASE $6(t=6)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{6 k+6}{5}, \tau-\theta=-\frac{k+6}{5}, \delta=\frac{11 k+6}{5}, r=6 p$ and $\theta=6 p-\frac{6 k^{2}+6 k}{5}$. Using (2.11) we find that $25 p-1=k(11 k+12)$. Replacing k with $5 k-1$ we arrive at $p=k(11 k-2)$. So we obtain that G is a strongly regular graph of order $n=(11 k-1)^{2}$ and degree $r=6 k(11 k-2)$ with $\tau=36 k^{2}-7 k-1$ and $\theta=6 k(6 k-1)$.
CASE $7(t=7)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{6 k+7}{5}, \tau-\theta=-\frac{k+7}{5}, \delta=\frac{11 k+7}{5}, r=7 p$ and $\theta=7 p-\frac{6 k^{2}+7 k}{5}$. Using (2.11) we find that $70 p-7=3 k(11 k+14)$. Replacing k with $70 k-7$ we arrive at $p=2310 k^{2}-420 k+19$. So we obtain that G is a strongly regular graph of order $n=210(11 k-1)^{2}$ and degree $r=7\left(2310 k^{2}-420 k+19\right)$ with $\tau=14\left(735 k^{2}-134 k+6\right)$ and $\theta=14(21 k-2)(35 k-3)$.
CASE $8(t=8)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{6 k+8}{5}, \tau-\theta=-\frac{k+8}{5}, \delta=\frac{11 k+8}{5}, r=8 p$ and $\theta=8 p-\frac{6 k^{2}+8 k}{5}$. Using (2.11) we find that $20 p-4=k(11 k+16)$. Replacing k with $10 k+2$ we arrive at $p=55 k^{2}+30 k+4$. So we obtain that G is a strongly regular graph of order $n=5(11 k+3)^{2}$ and degree $r=8\left(55 k^{2}+30 k+4\right)$ with $\tau=2(5 k+1)(32 k+11)$ and $\theta=8(4 k+1)(10 k+3)$.
CASE $9(t=9)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=$ $-\frac{6 k+9}{5}, \tau-\theta=-\frac{k+9}{5}, \delta=\frac{11 k+9}{5}, r=9 p$ and $\theta=9 p-\frac{6 k^{2}+9 k}{5}$. Using (2.11) we find that $15 p-6=k(11 k+18)$. Replacing k with $15 k+6$ we arrive at $p=$ $165 k^{2}+150 k+34$. So we obtain that G is a strongly regular graph of order $n=15(11 k+5)^{2}$ and degree $r=9\left(165 k^{2}+150 k+34\right)$ with $\tau=3\left(405 k^{2}+368 k+83\right)$ and $\theta=9(9 k+4)(15 k+7)$.
CASE $10(t=10)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=k$ and $\lambda_{3}=-\frac{6 k+10}{5}, \tau-\theta=-\frac{k+10}{5}, \delta=\frac{11 k+10}{5}, r=10 p$ and $\theta=10 p-\frac{6 k^{2}+10 k}{5}$. Using
(2.11) we find that $25 p-25=3 k(11 k+20)$. Replacing k with $5 k$ we arrive at $p=33 k^{2}+12 k+1$. So we obtain that G is a strongly regular graph of order $n=3(11 k+2)^{2}$ and degree $r=10\left(33 k^{2}+12 k+1\right)$ with $\tau=300 k^{2}+109 k+8$ and $\theta=10(5 k+1)(6 k+1)$.

Proposition 2.12. Let G be a connected strongly regular graph of order n and degree r with $m_{3}=\left(\frac{6}{5}\right) m_{2}$. Then G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(9^{0}\right)$ or $\left(10^{0}\right)$ or $\left(\overline{11}^{0}\right)$ represented in Theorem 2.8.

Proof. Let $m_{2}=5 p, m_{3}=6 p$ and $n=11 p+1$ where $p \in \mathbb{N}$. Let $\lambda_{3}=-k$ where k is a positive integer. Then according to Theorem 2.2 we have (i) $\lambda_{2}=\frac{6 k-t}{5}$; (ii) $\tau-\theta=\frac{k-t}{5}$; (iii) $\delta=\frac{11 k-t}{5}$; (iv) $r=p t$ and (v) $\theta=p t-\frac{6 k^{2}-k t}{5}$, where $t=1,2, \ldots, 10$. In this case we can easily see that Theorem 2.2 $\left(8^{0}\right)$ reduces to

$$
\begin{equation*}
(5 p+1) t^{2}-5(11 p+1) t+66 k^{2}-12 k t=0 \tag{2.12}
\end{equation*}
$$

CASE $1(t=1)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{6 k-1}{5}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-1}{5}, \delta=\frac{11 k-1}{5}, r=p$ and $\theta=p-\frac{6 k^{2}-k}{5}$. Using (2.12) we find that $25 p+2=3 k(11 k-2)$. Replacing k with $5 k+1$ we arrive at $p=33 k^{2}+12 k+1$. So we obtain that G is a strongly regular graph of order $n=3(11 k+2)^{2}$ and degree $r=33 k^{2}+12 k+1$ with $\tau=k(3 k+2)$ and $\theta=k(3 k+1)$.
CASE $2(t=2)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{6 k-2}{5}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-2}{5}, \delta=\frac{11 k-2}{5}, r=2 p$ and $\theta=2 p-\frac{6 k^{2}-2 k}{5}$. Using (2.12) we find that $15 p+1=k(11 k-4)$. Replacing k with $15 k+7$ we arrive at $p=165 k^{2}+150 k+34$. So we obtain that G is a strongly regular graph of order $n=15(11 k+5)^{2}$ and degree $r=2\left(165 k^{2}+150 k+34\right)$ with $\tau=60 k^{2}+57 k+13$ and $\theta=6(2 k+1)(5 k+2)$.
CASE $3(t=3)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{6 k-3}{5}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-3}{5}, \delta=\frac{11 k-3}{5}, r=3 p$ and $\theta=3 p-\frac{6 k^{2}-3 k}{5}$. Using (2.12) we find that $20 p+1=k(11 k-6)$. Replacing k with $10 k+3$ we arrive at $p=55 k^{2}+30 k+4$. So we obtain that G is a strongly regular graph of order $n=5(11 k+3)^{2}$ and degree $r=3\left(55 k^{2}+30 k+4\right)$ with $\tau=45 k^{2}+26 k+3$ and $\theta=3(3 k+1)(5 k+1)$.
CASE $4(t=4)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{6 k-4}{5}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-4}{5}, \delta=\frac{11 k-4}{5}, r=4 p$ and $\theta=4 p-\frac{6 k^{2}-4 k}{5}$. Using (2.12) we find that $70 p+2=3 k(11 k-8)$. Replacing k with $70 k-6$ we arrive at $p=$ $2310 k^{2}-420 k+19$. So we obtain that G is a strongly regular graph of order $n=$ $210(11 k-1)^{2}$ and degree $r=4\left(2310 k^{2}-420 k+19\right)$ with $\tau=2\left(1680 k^{2}-301 k+13\right)$ and $\theta=28(10 k-1)(12 k-1)$.
Case $5(t=5)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{6 k-5}{5}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-5}{5}, \delta=\frac{11 k-5}{5}, r=5 p$ and $\theta=5 p-\frac{6 k^{2}-5 k}{5}$. Using (2.12) we find that $25 p=k(11 k-10)$. Replacing k with $5 k$ we arrive at $p=k(11 k-2)$. So we obtain that G is a strongly regular graph of order $n=(11 k-1)^{2}$ and degree $r=5 k(11 k-2)$ with $\tau=25 k^{2}-4 k-1$ and $\theta=5 k(5 k-1)$.
CASE $6(t=6)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{6 k-6}{5}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-6}{5}, \delta=\frac{11 k-6}{5}, r=6 p$ and $\theta=6 p-\frac{6 k^{2}-6 k}{5}$. Using (2.12) we find
that $25 p-1=k(11 k-12)$. Replacing k with $5 k+1$ we arrive at $p=k(11 k+2)$. So we obtain that G is a strongly regular graph of order $n=(11 k+1)^{2}$ and degree $r=6 k(11 k+2)$ with $\tau=36 k^{2}+7 k-1$ and $\theta=6 k(6 k+1)$.
CASE $7(t=7)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{6 k-7}{5}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-7}{5}, \delta=\frac{11 k-7}{5}, r=7 p$ and $\theta=7 p-\frac{6 k^{2}-7 k}{5}$. Using (2.12) we find that $70 p-7=3 k(11 k-14)$. Replacing k with $70 k+7$ we arrive at $p=2310 k^{2}+420 k+19$. So we obtain that G is a strongly regular graph of order $n=210(11 k+1)^{2}$ and degree $r=7\left(2310 k^{2}+420 k+19\right)$ with $\tau=14\left(735 k^{2}+134 k+6\right)$ and $\theta=14(21 k+2)(35 k+3)$.
CASE $8(t=8)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{6 k-8}{5}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-8}{5}, \delta=\frac{11 k-8}{5}, r=8 p$ and $\theta=8 p-\frac{6 k^{2}-8 k}{5}$. Using (2.12) we find that $20 p-4=k(11 k-16)$. Replacing k with $10 k-2$ we arrive at $p=55 k^{2}-30 k+4$. So we obtain that G is a strongly regular graph of order $n=5(11 k-3)^{2}$ and degree $r=8\left(55 k^{2}-30 k+4\right)$ with $\tau=2(5 k-1)(32 k-11)$ and $\theta=8(4 k-1)(10 k-3)$.
CASE $9(t=9)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{6 k-9}{5}$ and $\lambda_{3}=$ $-k, \tau-\theta=\frac{k-9}{5}, \delta=\frac{11 k-9}{5}, r=9 p$ and $\theta=9 p-\frac{6 k^{2}-9 k}{5}$. Using (2.12) we find that $15 p-6=k(11 k-18)$. Replacing k with $15 k-6$ we arrive at $p=165 k^{2}-150 k+34$. So we obtain that G is a strongly regular graph of order $n=15(11 k-5)^{2}$ and degree $r=9\left(165 k^{2}-150 k+34\right)$ with $\tau=3\left(405 k^{2}-368 k+83\right)$ and $\theta=9(9 k-4)(15 k-7)$. CASE $10(t=10)$. Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_{2}=\frac{6 k-10}{5}$ and $\lambda_{3}=-k, \tau-\theta=\frac{k-10}{5}, \delta=\frac{11 k-10}{5}, r=10 p$ and $\theta=10 p-\frac{6 k^{2}-10 k}{5}$. Using (2.12) we find that $25 p-25=3 k(11 k-20)$. Replacing k with $5 k$ we arrive at $p=33 k^{2}-12 k+1$. So we obtain that G is a strongly regular graph of order $n=3(11 k-2)^{2}$ and degree $r=10\left(33 k^{2}-12 k+1\right)$ with $\tau=300 k^{2}-109 k+8$ and $\theta=10(5 k-1)(6 k-1)$.

REmARK 2.8. We note that $\overline{6 K_{2}}$ is a strongly regular graph with $m_{2}=\left(\frac{6}{5}\right) m_{3}$. It is obtained from the class Theorem $2.8\left(5^{0}\right)$ for $k=0$.

ThEOREM 2.8. Let G be a connected strongly regular graph of order n and degree r with $m_{2}=\left(\frac{6}{5}\right) m_{3}$ or $m_{3}=\left(\frac{6}{5}\right) m_{2}$. Then G is one of the following strongly regular graphs:
$\left(1^{0}\right) G$ is the strongly regular graph $\overline{6 K_{2}}$ of order $n=12$ and degree $r=10$ with $\tau=8$ and $\theta=10$. Its eigenvalues are $\lambda_{2}=0$ and $\lambda_{3}=-2$ with $m_{2}=6$ and $m_{3}=5 ;$
$\left(2^{0}\right) G$ is a strongly regular graph of order $n=(11 k-1)^{2}$ and degree $r=$ $5 k(11 k-2)$ with $\tau=25 k^{2}-4 k-1$ and $\theta=5 k(5 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k-1$ and $\lambda_{3}=-5 k$ with $m_{2}=5 k(11 k-2)$ and $m_{3}=6 k(11 k-2) ;$
$\left(\overline{2}^{0}\right) G$ is a strongly regular graph of order $n=(11 k-1)^{2}$ and degree $r=$ $6 k(11 k-2)$ with $\tau=36 k^{2}-7 k-1$ and $\theta=6 k(6 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k-1$ and $\lambda_{3}=-6 k$ with $m_{2}=6 k(11 k-2)$ and $m_{3}=5 k(11 k-2)$;
$\left(3^{0}\right) G$ is a strongly regular graph of order $n=(11 k+1)^{2}$ and degree $r=$ $5 k(11 k+2)$ with $\tau=25 k^{2}+4 k-1$ and $\theta=5 k(5 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k$ and $\lambda_{3}=-(6 k+1)$ with $m_{2}=6 k(11 k+2)$ and $m_{3}=5 k(11 k+2) ;$
$\left(\overline{3}^{0}\right) G$ is a strongly regular graph of order $n=(11 k+1)^{2}$ and degree $r=$ $6 k(11 k+2)$ with $\tau=36 k^{2}+7 k-1$ and $\theta=6 k(6 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k$ and $\lambda_{3}=-(5 k+1)$ with $m_{2}=5 k(11 k+2)$ and $m_{3}=6 k(11 k+2) ;$
$\left(4^{0}\right) G$ is a strongly regular graph of order $n=3(11 k-2)^{2}$ and degree $r=$ $33 k^{2}-12 k+1$ with $\tau=k(3 k-2)$ and $\theta=k(3 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k-1$ and $\lambda_{3}=-(6 k-1)$ with $m_{2}=6\left(33 k^{2}-12 k+1\right)$ and $m_{3}=5\left(33 k^{2}-12 k+1\right)$;
$\left(\overline{4}^{0}\right) G$ is a strongly regular graph of order $n=3(11 k-2)^{2}$ and degree $r=$ $10\left(33 k^{2}-12 k+1\right)$ with $\tau=300 k^{2}-109 k+8$ and $\theta=10(5 k-1)(6 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k-2$ and $\lambda_{3}=-5 k$ with $m_{2}=$ $5\left(33 k^{2}-12 k+1\right)$ and $m_{3}=6\left(33 k^{2}-12 k+1\right)$;
$\left(5^{0}\right) G$ is a strongly regular graph of order $n=3(11 k+2)^{2}$ and degree $r=$ $33 k^{2}+12 k+1$ with $\tau=k(3 k+2)$ and $\theta=k(3 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=6 k+1$ and $\lambda_{3}=-(5 k+1)$ with $m_{2}=5\left(33 k^{2}+12 k+1\right)$ and $m_{3}=6\left(33 k^{2}+12 k+1\right)$;
$\left(\overline{5}^{0}\right) G$ is a strongly regular graph of order $n=3(11 k+2)^{2}$ and degree $r=$ $10\left(33 k^{2}+12 k+1\right)$ with $\tau=300 k^{2}+109 k+8$ and $\theta=10(5 k+1)(6 k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=5 k$ and $\lambda_{3}=-(6 k+2)$ with $m_{2}=6\left(33 k^{2}+12 k+1\right)$ and $m_{3}=5\left(33 k^{2}+12 k+1\right)$;
$\left(6^{0}\right) G$ is a strongly regular graph of order $n=5(11 k-3)^{2}$ and degree $r=$ $3\left(55 k^{2}-30 k+4\right)$ with $\tau=45 k^{2}-26 k+3$ and $\theta=3(3 k-1)(5 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=10 k-3$ and $\lambda_{3}=-(12 k-3)$ with $m_{2}=6\left(55 k^{2}-30 k+4\right)$ and $m_{3}=5\left(55 k^{2}-30 k+4\right)$;
$\left(\overline{6}^{0}\right) G$ is a strongly regular graph of order $n=5(11 k-3)^{2}$ and degree $r=$ $8\left(55 k^{2}-30 k+4\right)$ with $\tau=2(5 k-1)(32 k-11)$ and $\theta=8(4 k-1)(10 k-3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=12 k-4$ and $\lambda_{3}=-(10 k-2)$ with $m_{2}=5\left(55 k^{2}-30 k+4\right)$ and $m_{3}=6\left(55 k^{2}-30 k+4\right)$;
$\left(7^{0}\right) G$ is a strongly regular graph of order $n=5(11 k+3)^{2}$ and degree $r=$ $3\left(55 k^{2}+30 k+4\right)$ with $\tau=45 k^{2}+26 k+3$ and $\theta=3(3 k+1)(5 k+1)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=12 k+3$ and $\lambda_{3}=-(10 k+3)$ with $m_{2}=5\left(55 k^{2}+30 k+4\right)$ and $m_{3}=6\left(55 k^{2}+30 k+4\right)$;
$\left(\overline{7}^{0}\right) G$ is a strongly regular graph of order $n=5(11 k+3)^{2}$ and degree $r=$ $8\left(55 k^{2}+30 k+4\right)$ with $\tau=2(5 k+1)(32 k+11)$ and $\theta=8(4 k+1)(10 k+3)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=10 k+2$ and $\lambda_{3}=-(12 k+4)$ with $m_{2}=6\left(55 k^{2}+30 k+4\right)$ and $m_{3}=5\left(55 k^{2}+30 k+4\right)$;
$\left(8^{0}\right) G$ is a strongly regular graph of order $n=15(11 k-5)^{2}$ and degree $r=$ $2\left(165 k^{2}-150 k+34\right)$ with $\tau=60 k^{2}-57 k+13$ and $\theta=6(2 k-1)(5 k-2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=15 k-7$ and $\lambda_{3}=-(18 k-8)$ with $m_{2}=6\left(165 k^{2}-150 k+34\right)$ and $m_{3}=5\left(165 k^{2}-150 k+34\right)$;
$\left(\overline{8}^{0}\right) G$ is a strongly regular graph of order $n=15(11 k-5)^{2}$ and degree $r=$ $9\left(165 k^{2}-150 k+34\right)$ with $\tau=3\left(405 k^{2}-368 k+83\right)$ and $\theta=9(9 k-4)(15 k-$ $7)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=18 k-9$ and $\lambda_{3}=-(15 k-6)$ with $m_{2}=5\left(165 k^{2}-150 k+34\right)$ and $m_{3}=6\left(165 k^{2}-150 k+34\right)$;
$\left(9^{0}\right) G$ is a strongly regular graph of order $n=15(11 k+5)^{2}$ and degree $r=$ $2\left(165 k^{2}+150 k+34\right)$ with $\tau=60 k^{2}+57 k+13$ and $\theta=6(2 k+1)(5 k+2)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=18 k+8$ and $\lambda_{3}=-(15 k+7)$ with $m_{2}=5\left(165 k^{2}+150 k+34\right)$ and $m_{3}=6\left(165 k^{2}+150 k+34\right)$;
$\left(\overline{9}^{0}\right) G$ is a strongly regular graph of order $n=15(11 k+5)^{2}$ and degree $r=$ $9\left(165 k^{2}+150 k+34\right)$ with $\tau=3\left(405 k^{2}+368 k+83\right)$ and $\theta=9(9 k+4)(15 k+$ 7), where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=15 k+6$ and $\lambda_{3}=-(18 k+9)$ with $m_{2}=6\left(165 k^{2}+150 k+34\right)$ and $m_{3}=5\left(165 k^{2}+150 k+34\right)$;
$\left(10^{0}\right) G$ is a strongly regular graph of order $n=210(11 k-1)^{2}$ and degree $r=$ $4\left(2310 k^{2}-420 k+19\right)$ with $\tau=2\left(1680 k^{2}-301 k+13\right)$ and $\theta=28(10 k-$ 1) $(12 k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=84 k-8$ and $\lambda_{3}=$ $-(70 k-6)$ with $m_{2}=5\left(2310 k^{2}-420 k+19\right)$ and $m_{3}=6\left(2310 k^{2}-420 k+\right.$ 19);
$\left(\overline{10}^{0}\right) G$ is a strongly regular graph of order $n=210(11 k-1)^{2}$ and degree $r=$ $7\left(2310 k^{2}-420 k+19\right)$ with $\tau=14\left(735 k^{2}-134 k+6\right)$ and $\theta=14(21 k-$ $2)(35 k-3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2}=70 k-7$ and $\lambda_{3}=$ $-(84 k-7)$ with $m_{2}=6\left(2310 k^{2}-420 k+19\right)$ and $m_{3}=5\left(2310 k^{2}-420 k+\right.$ 19);
$\left(11^{0}\right) G$ is a strongly regular graph of order $n=210(11 k+1)^{2}$ and degree $r=$ $4\left(2310 k^{2}+420 k+19\right)$ with $\tau=2\left(1680 k^{2}+301 k+13\right)$ and $\theta=28(10 k+$ $1)(12 k+1)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=70 k+6$ and $\lambda_{3}=$ $-(84 k+8)$ with $m_{2}=6\left(2310 k^{2}+420 k+19\right)$ and $m_{3}=5\left(2310 k^{2}+420 k+\right.$ 19);
$\left(\overline{11}^{0}\right) G$ is a strongly regular graph of order $n=210(11 k+1)^{2}$ and degree $r=$ $7\left(2310 k^{2}+420 k+19\right)$ with $\tau=14\left(735 k^{2}+134 k+6\right)$ and $\theta=14(21 k+$ $2)(35 k+3)$, where $k \geqslant 0$. Its eigenvalues are $\lambda_{2}=84 k+7$ and $\lambda_{3}=$ $-(70 k+7)$ with $m_{2}=5\left(2310 k^{2}+420 k+19\right)$ and $m_{3}=6\left(2310 k^{2}+420 k+\right.$ 19).

Proof. First, according to Remark 2.3 we have $5 \alpha(\beta-1)=6(\alpha-1)$, from which we find that $\alpha=6, \beta=2$. In view of this we obtain the strongly regular graph represented in Theorem 2.8 (1^{0}). Next, according to Proposition 2.11 it turns out that G belongs to the class $\left(\overline{2}^{0}\right)$ or $\left(3^{0}\right)$ or $\left(4^{0}\right)$ or $\left(\overline{5}^{0}\right)$ or $\left(6^{0}\right)$ or $\left(\overline{7}^{0}\right)$ or $\left(8^{0}\right)$ or $\left(\overline{9}^{0}\right)$ or $\left(\overline{10}^{0}\right)$ or $\left(11^{0}\right)$ if $m_{2}=\left(\frac{6}{5}\right) m_{3}$. According to Proposition 2.12 it turns out that G belongs to the class $\left(2^{0}\right)$ or $\left(\overline{3}^{0}\right)$ or $\left(\overline{4}^{0}\right)$ or $\left(5^{0}\right)$ or $\left(\overline{6}^{0}\right)$ or $\left(7^{0}\right)$ or $\left(\overline{8}^{0}\right)$ or $\left(9^{0}\right)$ or $\left(10^{0}\right)$ or $\left(\overline{11}^{0}\right)$ if $m_{3}=\left(\frac{6}{5}\right) m_{2}$.

3. Concluding remarks

Using Theorems 2.1 and 2.2 it is possible to describe the parameters n, r, τ and θ for any connected strongly regular graph by using only one parameter k. In the forthcoming paper we shall describe the parameters n, r, τ and θ for strongly $\sqrt[4]{4}$ regular graphs 5 with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$.

Acknowledgments. The author is very grateful to the referees for their valuable comments and suggestions.

References

1. D. Cvetković, M. Doob, H. Sachs, Spectra of graphs-Theory and applications, 3rd revised and enlarged edition, J. A. Barth Verlag, Heidelberg-Leipzig, 1995.
2. R. J. Elzinga, Strongly regular graphs: values of λ and μ for which there are only finitely many feasible (v, k, λ, μ), Electr. J. Linear Algebra 10 (2003), 232-239.
3. C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
4. M. Lepović, On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$, Serdica Math. J. 37 (2011), 1001-1012.
5. \qquad On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=5,6,7,8$, Sarajevo J. Math. 15(28)(2) (2019), 209-225.
6. \qquad , On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=9,10$, submitted.
7. \qquad , On strongly regular graphs with $m_{2}=q m_{3}$ and $m_{3}=q m_{2}$ for $q=11,12$, submitted.

Department of Mathematics	(Received 1512 2019)
University of Kragujevac	(Revised 0410 2020)
Kragujevac	
Serbia	
lepovic@kg.ac.rs	

[^2]
[^0]: 2010 Mathematics Subject Classification: Primary 05C50.
 Key words and phrases: strongly regular graph, conference graph, integral graph.
 Communicated by Nebojša Ikodinović.

[^1]: ${ }^{1}$ We say that a connected or disconnected graph G is integral if its spectrum $\sigma(G)$ consists only of integral values.
 ${ }^{2}$ It exactly means that $\left(m_{2}=q m_{3}\right.$ and $\left.m_{3}=q m_{2}\right)$ and $\left(m_{2}=q^{-1} m_{3}\right.$ and $\left.m_{3}=q^{-1} m_{2}\right)$ are related to the same classes of strongly regular graphs.
 ${ }^{3}$ We note first that t is a positive integer because $r=p t$. Second, we note that $t \geqslant(a+b)$ is not possible because in that case we have $r=p t \geqslant(a+b) p \geqslant n-1$, a contradiction.

[^2]: ${ }^{4}$ All the results in this paper are verified by using the computer program srgpar.exe, written by the author in the programming language Borland C++Builder 5.5.
 ${ }^{5}$ One can use the web page https://www.win.tue.nl/~\{\}aeb/graphs/srg/srgtab.html that contains the parameters of strongly regular graphs from 5 up to 1300 vertices.

