DOI: https://doi.org/10.2298/PIM2123035L

ON STRONGLY REGULAR GRAPHS WITH $m_2 = qm_3$ AND $m_3 = qm_2$ WHERE $q \in \mathbb{Q}$

Mirko Lepović

ABSTRACT. We say that a regular graph G of order n and degree $r \ge 1$ (which is not the complete graph) is strongly regular if there exist non-negative integers τ and θ such that $|S_i \cap S_j| = \tau$ for any two adjacent vertices i and j, and $|S_i \cap S_j| = \theta$ for any two distinct non-adjacent vertices i and j, where S_k denotes the neighborhood of the vertex k. Let $\lambda_1 = r$, λ_2 and λ_3 be the distinct eigenvalues of a connected strongly regular graph. Let $m_1 = 1$, m_2 and m_3 denote the multiplicity of r, λ_2 and λ_3 , respectively. We here describe the parameters n, r, τ and θ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for $q = \frac{3}{2}$, $\frac{4}{3}$, $\frac{5}{2}$, $\frac{5}{3}$, $\frac{5}{4}$, $\frac{6}{5}$.

1. Introduction

Let G be a simple graph of order n with vertex set $V(G) = \{1, 2, ..., n\}$. The spectrum of G consists of the eigenvalues $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$ of its (0,1) adjacency matrix A and is denoted by $\sigma(G)$. We say that a regular graph G of order n and degree $r \ge 1$ (which is not the complete graph K_n) is strongly regular if there exist non-negative integers τ and θ such that $|S_i \cap S_j| = \tau$ for any two adjacent vertices i and j, and $|S_i \cap S_j| = \theta$ for any two distinct non-adjacent vertices i and j, where $S_k \subseteq V(G)$ denotes the neighborhood of the vertex k. We know that a regular connected graph G is strongly regular if and only if it has exactly three distinct eigenvalues [1] (see also [3]). Let $\lambda_1 = r$, λ_2 and λ_3 denote the distinct eigenvalues of a connected strongly regular graph G. Let $m_1 = 1, m_2$ and m_3 denote the multiplicity of r, λ_2 and λ_3 . Further, let $\overline{\tau} = (n-1) - r$, $\overline{\lambda}_2 = -\lambda_3 - 1$ and $\overline{\lambda}_3 = -\lambda_2 - 1$ denote the distinct eigenvalues of the strongly regular graph \overline{G} , where \overline{G} denotes the complement of G. Then $\overline{\tau} = n - 2r - 2 + \theta$ and $\overline{\theta} = n - 2r + \tau$ where $\overline{\tau} = \tau(\overline{G})$ and $\overline{\theta} = \theta(\overline{G})$.

REMARK 1.1. (i) if G is a disconnected strongly regular graph of degree r then $G = mK_{r+1}$, where mH denotes the m-fold union of the graph H; (ii) G is a disconnected strongly regular graph if and only if $\theta = 0$.

35

²⁰¹⁰ Mathematics Subject Classification: Primary 05C50.

Key words and phrases: strongly regular graph, conference graph, integral graph.

Communicated by Nebojša Ikodinović.

REMARK 1.2. (i) a strongly regular graph G of order n = 4k + 1 and degree r = 2k with $\tau = k - 1$ and $\theta = k$ is called a conference graph; (ii) a strongly regular graph is a conference graph if and only if $m_2 = m_3$ and (iii) if $m_2 \neq m_3$ then G is an integral¹ graph.

We have recently started to investigate strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$, where q is a positive integer [4]. In the same work we have described the parameters n, r, τ and θ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 2, 3, 4. Besides, (i) we have described in [5] the parameters n, r, τ and θ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 5, 6, 7, 8; (ii) we have described in [6] the parameters n, r, τ and θ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 9, 10 and (iii) we have described in [7] the parameters n, r, τ and θ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 11, 12. We now proceed to investigate strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$, where q is a positive rational number. In particular, we here describe the parameters of strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for $q = \frac{3}{2}, \frac{4}{3}, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}, \frac{6}{5}$, as follows. First,

PROPOSITION 1.1 (Elzinga [2]). Let G be a connected or disconnected strongly regular graph of order n and degree r. Then

(1.1)
$$r^2 - (\tau - \theta + 1)r - (n - 1)\theta = 0.$$

PROPOSITION 1.2 (Elzinga [2]). Let G be a connected strongly regular graph of order n and degree r. Then

(1.2)
$$2r + (\tau - \theta)(m_2 + m_3) + \delta(m_2 - m_3) = 0,$$

where $\delta = \lambda_2 - \lambda_3$.

Second, in what follows (x, y) denotes the greatest common divisor of integers $x, y \in \mathbb{N}$, while $x \mid y$ means that x divides y.

REMARK 1.3. We note that $(m_2 = qm_3 \text{ and } m_3 = qm_2)$ is equivalent to the assertion that $(m_2 = q^{-1}m_3 \text{ and } m_3 = q^{-1}m_2)$. In view of this² we may assume that $q = \frac{a}{b}$ so that (a, b) = 1 and a > b.

Using a similar procedure applied in [4], we can establish the parameters n, r, τ and θ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for any fixed value $q \in \mathbb{Q}$, where $q = \frac{a}{b}$ so that (a, b) = 1 and a > b, as follows. First, let $m_3 = p$ and $m_2 = (\frac{a}{b}) p$, where p is a positive integer. Since (a, b) = 1 it follows that $b \mid p$. Replacing p with bp we obtain $m_3 = bp$ and $m_2 = ap$. Since $m_2 + m_3 = n - 1$ we obtain n = (a + b)p + 1. Next, since $\tau - \theta = \lambda_2 + \lambda_3$ and $\delta = \lambda_2 - \lambda_3$ using (1.2) we obtain $r = p(b|\lambda_3| - a\lambda_2)$. Let $b|\lambda_3| - a\lambda_2 = t$ where $^3 t = 1, 2, \ldots, a + b - 1$. Let

²It exactly means that $(m_2 = qm_3 \text{ and } m_3 = qm_2)$ and $(m_2 = q^{-1}m_3 \text{ and } m_3 = q^{-1}m_2)$ are related to the same classes of strongly regular graphs.

³We note first that t is a positive integer because r = pt. Second, we note that $t \ge (a + b)$ is not possible because in that case we have $r = pt \ge (a + b)p \ge n - 1$, a contradiction.

¹We say that a connected or disconnected graph G is integral if its spectrum $\sigma(G)$ consists only of integral values.

 $\lambda_2 = k$ where k is a positive integer. Then (i) $\lambda_3 = -\frac{ak+t}{b}$; (ii) $\tau - \theta = -\frac{(a-b)k+t}{b}$; (iii) $\delta = \frac{(a+b)k+t}{b}$ and (iv) r = pt. Since $\delta^2 = (\tau - \theta)^2 + 4(r - \theta)$ (see [2]) we obtain (v) $\theta = pt - \frac{ak^2+kt}{b}$. Using (ii), (iv) and (v), we can easily see that (1.1) reduces to

(1.3)
$$(bp+1)t^2 - b((a+b)p+1)t + a(a+b)k^2 + 2akt = 0.$$

Second, let $m_2 = bp$, $m_3 = ap$ and n = (a+b)p+1 where (a,b) = 1 and a > b. Using (1.2) we obtain $r = p(a|\lambda_3| - b\lambda_2)$. Let $a|\lambda_3| - b\lambda_2 = t$ where t = 1, 2, ..., a+b-1. Let $\lambda_3 = -k$ where k is a positive integer. Then (i) $\lambda_2 = \frac{ak-t}{b}$; (ii) $\tau - \theta = \frac{(a-b)k-t}{b}$; (iii) $\delta = \frac{(a+b)k-t}{b}$; (iv) r = pt and (v) $\theta = pt - \frac{ak^2-kt}{b}$. Using (ii), (iv) and (v) we can easily see that (1.1) reduces to

(1.4)
$$(bp+1)t^2 - b((a+b)p+1)t + a(a+b)k^2 - 2akt = 0.$$

Using (1.3) and (1.4), we can obtain for t = 1, 2, ..., a + b - 1 the corresponding classes of strongly regular graphs with $m_2 = (\frac{a}{b})m_3$ and $m_3 = (\frac{a}{b})m_2$, respectively. Finally, we arrive at the following two results.

2. Main results

THEOREM 2.1. Let G be a connected strongly regular graph of order n and degree r with $m_2 = ap$ and $m_3 = bp$, where $a, b, p \in \mathbb{N}$ so that (a, b) = 1 and a > b. Then:

$$\begin{array}{ll} (1^{0}) & n = (a+b)p+1, \quad (2^{0}) & r = pt, \quad (3^{0}) & \tau = \left(pt - \frac{ak^{2} + kt}{b}\right) - \frac{(a-b)k+t}{b}, \\ (4^{0}) & \theta = pt - \frac{ak^{2} + kt}{b}, \quad (5^{0}) & \lambda_{2} = k, \quad (6^{0}) & \lambda_{3} = -\frac{ak+t}{b}, \quad (7^{0}) & \delta = \frac{(a+b)k+t}{b}, \\ (8^{0}) & (bp+1)t^{2} - b((a+b)p+1)t + a(a+b)k^{2} + 2akt = 0, \end{array}$$

for $k \in \mathbb{N}$ and $t = 1, 2, \ldots, a + b - 1$, where $\delta = \lambda_2 - \lambda_3$.

THEOREM 2.2. Let G be a connected strongly regular graph of order n and degree r with $m_2 = bp$ and $m_3 = ap$, where $a, b, p \in \mathbb{N}$ so that (a, b) = 1 and a > b. Then:

$$\begin{array}{ll} (1^{0}) & n = (a+b)p+1, \quad (2^{0}) & r = pt, \quad (3^{0}) & \tau = \left(pt - \frac{ak^{2} - kt}{b}\right) + \frac{(a-b)k - t}{b}, \\ (4^{0}) & \theta = pt - \frac{ak^{2} - kt}{b}, \quad (5^{0}) & \lambda_{2} = \frac{ak - t}{b}, \quad (6^{0}) & \lambda_{3} = -k, \quad (7^{0}) & \delta = \frac{(a+b)k - t}{b}, \\ (8^{0}) & (bp+1)t^{2} - b((a+b)p+1)t + a(a+b)k^{2} - 2akt = 0, \end{array}$$

for $k \in \mathbb{N}$ and $t = 1, 2, \ldots, a + b - 1$, where $\delta = \lambda_2 - \lambda_3$.

REMARK 2.1. Since $m_2(\overline{G}) = m_3(G)$ and $m_3(\overline{G}) = m_2(G)$, we note that if $m_2(G) = qm_3(G)$, then $m_3(\overline{G}) = qm_2(\overline{G})$.

REMARK 2.2. In Theorems 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8 the complements of strongly regular graphs appear in pairs in (k^0) and (\overline{k}^0) classes, where k denotes the corresponding number of a class.

REMARK 2.3. $\overline{\alpha K_{\beta}}$ is a strongly regular graph of order $n = \alpha\beta$ and degree $r = (\alpha - 1)\beta$ with $\tau = (\alpha - 2)\beta$ and $\theta = (\alpha - 1)\beta$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -\beta$ with $m_2 = \alpha(\beta - 1)$ and $m_3 = \alpha - 1$.

PROPOSITION 2.1. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{3}{2})m_3$. Then G belongs to the class $(\overline{2}^0)$ or (3^0) or (4^0) or $(\overline{5}^0)$ represented in Theorem 2.3.

PROOF. Let $m_2 = 3p$, $m_3 = 2p$ and n = 5p + 1 where $p \in \mathbb{N}$. Let $\lambda_2 = k$ where k is a positive integer. Then according to Theorem 2.1, we have (i) $\lambda_3 = -\frac{3k+t}{2}$; (ii) $\tau - \theta = -\frac{k+t}{2}$; (iii) $\delta = \frac{5k+t}{2}$; (iv) r = pt and (v) $\theta = pt - \frac{3k^2+kt}{2}$, where $t = 1, 2, \ldots, 4$. In this case we can easily see that Theorem 2.1 (8⁰) reduces to

(2.1) $(2p+1)t^2 - 2(5p+1)t + 15k^2 + 6kt = 0.$

CASE 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{3k+1}{2}$, $\tau - \theta = -\frac{k+1}{2}$, $\delta = \frac{5k+1}{2}$, r = p and $\theta = p - \frac{3k^2+k}{2}$. Using (2.1) we find that 8p + 1 = 3k(5k + 2). Replacing k with 4k - 1 we arrive at $p = 30k^2 - 12k + 1$. So we obtain that G is a strongly regular graph of order $n = 6(5k - 1)^2$ and degree $r = 30k^2 - 12k + 1$ with $\tau = 2k(3k - 2)$ and $\theta = 2k(3k - 1)$.

CASE 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{3k+2}{2}$, $\tau - \theta = -\frac{k+2}{2}$, $\delta = \frac{5k+2}{2}$, r = 2p and $\theta = 2p - \frac{3k^2+2k}{2}$. Using (2.1) we find that 4p = k(5k+4). Replacing k with 2k we arrive at p = k(5k+2). So we obtain that G is a strongly regular graph of order $n = (5k+1)^2$ and degree r = 2k(5k+2) with $\tau = 4k^2 + k - 1$ and $\theta = 2k(2k+1)$.

CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{3k+3}{2}$, $\tau - \theta = -\frac{k+3}{2}$, $\delta = \frac{5k+3}{2}$, r = 3p and $\theta = 3p - \frac{3k^2+3k}{2}$. Using (2.1) we find that 4p - 1 = k(5k + 6). Replacing k with 2k - 1 we arrive at p = k(5k - 2). So we obtain that G is a strongly regular graph of order $n = (5k - 1)^2$ and degree r = 3k(5k - 2) with $\tau = 9k^2 - 4k - 1$ and $\theta = 3k(3k - 1)$.

CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{3k+4}{2}$, $\tau - \theta = -\frac{k+4}{2}$, $\delta = \frac{5k+4}{2}$, r = 4p and $\theta = 4p - \frac{3k^2+4k}{2}$. Using (2.1) we find that 8p - 8 = 3k(5k + 8). Replacing k with 4k we arrive at $p = 30k^2 + 12k + 1$. So we obtain that G is a strongly regular graph of order $n = 6(5k + 1)^2$ and degree $r = 4(30k^2 + 12k + 1)$ with $\tau = 2(3k + 1)(16k + 1)$ and $\theta = 4(4k + 1)(6k + 1)$. \Box

PROPOSITION 2.2. Let G be a connected strongly regular graph of order n and degree r with $m_3 = (\frac{3}{2})m_2$. Then G belongs to the class (2^0) or $(\overline{3}^0)$ or $(\overline{4}^0)$ or (5^0) represented in Theorem 2.3.

PROOF. Let $m_2 = 2p$, $m_3 = 3p$ and n = 5p+1 where $p \in \mathbb{N}$. Let $\lambda_3 = -k$ where k is a positive integer. Then according to Theorem 2.2 we have (i) $\lambda_2 = \frac{3k-t}{2}$; (ii) $\tau - \theta = \frac{k-t}{2}$; (iii) $\delta = \frac{5k-t}{2}$; (iv) r = pt and (v) $\theta = pt - \frac{3k^2 - kt}{2}$, where $t = 1, 2, \ldots, 4$. In this case we can easily see that Theorem 2.2 (8⁰) reduces to

(2.2)
$$(2p+1)t^2 - 2(5p+1)t + 15k^2 - 6kt = 0.$$

38

CASE 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{3k-1}{2}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-1}{2}, \delta = \frac{5k-1}{2}, r = p$ and $\theta = p - \frac{3k^2-k}{2}$. Using (2.2) we find that 8p + 1 = 3k(5k - 2). Replacing k with 4k + 1 we arrive at $p = 30k^2 + 12k + 1$. So we obtain that G is a strongly regular graph of order $n = 6(5k + 1)^2$ and degree $r = 30k^2 + 12k + 1$ with $\tau = 2k(3k + 2)$ and $\theta = 2k(3k + 1)$.

CASE 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{3k-2}{2}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-2}{2}, \delta = \frac{5k-2}{2}, r = 2p$ and $\theta = 2p - \frac{3k^2-2k}{2}$. Using (2.2) we find that 4p = k(5k-4). Replacing k with 2k we arrive at p = k(5k-2). So we obtain that G is a strongly regular graph of order $n = (5k-1)^2$ and degree r = 2k(5k-2) with $\tau = 4k^2 - k - 1$ and $\theta = 2k(2k-1)$.

CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{3k-3}{2}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-3}{2}, \delta = \frac{5k-3}{2}, r = 3p$ and $\theta = 3p - \frac{3k^2-3k}{2}$. Using (2.2) we find that 4p - 1 = k(5k - 6). Replacing k with 2k + 1 we arrive at p = k(5k + 2). So we obtain that G is a strongly regular graph of order $n = (5k + 1)^2$ and degree r = 3k(5k + 2) with $\tau = 9k^2 + 4k - 1$ and $\theta = 3k(3k + 1)$.

CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{3k-4}{2}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-4}{2}, \delta = \frac{5k-4}{2}, r = 4p$ and $\theta = 4p - \frac{3k^2-4k}{2}$. Using (2.2) we find that 8p - 8 = 3k(5k - 8). Replacing k with 4k we arrive at $p = 30k^2 - 12k + 1$. So we obtain that G is a strongly regular graph of order $n = 6(5k - 1)^2$ and degree $r = 4(30k^2 - 12k + 1)$ with $\tau = 2(3k - 1)(16k - 1)$ and $\theta = 4(4k - 1)(6k - 1)$. \Box

REMARK 2.4. We note that $\overline{3K_2}$ is a strongly regular graph with $m_2 = (\frac{3}{2})m_3$. It is obtained from the class Theorem 2.3 $(\overline{5}^0)$ for k = 0.

THEOREM 2.3. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{3}{2})m_3$ or $m_3 = (\frac{3}{2})m_2$. Then G is one of the following strongly regular graphs:

- (1⁰) G is the strongly regular graph $\overline{3K_2}$ of order n = 6 and degree r = 4 with $\tau = 2$ and $\theta = 4$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -2$ with $m_2 = 3$ and $m_3 = 2$,
- (2⁰) G is a strongly regular graph of order $n = (5k 1)^2$ and degree r = 2k(5k 2) with $\tau = 4k^2 k 1$ and $\theta = 2k(2k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 3k 1$ and $\lambda_3 = -2k$ with $m_2 = 2k(5k 2)$ and $m_3 = 3k(5k 2)$;
- $(\overline{2}^0)$ G is a strongly regular graph of order $n = (5k-1)^2$ and degree r = 3k(5k-2) with $\tau = 9k^2 4k 1$ and $\theta = 3k(3k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 2k 1$ and $\lambda_3 = -3k$ with $m_2 = 3k(5k-2)$ and $m_3 = 2k(5k-2)$:
- (3⁰) G is a strongly regular graph of order $n = (5k + 1)^2$ and degree r = 2k(5k + 2) with $\tau = 4k^2 + k 1$ and $\theta = 2k(2k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 2k$ and $\lambda_3 = -(3k + 1)$ with $m_2 = 3k(5k + 2)$ and $m_3 = 2k(5k + 2)$;
- $(\overline{3}^0)$ G is a strongly regular graph of order $n = (5k+1)^2$ and degree r = 3k(5k+2) with $\tau = 9k^2 + 4k 1$ and $\theta = 3k(3k+1)$, where $k \in \mathbb{N}$. Its

eigenvalues are $\lambda_2 = 3k$ and $\lambda_3 = -(2k+1)$ with $m_2 = 2k(5k+2)$ and $m_3 = 3k(5k+2)$;

- (4⁰) G is a strongly regular graph of order $n = 6(5k 1)^2$ and degree $r = 30k^2 12k + 1$ with $\tau = 2k(3k 2)$ and $\theta = 2k(3k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 4k 1$ and $\lambda_3 = -(6k 1)$ with $m_2 = 3(30k^2 12k + 1)$ and $m_3 = 2(30k^2 12k + 1)$;
- ($\overline{4}^{0}$) G is a strongly regular graph of order $n = 6(5k-1)^{2}$ and degree $r = 4(30k^{2}-12k+1)$ with $\tau = 2(3k-1)(16k-1)$ and $\theta = 4(4k-1)(6k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 6k-2$ and $\lambda_{3} = -4k$ with $m_{2} = 2(30k^{2}-12k+1)$ and $m_{3} = 3(30k^{2}-12k+1)$;
- (5⁰) *G* is a strongly regular graph of order $n = 6(5k + 1)^2$ and degree $r = 30k^2 + 12k + 1$ with $\tau = 2k(3k + 2)$ and $\theta = 2k(3k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 6k+1$ and $\lambda_3 = -(4k+1)$ with $m_2 = 2(30k^2+12k+1)$ and $m_3 = 3(30k^2+12k+1)$;
- (5⁰) G is a strongly regular graph of order $n = 6(5k + 1)^2$ and degree $r = 4(30k^2 + 12k + 1)$ with $\tau = 2(3k + 1)(16k + 1)$ and $\theta = 4(4k + 1)(6k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 4k$ and $\lambda_3 = -(6k + 2)$ with $m_2 = 3(30k^2 + 12k + 1)$ and $m_3 = 2(30k^2 + 12k + 1)$.

PROOF. First, according to Remark 2.3 we have $2\alpha(\beta - 1) = 3(\alpha - 1)$, from which we find that $\alpha = 3$, $\beta = 2$. In view of this we obtain the strongly regular graph represented in Theorem 2.3 (1⁰). Next, according to Proposition 2.1 it turns out that *G* belongs to the class ($\overline{2}^0$) or (3^0) or (4^0) or ($\overline{5}^0$) if $m_2 = (\frac{3}{2})m_3$. According to Proposition 2.2 it turns out that *G* belongs to the class (2^0) or ($\overline{3}^0$) or ($\overline{4}^0$) or (5^0) if $m_3 = (\frac{3}{2})m_2$.

PROPOSITION 2.3. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{4}{3})m_3$. Then G belongs to the class $(\overline{2}^0)$ or (3^0) or (4^0) or $(\overline{5}^0)$ or $(\overline{6}^0)$ or (7^0) represented in Theorem 2.4.

PROOF. Let $m_2 = 4p$, $m_3 = 3p$ and n = 7p + 1 where $p \in \mathbb{N}$. Let $\lambda_2 = k$ where k is a positive integer. Then according to Theorem 2.1 we have (i) $\lambda_3 = -\frac{4k+t}{3}$; (ii) $\tau - \theta = -\frac{k+t}{3}$; (iii) $\delta = \frac{7k+t}{3}$; (iv) r = pt and (v) $\theta = pt - \frac{4k^2+kt}{3}$, where $t = 1, 2, \ldots, 6$. In this case we can easily see that Theorem 2.1 (8⁰) reduces to

(2.3)
$$(3p+1)t^2 - 3(7p+1)t + 28k^2 + 8kt = 0.$$

CASE 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{4k+1}{3}$, $\tau - \theta = -\frac{k+1}{3}$, $\delta = \frac{7k+1}{3}$, r = p and $\theta = p - \frac{4k^2+k}{3}$. Using (2.3) we find that 9p + 1 = 2k(7k + 2). Replacing k with 3k - 1 we arrive at $p = 14k^2 - 8k + 1$. So we obtain that G is a strongly regular graph of order $n = 2(7k - 2)^2$ and degree $r = 14k^2 - 8k + 1$ with $\tau = 2k(k - 1)$ and $\theta = k(2k - 1)$.

CASE 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{4k+2}{3}$, $\tau - \theta = -\frac{k+2}{3}$, $\delta = \frac{7k+2}{3}$, r = 2p and $\theta = 2p - \frac{4k^2+2k}{3}$. Using (2.3) we find that 15p+1 = 2k(7k+4). Replacing k with 15k+4 we arrive at $p = 210k^2+120k+17$.

So we obtain that G is a strongly regular graph of order $n = 30(7k+2)^2$ and degree $r = 2(210k^2 + 120k + 17)$ with $\tau = 120k^2 + 65k + 8$ and $\theta = 10(3k+1)(4k+1)$. CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{4k+3}{3}$, $\tau - \theta = -\frac{k+3}{3}$, $\delta = \frac{7k+3}{3}$, r = 3p and $\theta = 3p - \frac{4k^2+3k}{3}$. Using (2.3) we find that 9p = k(7k+6). Replacing k with 3k we arrive at p = k(7k+2). So we obtain that G is a strongly regular graph of order $n = (7k+1)^2$ and degree r = 3k(7k+2).

CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{4k+4}{3}$, $\tau - \theta = -\frac{k+4}{3}$, $\delta = \frac{7k+4}{3}$, r = 4p and $\theta = 4p - \frac{4k^2+4k}{3}$. Using (2.3) we find that 9p - 1 = k(7k + 8). Replacing k with 3k - 1 we arrive at p = k(7k - 2). So we obtain that G is a strongly regular graph of order $n = (7k - 1)^2$ and degree r = 4k(7k - 2) with $\tau = 16k^2 - 5k - 1$ and $\theta = 4k(4k - 1)$.

with $\tau = 9k^2 + 2k - 1$ and $\theta = 3k(3k + 1)$.

CASE 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{4k+5}{3}$, $\tau - \theta = -\frac{k+5}{3}$, $\delta = \frac{7k+5}{3}$, r = 5p and $\theta = 5p - \frac{4k^2+5k}{3}$. Using (2.3) we find that 15p - 5 = 2k(7k + 10). Replacing k with 15k - 5 we arrive at $p = 210k^2 - 120k + 17$. So we obtain that G is a strongly regular graph of order $n = 30(7k - 2)^2$ and degree $r = 5(210k^2 - 120k + 17)$ with $\tau = 10(75k^2 - 43k + 6)$ and $\theta = 5(10k - 3)(15k - 4)$.

CASE 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{4k+6}{3}$, $\tau - \theta = -\frac{k+6}{3}$, $\delta = \frac{7k+6}{3}$, r = 6p and $\theta = 6p - \frac{4k^2+6k}{3}$. Using (2.3) we find that 9p - 9 = 2k(7k + 12). Replacing k with 3k we arrive at $p = 14k^2 + 8k + 1$. So we obtain that G is a strongly regular graph of order $n = 2(7k+2)^2$ and degree $r = 6(14k^2 + 8k + 1)$ with $\tau = (8k+1)(9k+4)$ and $\theta = 6(3k+1)(4k+1)$.

PROPOSITION 2.4. Let G be a connected strongly regular graph of order n and degree r with $m_3 = (\frac{4}{3})m_2$. Then G belongs to the class (2^0) or $(\overline{3}^0)$ or $(\overline{4}^0)$ or (5^0) or $(\overline{6}^0)$ or $(\overline{7}^0)$ represented in Theorem 2.4.

PROOF. Let $m_2 = 3p$, $m_3 = 4p$ and n = 7p+1 where $p \in \mathbb{N}$. Let $\lambda_3 = -k$ where k is a positive integer. Then according to Theorem 2.2 we have (i) $\lambda_2 = \frac{4k-t}{3}$; (ii) $\tau - \theta = \frac{k-t}{3}$; (iii) $\delta = \frac{7k-t}{3}$; (iv) r = pt and (v) $\theta = pt - \frac{4k^2 - kt}{3}$, where $t = 1, 2, \ldots, 6$. In this case we can easily see that Theorem 2.2 (8⁰) reduces to

(2.4)
$$(3p+1)t^2 - 3(7p+1)t + 28k^2 - 8kt = 0.$$

CASE 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{4k-1}{3}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-1}{3}, \delta = \frac{7k-1}{3}, r = p$ and $\theta = p - \frac{4k^2-k}{3}$. Using (2.4) we find that 9p + 1 = 2k(7k - 2). Replacing k with 3k + 1 we arrive at $p = 14k^2 + 8k + 1$. So we obtain that G is a strongly regular graph of order $n = 2(7k + 2)^2$ and degree $r = 14k^2 + 8k + 1$ with $\tau = 2k(k + 1)$ and $\theta = k(2k + 1)$.

CASE 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{4k-2}{3}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-2}{3}, \delta = \frac{7k-2}{3}, r = 2p$ and $\theta = 2p - \frac{4k^2-2k}{3}$. Using (2.4) we find that 15p+1 = 2k(7k-4). Replacing k with 15k-4 we arrive at $p = 210k^2 - 120k + 17$.

So we obtain that G is a strongly regular graph of order $n = 30(7k-2)^2$ and degree $r = 2(210k^2 - 120k + 17)$ with $\tau = 120k^2 - 65k + 8$ and $\theta = 10(3k-1)(4k-1)$. CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{4k-3}{3}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-3}{3}, \delta = \frac{7k-3}{3}, r = 3p$ and $\theta = 3p - \frac{4k^2-3k}{3}$. Using (2.4) we find that 9p = k(7k-6). Replacing k with 3k we arrive at p = k(7k-2). So we obtain that G is a strongly regular graph of order $n = (7k-1)^2$ and degree r = 3k(7k-2) with $\tau = 9k^2 - 2k - 1$ and $\theta = 3k(3k-1)$.

CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{4k-4}{3}$ and $\lambda_3 = -k, \ \tau - \theta = \frac{k-4}{3}, \ \delta = \frac{7k-4}{3}, \ r = 4p$ and $\theta = 4p - \frac{4k^2-4k}{3}$. Using (2.4) we find that 9p - 1 = k(7k - 8). Replacing k with 3k + 1 we arrive at p = k(7k + 2). So we obtain that G is a strongly regular graph of order $n = (7k + 1)^2$ and degree r = 4k(7k + 2) with $\tau = 16k^2 + 5k - 1$ and $\theta = 4k(4k + 1)$.

CASE 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{4k-5}{3}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-5}{3}, \delta = \frac{7k-5}{3}, r = 5p$ and $\theta = 5p - \frac{4k^2-5k}{3}$. Using (2.4) we find that 15p-5 = 2k(7k-10). Replacing k with 15k+5 we arrive at $p = 210k^2 + 120k + 17$. So we obtain that G is a strongly regular graph of order $n = 30(7k+2)^2$ and degree $r = 5(210k^2 + 120k + 17)$ with $\tau = 10(75k^2 + 43k + 6)$ and $\theta = 5(10k+3)(15k+4)$.

CASE 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{4k-6}{3}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-6}{3}, \delta = \frac{7k-6}{3}, r = 6p$ and $\theta = 6p - \frac{4k^2-6k}{3}$. Using (2.4) we find that 9p - 9 = 2k(7k - 12). Replacing k with 3k we arrive at $p = 14k^2 - 8k + 1$. So we obtain that G is a strongly regular graph of order $n = 2(7k-2)^2$ and degree $r = 6(14k^2 - 8k + 1)$ with $\tau = (8k - 1)(9k - 4)$ and $\theta = 6(3k - 1)(4k - 1)$.

REMARK 2.5. We note that $\overline{4K_2}$ is a strongly regular graph with $m_2 = (\frac{4}{3})m_3$. It is obtained from the class Theorem 2.4 $(\overline{5}^0)$ for k = 0.

THEOREM 2.4. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{4}{3})m_3$ or $m_3 = (\frac{4}{3})m_2$. Then G is one of the following strongly regular graphs:

- (1⁰) G is the strongly regular graph $\overline{4K_2}$ of order n = 8 and degree r = 6 with $\tau = 4$ and $\theta = 6$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -2$ with $m_2 = 4$ and $m_3 = 3$;
- (2⁰) G is a strongly regular graph of order $n = (7k 1)^2$ and degree r = 3k(7k 2) with $\tau = 9k^2 2k 1$ and $\theta = 3k(3k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 4k 1$ and $\lambda_3 = -3k$ with $m_2 = 3k(7k 2)$ and $m_3 = 4k(7k 2)$;
- $(\overline{2}^0)$ G is a strongly regular graph of order $n = (7k 1)^2$ and degree r = 4k(7k 2) with $\tau = 16k^2 5k 1$ and $\theta = 4k(4k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 3k 1$ and $\lambda_3 = -4k$ with $m_2 = 4k(7k 2)$ and $m_3 = 3k(7k 2)$;
- (3⁰) G is a strongly regular graph of order $n = (7k + 1)^2$ and degree r = 3k(7k + 2) with $\tau = 9k^2 + 2k 1$ and $\theta = 3k(3k + 1)$, where $k \in \mathbb{N}$. Its

eigenvalues are $\lambda_2 = 3k$ and $\lambda_3 = -(4k+1)$ with $m_2 = 4k(7k+2)$ and $m_3 = 3k(7k+2)$;

- ($\overline{3}^0$) G is a strongly regular graph of order $n = (7k + 1)^2$ and degree r = 4k(7k + 2) with $\tau = 16k^2 + 5k 1$ and $\theta = 4k(4k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 4k$ and $\lambda_3 = -(3k + 1)$ with $m_2 = 3k(7k + 2)$ and $m_3 = 4k(7k + 2)$;
- (4⁰) G is a strongly regular graph of order $n = 2(7k 2)^2$ and degree $r = 14k^2 8k + 1$ with $\tau = 2k(k 1)$ and $\theta = k(2k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 3k 1$ and $\lambda_3 = -(4k 1)$ with $m_2 = 4(14k^2 8k + 1)$ and $m_3 = 3(14k^2 8k + 1)$;
- $(\overline{4}^{0})$ G is a strongly regular graph of order $n = 2(7k-2)^{2}$ and degree $r = 6(14k^{2}-8k+1)$ with $\tau = (8k-1)(9k-4)$ and $\theta = 6(3k-1)(4k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 4k-2$ and $\lambda_{3} = -3k$ with $m_{2} = 3(14k^{2}-8k+1)$ and $m_{3} = 4(14k^{2}-8k+1)$;
- (5⁰) G is a strongly regular graph of order $n = 2(7k+2)^2$ and degree $r = 14k^2 + 8k + 1$ with $\tau = 2k(k+1)$ and $\theta = k(2k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 4k+1$ and $\lambda_3 = -(3k+1)$ with $m_2 = 3(14k^2+8k+1)$ and $m_3 = 4(14k^2+8k+1)$;
- (5⁰) G is a strongly regular graph of order $n = 2(7k+2)^2$ and degree $r = 6(14k^2 + 8k + 1)$ with $\tau = (8k+1)(9k+4)$ and $\theta = 6(3k+1)(4k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 3k$ and $\lambda_3 = -(4k+2)$ with $m_2 = 4(14k^2 + 8k + 1)$ and $m_3 = 3(14k^2 + 8k + 1)$;
- (6⁰) G is a strongly regular graph of order $n = 30(7k 2)^2$ and degree $r = 2(210k^2 120k + 17)$ with $\tau = 120k^2 65k + 8$ and $\theta = 10(3k 1)(4k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 20k - 6$ and $\lambda_3 = -(15k - 4)$ with $m_2 = 3(210k^2 - 120k + 17)$ and $m_3 = 4(210k^2 - 120k + 17)$;
- ($\overline{6}^{0}$) G is a strongly regular graph of order $n = 30(7k-2)^{2}$ and degree $r = 5(210k^{2}-120k+17)$ with $\tau = 10(75k^{2}-43k+6)$ and $\theta = 5(10k-3)(15k-4)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 15k-5$ and $\lambda_{3} = -(20k-5)$ with $m_{2} = 4(210k^{2}-120k+17)$ and $m_{3} = 3(210k^{2}-120k+17)$;
- (7⁰) G is a strongly regular graph of order $n = 30(7k+2)^2$ and degree $r = 2(210k^2 + 120k + 17)$ with $\tau = 120k^2 + 65k + 8$ and $\theta = 10(3k+1)(4k+1)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 15k + 4$ and $\lambda_3 = -(20k+6)$ with $m_2 = 4(210k^2 + 120k + 17)$ and $m_3 = 3(210k^2 + 120k + 17)$;
- ($\overline{7}^{0}$) G is a strongly regular graph of order $n = 30(7k+2)^{2}$ and degree $r = 5(210k^{2}+120k+17)$ with $\tau = 10(75k^{2}+43k+6)$ and $\theta = 5(10k+3)(15k+4)$, where $k \ge 0$. Its eigenvalues are $\lambda_{2} = 20k+5$ and $\lambda_{3} = -(15k+5)$ with $m_{2} = 3(210k^{2}+120k+17)$ and $m_{3} = 4(210k^{2}+120k+17)$.

PROOF. First, according to Remark 2.3 we have $3\alpha(\beta - 1) = 4(\alpha - 1)$, from which we find that $\alpha = 4$, $\beta = 2$. In view of this, we obtain the strongly regular graph represented in Theorem 2.4 (1⁰). Next, according to Proposition 2.3 it turns out that G belongs to the class ($\overline{2}^0$) or ($\overline{3}^0$) or ($\overline{4}^0$) or ($\overline{5}^0$) or ($\overline{6}^0$) or (7^0) if $m_2 = (\frac{4}{3})m_3$. According to Proposition 2.4 it turns out that G belongs to the class (2^0) or $(\overline{3}^0)$ or $(\overline{4}^0)$ or (5^0) or (6^0) or $(\overline{7}^0)$ if $m_3 = (\frac{4}{3})m_2$.

PROPOSITION 2.5. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{5}{2})m_3$. Then G belongs to the class $(\overline{2}^0)$ or (3^0) or (4^0) or $(\overline{5}^0)$ or $(\overline{6}^0)$ or (7^0) represented in Theorem 2.5.

PROOF. Let $m_2 = 5p$, $m_3 = 2p$ and n = 7p + 1 where $p \in \mathbb{N}$. Let $\lambda_2 = k$ where k is a positive integer. Then according to Theorem 2.1 we have (i) $\lambda_3 = -\frac{5k+t}{2}$; (ii) $\tau - \theta = -\frac{3k+t}{2}$; (iii) $\delta = \frac{7k+t}{2}$; (iv) r = pt and (v) $\theta = pt - \frac{5k^2+kt}{2}$, where $t = 1, 2, \ldots, 6$. In this case we can easily see that Theorem 2.1 (8⁰) reduces to

(2.5) $(2p+1)t^2 - 2(7p+1)t + 35k^2 + 10kt = 0.$

CASE 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+1}{2}$, $\tau - \theta = -\frac{3k+1}{2}$, $\delta = \frac{7k+1}{2}$, r = p and $\theta = p - \frac{5k^2+k}{2}$. Using (2.5) we find that 12p + 1 = 5k(7k + 2). Replacing k with 6k - 1 we arrive at $p = 105k^2 - 30k + 2$. So we obtain that G is a strongly regular graph of order $n = 15(7k - 1)^2$ and degree $r = 105k^2 - 30k + 2$ with $\tau = 15k^2 - 12k + 1$ and $\theta = 3k(5k - 1)$.

CASE 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+2}{2}$, $\tau - \theta = -\frac{3k+2}{2}$, $\delta = \frac{7k+2}{2}$, r = 2p and $\theta = 2p - \frac{5k^2+2k}{2}$. Using (2.5) we find that 4p = k(7k+4). Replacing k with 2k we arrive at p = k(7k+2). So we obtain that G is a strongly regular graph of order $n = (7k+1)^2$ and degree r = 2k(7k+2) with $\tau = 4k^2 - k - 1$ and $\theta = 2k(2k+1)$.

CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+3}{2}$, $\tau - \theta = -\frac{3k+3}{2}$, $\delta = \frac{7k+3}{2}$, r = 3p and $\theta = 3p - \frac{5k^2+3k}{2}$. Using (2.5) we find that 24p-3 = 5k(7k+6). Replacing k with 12k+3 we arrive at $p = 210k^2+120k+17$. So we obtain that G is a strongly regular graph of order $n = 30(7k+2)^2$ and degree $r = 3(210k^2 + 120k + 17)$ with $\tau = 18(3k+1)(5k+1)$ and $\theta = 6(3k+1)(15k+4)$. CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+4}{2}$, $\tau - \theta = -\frac{3k+4}{2}$, $\delta = \frac{7k+4}{2}$, r = 4p and $\theta = 4p - \frac{5k^2+4k}{2}$. Using (2.5) we find that 24p-8 = 5k(7k+8). Replacing k with 12k-4 we arrive at $p = 210k^2-120k+17$. So we obtain that G is a strongly regular graph of order $n = 30(7k-2)^2$ and degree $r = 4(210k^2-120k+17)$ with $\tau = 2(240k^2-141k+20)$ and $\theta = 12(4k-1)(10k-3)$. CASE 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+5}{2}$, $\tau - \theta = -\frac{3k+5}{2}$, $\delta = \frac{7k+5}{2}$, r = 5p and $\theta = 5p - \frac{5k^2+5k}{2}$. Using (2.5) we find that 4p - 3 = k(7k + 10). Replacing k with 2k - 1 we arrive at p = k(7k - 2). So we obtain that G is a strongly regular graph of order $n = (7k - 1)^2$ and degree r = 5k(7k-2) with $\tau = 25k^2 - 8k - 1$ and $\theta = 5k(5k - 1)$.

CASE 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+6}{2}$, $\tau - \theta = -\frac{3k+6}{2}$, $\delta = \frac{7k+6}{2}$, r = 6p and $\theta = 6p - \frac{5k^2+6k}{2}$. Using (2.5) we find that 12p - 24 = 5k(7k + 12). Replacing k with 6k we arrive at $p = 105k^2 + 30k + 2$. So we obtain that G is a strongly regular graph of order $n = 15(7k+1)^2$ and degree $r = 6(105k^2 + 30k + 2)$ with $\tau = 9(5k+1)(12k+1)$ and $\theta = 6(6k+1)(15k+2)$. \Box

PROPOSITION 2.6. Let G be a connected strongly regular graph of order n and degree r with $m_3 = (\frac{5}{2})m_2$. Then G belongs to the class (2^0) or $(\overline{3}^0)$ or $(\overline{4}^0)$ or (5^0) or $(\overline{6}^0)$ or $(\overline{7}^0)$ represented in Theorem 2.5.

PROOF. Let $m_2 = 2p$, $m_3 = 5p$ and n = 7p+1 where $p \in \mathbb{N}$. Let $\lambda_3 = -k$ where k is a positive integer. Then according to Theorem 2.2 we have (i) $\lambda_2 = \frac{5k-t}{2}$; (ii) $\tau - \theta = \frac{3k-t}{2}$; (iii) $\delta = \frac{7k-t}{2}$; (iv) r = pt and (v) $\theta = pt - \frac{5k^2-kt}{2}$, where $t = 1, 2, \ldots, 6$. In this case we can easily see that Theorem 2.2 (8⁰) reduces to

(2.6) $(2p+1)t^2 - 2(7p+1)t + 35k^2 - 10kt = 0.$

CASE 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-1}{2}$ and $\lambda_3 = -k, \tau - \theta = \frac{3k-1}{2}, \delta = \frac{7k-1}{2}, r = p$ and $\theta = p - \frac{5k^2-k}{2}$. Using (2.6) we find that 12p+1 = 5k(7k-2). Replacing k with 6k+1 we arrive at $p = 105k^2+30k+2$. So we obtain that G is a strongly regular graph of order $n = 15(7k+1)^2$ and degree $r = 105k^2 + 30k + 2$ with $\tau = 15k^2 + 12k + 1$ and $\theta = 3k(5k+1)$.

CASE 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-2}{2}$ and $\lambda_3 = -k, \tau - \theta = \frac{3k-2}{2}, \delta = \frac{7k-2}{2}, r = 2p$ and $\theta = 2p - \frac{5k^2-2k}{2}$. Using (2.6) we find that 4p = k(7k-4). Replacing k with 2k we arrive at p = k(7k-2). So we obtain that G is a strongly regular graph of order $n = (7k-1)^2$ and degree r = 2k(7k-2) with $\tau = 4k^2 + k - 1$ and $\theta = 2k(2k-1)$.

CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-3}{2}$ and $\lambda_3 = -k, \tau - \theta = \frac{3k-3}{2}, \delta = \frac{7k-3}{2}, r = 3p$ and $\theta = 3p - \frac{5k^2-3k}{2}$. Using (2.6) we find that 24p-3 = 5k(7k-6). Replacing k with 12k-3 we arrive at $p = 210k^2-120k+17$. So we obtain that G is a strongly regular graph of order $n = 30(7k-2)^2$ and degree $r = 3(210k^2 - 120k + 17)$ with $\tau = 18(3k-1)(5k-1)$ and $\theta = 6(3k-1)(15k-4)$. CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-4}{2}$ and $\lambda_3 = -k, \tau - \theta = \frac{3k-4}{2}, \delta = \frac{7k-4}{2}, r = 4p$ and $\theta = 4p - \frac{5k^2-4k}{2}$. Using (2.6) we find that 24p-8 = 5k(7k-8). Replacing k with 12k+4 we arrive at $p = 210k^2+120k+17$. So we obtain that G is a strongly regular graph of order $n = 30(7k+2)^2$ and degree $r = 4(210k^2+120k+17)$ with $\tau = 2(240k^2+141k+20)$ and $\theta = 12(4k+1)(10k+3)$. CASE 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-5}{2}$ and $\lambda_3 = -k, \tau - \theta = \frac{3k-5}{2}, \delta = \frac{7k-5}{2}, r = 5p$ and $\theta = 5p - \frac{5k^2-5k}{2}$. Using (2.6) we find that 4p - 3 = k(7k - 10). Replacing k with 2k + 1 we arrive at p = k(7k + 2). So we obtain that G is a strongly regular graph of order $n = (7k + 1)^2$ and degree r = 5k(7k+2) with $\tau = 25k^2 + 8k - 1$ and $\theta = 5k(5k + 1)$.

CASE 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-6}{2}$ and $\lambda_3 = -k, \tau - \theta = \frac{3k-6}{2}, \delta = \frac{7k-6}{2}, r = 6p$ and $\theta = 6p - \frac{5k^2-6k}{2}$. Using (2.6) we find that 12p - 24 = 5k(7k - 12). Replacing k with 6k we arrive at $p = 105k^2 - 30k + 2$. So we obtain that G is a strongly regular graph of order $n = 15(7k-1)^2$ and degree $r = 6(105k^2 - 30k + 2)$ with $\tau = 9(5k-1)(12k-1)$ and $\theta = 6(6k-1)(15k-2)$. \Box

REMARK 2.6. We note that $\overline{5K_3}$ is a strongly regular graph with $m_2 = (\frac{5}{2})m_3$. It is obtained from the class Theorem 2.5 $(\overline{5}^0)$ for k = 0.

THEOREM 2.5. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{5}{2})m_3$ or $m_3 = (\frac{5}{2})m_2$. Then G is one of the following strongly regular graphs:

- (1⁰) G is the strongly regular graph $\overline{5K_3}$ of order n = 15 and degree r = 12with $\tau = 9$ and $\theta = 12$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -3$ with $m_2 = 10$ and $m_3 = 4$;
- (2⁰) G is a strongly regular graph of order $n = (7k 1)^2$ and degree r = 2k(7k 2) with $\tau = 4k^2 + k 1$ and $\theta = 2k(2k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 5k 1$ and $\lambda_3 = -2k$ with $m_2 = 2k(7k 2)$ and $m_3 = 5k(7k 2)$;
- $(\overline{2}^0)$ G is a strongly regular graph of order $n = (7k 1)^2$ and degree r = 5k(7k 2) with $\tau = 25k^2 8k 1$ and $\theta = 5k(5k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 2k 1$ and $\lambda_3 = -5k$ with $m_2 = 5k(7k 2)$ and $m_3 = 2k(7k 2)$;
- (3⁰) G is a strongly regular graph of order $n = (7k + 1)^2$ and degree r = 2k(7k + 2) with $\tau = 4k^2 k 1$ and $\theta = 2k(2k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 2k$ and $\lambda_3 = -(5k + 1)$ with $m_2 = 5k(7k + 2)$ and $m_3 = 2k(7k + 2)$;
- $(\overline{3}^0)$ G is a strongly regular graph of order $n = (7k+1)^2$ and degree r = 5k(7k+2) with $\tau = 25k^2 + 8k 1$ and $\theta = 5k(5k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 5k$ and $\lambda_3 = -(2k+1)$ with $m_2 = 2k(7k+2)$ and $m_3 = 5k(7k+2)$;
- (4⁰) G is a strongly regular graph of order $n = 15(7k 1)^2$ and degree $r = 105k^2 30k + 2$ with $\tau = 15k^2 12k + 1$ and $\theta = 3k(5k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 6k 1$ and $\lambda_3 = -(15k 2)$ with $m_2 = 5(105k^2 30k + 2)$ and $m_3 = 2(105k^2 30k + 2)$;
- $(\overline{4}^{0}) G is a strongly regular graph of order n = 15(7k 1)^{2} and degree r = 6(105k^{2} 30k + 2) with \tau = 9(5k 1)(12k 1) and \theta = 6(6k 1)(15k 2), where k \in \mathbb{N}.$ Its eigenvalues are $\lambda_{2} = 15k 3$ and $\lambda_{3} = -6k$ with $m_{2} = 2(105k^{2} 30k + 2) and m_{3} = 5(105k^{2} 30k + 2);$
- (5⁰) G is a strongly regular graph of order $n = 15(7k + 1)^2$ and degree $r = 105k^2 + 30k + 2$ with $\tau = 15k^2 + 12k + 1$ and $\theta = 3k(5k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 15k + 2$ and $\lambda_3 = -(6k + 1)$ with $m_2 = 2(105k^2 + 30k + 2)$ and $m_3 = 5(105k^2 + 30k + 2)$;
- ($\overline{5}^{0}$) G is a strongly regular graph of order $n = 15(7k + 1)^{2}$ and degree $r = 6(105k^{2} + 30k + 2)$ with $\tau = 9(5k + 1)(12k + 1)$ and $\theta = 6(6k + 1)(15k + 2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 6k$ and $\lambda_{3} = -(15k + 3)$ with $m_{2} = 5(105k^{2} + 30k + 2)$ and $m_{3} = 2(105k^{2} + 30k + 2)$;
- (6⁰) G is a strongly regular graph of order $n = 30(7k 2)^2$ and degree $r = 3(210k^2 120k + 17)$ with $\tau = 18(3k 1)(5k 1)$ and $\theta = 6(3k 1)(15k 4)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 30k - 9$ and $\lambda_3 = -(12k - 3)$ with $m_2 = 2(210k^2 - 120k + 17)$ and $m_3 = 5(210k^2 - 120k + 17)$;
- $(\overline{6}^{0})$ G is a strongly regular graph of order $n = 30(7k 2)^{2}$ and degree $r = 4(210k^{2}-120k+17)$ with $\tau = 2(240k^{2}-141k+20)$ and $\theta = 12(4k-1)(10k-16k+12)$

3), where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 12k - 4$ and $\lambda_3 = -(30k - 8)$ with $m_2 = 5(210k^2 - 120k + 17)$ and $m_3 = 2(210k^2 - 120k + 17)$;

- (7⁰) G is a strongly regular graph of order $n = 30(7k+2)^2$ and degree $r = 3(210k^2+120k+17)$ with $\tau = 18(3k+1)(5k+1)$ and $\theta = 6(3k+1)(15k+4)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 12k+3$ and $\lambda_3 = -(30k+9)$ with $m_2 = 5(210k^2+120k+17)$ and $m_3 = 2(210k^2+120k+17)$;
- (7⁰) G is a strongly regular graph of order $n = 30(7k+2)^2$ and degree $r = 4(210k^2+120k+17)$ with $\tau = 2(240k^2+141k+20)$ and $\theta = 12(4k+1)(10k+3)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 30k+8$ and $\lambda_3 = -(12k+4)$ with $m_2 = 2(210k^2+120k+17)$ and $m_3 = 5(210k^2+120k+17)$.

PROOF. First, according to Remark 2.3 we have $2\alpha(\beta - 1) = 5(\alpha - 1)$, from which we find that $\alpha = 5$, $\beta = 3$. In view of this we obtain the strongly regular graph represented in Theorem 2.5 (1⁰). Next, according to Proposition 2.5 it turns out that G belongs to the class ($\overline{2}^0$) or (3^0) or (4^0) or ($\overline{5}^0$) or ($\overline{6}^0$) or (7^0) if $m_2 = (\frac{5}{2})m_3$. According to Proposition 2.6 it turns out that G belongs to the class (2^0) or ($\overline{3}^0$) or ($\overline{4}^0$) or (5^0) or (6^0) or ($\overline{7}^0$) if $m_3 = (\frac{5}{2})m_2$.

PROPOSITION 2.7. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{5}{3})m_3$. Then G belongs to the class $(\overline{1}^0)$ or (2^0) or (3^0) or $(\overline{4}^0)$ represented in Theorem 2.6.

PROOF. Let $m_2 = 5p$, $m_3 = 3p$ and n = 8p + 1 where $p \in \mathbb{N}$. Let $\lambda_2 = k$ where k is a positive integer. Then according to Theorem 2.1 we have (i) $\lambda_3 = -\frac{5k+t}{3}$; (ii) $\tau - \theta = -\frac{2k+t}{3}$; (iii) $\delta = \frac{8k+t}{3}$; (iv) r = pt and (v) $\theta = pt - \frac{5k^2+kt}{3}$, where $t = 1, 2, \ldots, 7$. In this case we can easily see that Theorem 2.1 (8⁰) reduces to

(2.7)
$$(3p+1)t^2 - 3(8p+1)t + 40k^2 + 10kt = 0.$$

CASE 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+1}{3}$, $\tau - \theta = -\frac{2k+1}{3}$, $\delta = \frac{8k+1}{3}$, r = p and $\theta = p - \frac{5k^2+k}{3}$. Using (2.7) we find that 21p+2 = 10k(4k+1). Replacing k with 21k-8 we arrive at $p = 840k^2 - 630k + 118$. So we obtain that G is a strongly regular graph of order $n = 105(8k-3)^2$ and degree $r = 840k^2 - 630k + 118$ with $\tau = 105k^2 - 91k + 19$ and $\theta = 7(3k-1)(5k-2)$.

CASE 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+2}{3}$, $\tau - \theta = -\frac{2k+2}{3}$, $\delta = \frac{8k+2}{3}$, r = 2p and $\theta = 2p - \frac{5k^2+2k}{3}$. Using (2.7) we find that 18p + 1 = 10k(2k + 1), a contradiction because $2 \nmid 18p + 1$.

CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+3}{3}$, $\tau - \theta = -\frac{2k+3}{3}$, $\delta = \frac{8k+3}{3}$, r = 3p and $\theta = 3p - \frac{5k^2+3k}{3}$. Using (2.7) we find that 9p = 2k(4k + 3). Replacing k with 3k we arrive at p = 2k(4k + 1). So we obtain that G is a strongly regular graph of order $n = (8k + 1)^2$ and degree r = 6k(4k + 1) with $\tau = 9k^2 + k - 1$ and $\theta = 3k(3k + 1)$.

CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+4}{3}$, $\tau - \theta = -\frac{2k+4}{3}$, $\delta = \frac{8k+4}{3}$, r = 4p and $\theta = 4p - \frac{5k^2+4k}{3}$. Using (2.7) we find that 12p - 1 = 10k(k+1), a contradiction because $2 \nmid 12p - 1$.

CASE 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+5}{3}$, $\tau - \theta = -\frac{2k+5}{3}$, $\delta = \frac{8k+5}{3}$, r = 5p and $\theta = 5p - \frac{5k^2+5k}{3}$. Using (2.7) we find that 9p - 2 = 2k(4k + 5). Replacing k with 3k - 1 we arrive at p = 2k(4k - 1). So we obtain that G is a strongly regular graph of order $n = (8k - 1)^2$ and degree r = 10k(4k - 1) with $\tau = 25k^2 - 7k - 1$ and $\theta = 5k(5k - 1)$.

CASE 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+6}{3}$, $\tau - \theta = -\frac{2k+6}{3}$, $\delta = \frac{8k+6}{3}$, r = 6p and $\theta = 6p - \frac{5k^2+6k}{3}$. Using (2.7) we find that 18p - 9 = 10k(2k+3), a contradiction because $2 \nmid 18p - 9$.

CASE 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+7}{3}$, $\tau - \theta = -\frac{2k+7}{3}$, $\delta = \frac{8k+7}{3}$, r = 7p and $\theta = 7p - \frac{5k^2+7k}{3}$. Using (2.7) we find that 21p - 28 = 10k(4k + 7). Replacing k with 21k + 7 we arrive at $p = 840k^2 + 630k + 118$. So we obtain that G is a strongly regular graph of order $n = 105(8k+3)^2$ and degree $r = 7(840k^2+630k+118)$ with $\tau = 7(735k^2+551k+103)$ and $\theta = 7(21k+8)(35k+13)$.

PROPOSITION 2.8. Let G be a connected strongly regular graph of order n and degree r with $m_3 = (\frac{5}{3})m_2$. Then G belongs to the class (1^0) or $(\overline{2}^0)$ or $(\overline{3}^0)$ or (4^0) represented in Theorem 2.6.

PROOF. Let $m_2 = 3p$, $m_3 = 5p$ and n = 8p+1 where $p \in \mathbb{N}$. Let $\lambda_3 = -k$ where k is a positive integer. Then according to Theorem 2.2 we have (i) $\lambda_2 = \frac{5k-t}{3}$; (ii) $\tau - \theta = \frac{2k-t}{3}$; (iii) $\delta = \frac{8k-t}{3}$; (iv) r = pt and (v) $\theta = pt - \frac{5k^2-kt}{3}$, where $t = 1, 2, \ldots, 7$. In this case we can easily see that Theorem 2.2 (8⁰) reduces to

(2.8) $(3p+1)t^2 - 3(8p+1)t + 40k^2 - 10kt = 0.$

CASE 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-1}{3}$ and $\lambda_3 = -k, \tau - \theta = \frac{2k-1}{3}, \delta = \frac{8k-1}{3}, r = p$ and $\theta = p - \frac{5k^2-k}{3}$. Using (2.8) we find that 21p+2 = 10k(4k-1). Replacing k with 21k+8 we arrive at $p = 840k^2+630k+118$. So we obtain that G is a strongly regular graph of order $n = 105(8k+3)^2$ and degree $r = 840k^2 + 630k + 118$ with $\tau = 105k^2 + 91k + 19$ and $\theta = 7(3k+1)(5k+2)$.

CASE 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-2}{3}$ and $\lambda_3 = -k, \tau - \theta = \frac{2k-2}{3}, \delta = \frac{8k-2}{3}, r = 2p$ and $\theta = 2p - \frac{5k^2-2k}{3}$. Using (2.8) we find that 18p + 1 = 10k(2k - 1), a contradiction because $2 \nmid 18p + 1$.

CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-3}{3}$ and $\lambda_3 = -k, \tau - \theta = \frac{2k-3}{3}, \delta = \frac{8k-3}{3}, r = 3p$ and $\theta = 3p - \frac{5k^2-3k}{3}$. Using (2.8) we find that 9p = 2k(4k-3). Replacing k with 3k we arrive at p = 2k(4k-1). So we obtain that G is a strongly regular graph of order $n = (8k-1)^2$ and degree r = 6k(4k-1) with $\tau = 9k^2 - k - 1$ and $\theta = 3k(3k-1)$.

CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-4}{3}$ and $\lambda_3 = -k, \tau - \theta = \frac{2k-4}{3}, \delta = \frac{8k-4}{3}, r = 4p$ and $\theta = 4p - \frac{5k^2-4k}{3}$. Using (2.8) we find that 12p - 1 = 10k(k - 1), a contradiction because $2 \nmid 12p - 1$.

CASE 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-5}{3}$ and $\lambda_3 = -k, \tau - \theta = \frac{2k-5}{3}, \delta = \frac{8k-5}{3}, r = 5p$ and $\theta = 5p - \frac{5k^2-5k}{3}$. Using (2.8) we find

that 9p - 2 = 2k(4k - 5). Replacing k with 3k + 1 we arrive at p = 2k(4k + 1). So we obtain that G is a strongly regular graph of order $n = (8k + 1)^2$ and degree r = 10k(4k + 1) with $\tau = 25k^2 + 7k - 1$ and $\theta = 5k(5k + 1)$.

CASE 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-6}{3}$ and $\lambda_3 = -k, \tau - \theta = \frac{2k-6}{3}, \delta = \frac{8k-6}{3}, r = 6p$ and $\theta = 6p - \frac{5k^2-6k}{3}$. Using (2.8) we find that 18p - 9 = 10k(2k - 3), a contradiction because $2 \nmid 18p - 9$.

CASE 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-7}{3}$ and $\lambda_3 = -k, \ \tau - \theta = \frac{2k-7}{3}, \ \delta = \frac{8k-7}{3}, \ r = 7p$ and $\theta = 7p - \frac{5k^2-7k}{3}$. Using (2.8) we find that 21p - 28 = 10k(4k - 7). Replacing k with 21k - 7 we arrive at $p = 840k^2 - 630k + 118$. So we obtain that G is a strongly regular graph of order $n = 105(8k-3)^2$ and degree $r = 7(840k^2 - 630k + 118)$ with $\tau = 7(735k^2 - 551k + 103)$ and $\theta = 7(21k - 8)(35k - 13)$.

THEOREM 2.6. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{5}{3})m_3$ or $m_3 = (\frac{5}{3})m_2$. Then G is one of the following strongly regular graphs:

- (1⁰) G is a strongly regular graph of order $n = (8k 1)^2$ and degree r = 6k(4k 1) with $\tau = 9k^2 k 1$ and $\theta = 3k(3k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 5k 1$ and $\lambda_3 = -3k$ with $m_2 = 6k(4k 1)$ and $m_3 = 10k(4k 1)$;
- $(\overline{1}^0)$ G is a strongly regular graph of order $n = (8k 1)^2$ and degree r = 10k(4k 1) with $\tau = 25k^2 7k 1$ and $\theta = 5k(5k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 3k 1$ and $\lambda_3 = -5k$ with $m_2 = 10k(4k 1)$ and $m_3 = 6k(4k 1)$;
- (2⁰) G is a strongly regular graph of order $n = (8k + 1)^2$ and degree r = 6k(4k + 1) with $\tau = 9k^2 + k 1$ and $\theta = 3k(3k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 3k$ and $\lambda_3 = -(5k + 1)$ with $m_2 = 10k(4k + 1)$ and $m_3 = 6k(4k + 1)$;
- $(\overline{2}^0)$ G is a strongly regular graph of order $n = (8k+1)^2$ and degree r = 10k(4k+1) with $\tau = 25k^2 + 7k 1$ and $\theta = 5k(5k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 5k$ and $\lambda_3 = -(3k+1)$ with $m_2 = 6k(4k+1)$ and $m_3 = 10k(4k+1)$;
- (3⁰) G is a strongly regular graph of order $n = 105(8k 3)^2$ and degree $r = 840k^2 630k + 118$ with $\tau = 105k^2 91k + 19$ and $\theta = 7(3k 1)(5k 2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 21k 8$ and $\lambda_3 = -(35k 13)$ with $m_2 = 5(840k^2 630k + 118)$ and $m_3 = 3(840k^2 630k + 118)$;
- ($\overline{3}^{0}$) G is a strongly regular graph of order $n = 105(8k 3)^{2}$ and degree $r = 7(840k^{2} 630k + 118)$ with $\tau = 7(735k^{2} 551k + 103)$ and $\theta = 7(21k 8)(35k 13)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 35k 14$ and $\lambda_{3} = -(21k 7)$ with $m_{2} = 3(840k^{2} 630k + 118)$ and $m_{3} = 5(840k^{2} 630k + 118)$;
- (4⁰) G is a strongly regular graph of order $n = 105(8k+3)^2$ and degree $r = 840k^2 + 630k + 118$ with $\tau = 105k^2 + 91k + 19$ and $\theta = 7(3k+1)(5k+2)$,

where $k \ge 0$. Its eigenvalues are $\lambda_2 = 35k + 13$ and $\lambda_3 = -(21k + 8)$ with $m_2 = 3(840k^2 + 630k + 118)$ and $m_3 = 5(840k^2 + 630k + 118)$;

 $(\overline{4}^0)$ G is a strongly regular graph of order $n = 105(8k+3)^2$ and degree $r = 7(840k^2 + 630k + 118)$ with $\tau = 7(735k^2 + 551k + 103)$ and $\theta = 7(21k + 8)(35k + 13)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 21k + 7$ and $\lambda_3 = -(35k+14)$ with $m_2 = 5(840k^2 + 630k + 118)$ and $m_3 = 3(840k^2 + 630k + 118)$.

PROOF. First, according to Remark 2.3 we have $3\alpha(\beta - 1) = 5(\alpha - 1)$, from which we find no integral solution for α and β . Next, according to Proposition 2.7 it turns out that G belongs to the class $(\overline{1}^0)$ or (2^0) or (3^0) or $(\overline{4}^0)$ if $m_2 = (\frac{5}{3})m_3$. According to Proposition 2.8 it turns out that G belongs to the class (1^0) or $(\overline{2}^0)$ or $(\overline{3}^0)$ or (4^0) if $m_3 = (\frac{5}{3})m_2$.

PROPOSITION 2.9. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{5}{4})m_3$. Then G belongs to the class $(\overline{2}^0)$ or (3^0) or (4^0) or $(\overline{5}^0)$ or $(\overline{6}^0)$ or (7^0) or $(\overline{8}^0)$ or (9^0) represented in Theorem 2.7.

PROOF. Let $m_2 = 5p$, $m_3 = 4p$ and n = 9p + 1 where $p \in \mathbb{N}$. Let $\lambda_2 = k$ where k is a positive integer. Then according to Theorem 2.1 we have (i) $\lambda_3 = -\frac{5k+t}{4}$; (ii) $\tau - \theta = -\frac{k+t}{4}$; (iii) $\delta = \frac{9k+t}{4}$; (iv) r = pt and (v) $\theta = pt - \frac{5k^2+kt}{4}$, where $t = 1, 2, \ldots, 8$. In this case we can easily see that Theorem 2.1 (8⁰) reduces to

(2.9)
$$(4p+1)t^2 - 4(9p+1)t + 45k^2 + 10kt = 0.$$

CASE 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+1}{4}$, $\tau - \theta = -\frac{k+1}{4}$, $\delta = \frac{9k+1}{4}$, r = p and $\theta = p - \frac{5k^2+k}{4}$. Using (2.9) we find that 32p + 3 = 5k(9k + 2). Replacing k with 8k - 1 we arrive at $p = 90k^2 - 20k + 1$. So we obtain that G is a strongly regular graph of order $n = 10(9k - 1)^2$ and degree $r = 90k^2 - 20k + 1$ with $\tau = 2k(5k - 2)$ and $\theta = 2k(5k - 1)$.

CASE 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+2}{4}$, $\tau - \theta = -\frac{k+2}{4}$, $\delta = \frac{9k+2}{4}$, r = 2p and $\theta = 2p - \frac{5k^2+2k}{4}$. Using (2.9) we find that 56p+4 = 5k(9k+4). Replacing k with 28k+6 we arrive at $p = 630k^2+280k+31$. So we obtain that G is a strongly regular graph of order $n = 70(9k+2)^2$ and degree $r = 2(630k^2 + 280k + 31)$ with $\tau = 280k^2 + 119k + 12$ and $\theta = 14(4k+1)(5k+1)$.

CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+3}{4}$, $\tau - \theta = -\frac{k+3}{4}$, $\delta = \frac{9k+3}{4}$, r = 3p and $\theta = 3p - \frac{5k^2+3k}{4}$. Using (2.9) we find that 24p+1 = 5k(3k+2). Replacing k with 12k+1 we arrive at $p = 90k^2+20k+1$. So we obtain that G is a strongly regular graph of order $n = 10(9k+1)^2$ and degree $r = 3(90k^2 + 20k + 1)$ with $\tau = 18k(5k+1)$ and $\theta = (6k+1)(15k+1)$.

CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+4}{4}$, $\tau - \theta = -\frac{k+4}{4}$, $\delta = \frac{9k+4}{4}$, r = 4p and $\theta = 4p - \frac{5k^2+4k}{4}$. Using (2.9) we find that 16p = k(9k+8). Replacing k with 4k we arrive at p = k(9k+2). So we obtain that G is a strongly regular graph of order $n = (9k+1)^2$ and degree r = 4k(9k+2) with $\tau = 16k^2 + 3k - 1$ and $\theta = 4k(4k+1)$.

50

CASE 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+5}{4}$, $\tau - \theta = -\frac{k+5}{4}$, $\delta = \frac{9k+5}{4}$, r = 5p and $\theta = 5p - \frac{5k^2+5k}{4}$. Using (2.9) we find that 16p - 1 = k(9k + 10). Replacing k with 4k - 1 we arrive at p = k(9k - 2). So we obtain that G is a strongly regular graph of order $n = (9k - 1)^2$ and degree r = 5k(9k - 2) with $\tau = 25k^2 - 6k - 1$ and $\theta = 5k(5k - 1)$.

CASE 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+6}{4}$, $\tau - \theta = -\frac{k+6}{4}$, $\delta = \frac{9k+6}{4}$, r = 6p and $\theta = 6p - \frac{5k^2+6k}{4}$. Using (2.9) we find that 24p - 4 = 5k(3k+4). Replacing k with 12k - 2 we arrive at $p = 90k^2 - 20k + 1$. So we obtain that G is a strongly regular graph of order $n = 10(9k-1)^2$ and degree $r = 6(90k^2 - 20k + 1)$ with $\tau = 3(120k^2 - 27k + 1)$ and $\theta = 2(12k - 1)(15k - 2)$.

CASE 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+7}{4}$, $\tau - \theta = -\frac{k+7}{4}$, $\delta = \frac{9k+7}{4}$, r = 7p and $\theta = 7p - \frac{5k^2+7k}{4}$. Using (2.9) we find that 56p - 21 = 5k(9k + 14). Replacing k with 28k - 7 we arrive at $p = 630k^2 - 280k + 31$. So we obtain that G is a strongly regular graph of order $n = 70(9k - 2)^2$ and degree $r = 7(630k^2 - 280k + 31)$ with $\tau = 14(5k - 1)(49k - 12)$ and $\theta = 7(14k - 3)(35k - 8)$.

CASE 8. (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{5k+8}{4}$, $\tau - \theta = -\frac{k+8}{4}$, $\delta = \frac{9k+8}{4}$, r = 8p and $\theta = 8p - \frac{5k^2+8k}{4}$. Using (2.9) we find that 32p-32 = 5k(9k+16). Replacing k with 8k we arrive at $p = 90k^2+20k+1$. So we obtain that G is a strongly regular graph of order $n = 10(9k+1)^2$ and degree $r = 8(90k^2 + 20k + 1)$ with $\tau = 2(320k^2 + 71k + 3)$ and $\theta = 8(8k+1)(10k+1)$. \Box

PROPOSITION 2.10. Let G be a connected strongly regular graph of order n and degree r with $m_3 = (\frac{5}{4})m_2$. Then G belongs to the class (2^0) or $(\overline{3}^0)$ or $(\overline{4}^0)$ or (5^0) or (6^0) or $(\overline{7}^0)$ or (8^0) or $(\overline{9}^0)$ represented in Theorem 2.7.

PROOF. Let $m_2 = 4p$, $m_3 = 5p$ and n = 9p+1 where $p \in \mathbb{N}$. Let $\lambda_3 = -k$ where k is a positive integer. Then according to Theorem 2.2 we have (i) $\lambda_2 = \frac{5k-t}{4}$; (ii) $\tau - \theta = \frac{k-t}{4}$; (iii) $\delta = \frac{9k-t}{4}$; (iv) r = pt and (v) $\theta = pt - \frac{5k^2 - kt}{4}$, where $t = 1, 2, \ldots, 8$. In this case we can easily see that Theorem 2.2 (8⁰) reduces to

(2.10)
$$(4p+1)t^2 - 4(9p+1)t + 45k^2 - 10kt = 0.$$

CASE 1 (t = 1). Using (i), (ii), (ii), (iv) and (v) we find that $\lambda_2 = \frac{5k-1}{4}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-1}{4}, \delta = \frac{9k-1}{4}, r = p$ and $\theta = p - \frac{5k^2-k}{4}$. Using (2.10) we find that 32p + 3 = 5k(9k - 2). Replacing k with 8k + 1 we arrive at $p = 90k^2 + 20k + 1$. So we obtain that G is a strongly regular graph of order $n = 10(9k+1)^2$ and degree $r = 90k^2 + 20k + 1$ with $\tau = 2k(5k+2)$ and $\theta = 2k(5k+1)$.

CASE 2 (t = 2). Using (i), (ii), (ii), (iv) and (v) we find that $\lambda_2 = \frac{5k-2}{4}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-2}{4}, \delta = \frac{9k-2}{4}, r = 2p$ and $\theta = 2p - \frac{5k^2-2k}{4}$. Using (2.10) we find that 56p+4 = 5k(9k-4). Replacing k with 28k-6 we arrive at $p = 630k^2-280k+31$. So we obtain that G is a strongly regular graph of order $n = 70(9k-2)^2$ and degree $r = 2(630k^2 - 280k + 31)$ with $\tau = 280k^2 - 119k + 12$ and $\theta = 14(4k-1)(5k-1)$.

CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-3}{4}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-3}{4}, \delta = \frac{9k-3}{4}, r = 3p$ and $\theta = 3p - \frac{5k^2-3k}{4}$. Using (2.10) we find that 24p+1 = 5k(3k-2). Replacing k with 12k-1 we arrive at $p = 90k^2 - 20k + 1$. So we obtain that G is a strongly regular graph of order $n = 10(9k-1)^2$ and degree $r = 3(90k^2 - 20k + 1)$ with $\tau = 18k(5k-1)$ and $\theta = (6k-1)(15k-1)$.

CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-4}{4}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-4}{4}, \delta = \frac{9k-4}{4}, r = 4p$ and $\theta = 4p - \frac{5k^2 - 4k}{4}$. Using (2.10) we find that 16p = k(9k - 8). Replacing k with 4k we arrive at p = k(9k - 2). So we obtain that G is a strongly regular graph of order $n = (9k - 1)^2$ and degree r = 4k(9k - 2) with $\tau = 16k^2 - 3k - 1$ and $\theta = 4k(4k - 1)$.

CASE 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-5}{4}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-5}{4}, \delta = \frac{9k-5}{4}, r = 5p$ and $\theta = 5p - \frac{5k^2-5k}{4}$. Using (2.10) we find that 16p - 1 = k(9k - 10). Replacing k with 4k + 1 we arrive at p = k(9k + 2). So we obtain that G is a strongly regular graph of order $n = (9k + 1)^2$ and degree r = 5k(9k + 2) with $\tau = 25k^2 + 6k - 1$ and $\theta = 5k(5k + 1)$.

CASE 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-6}{4}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-6}{4}, \delta = \frac{9k-6}{4}, r = 6p$ and $\theta = 6p - \frac{5k^2-6k}{4}$. Using (2.10) we find that 24p - 4 = 5k(3k - 4). Replacing k with 12k + 2 we arrive at $p = 90k^2 + 20k + 1$. So we obtain that G is a strongly regular graph of order $n = 10(9k+1)^2$ and degree $r = 6(90k^2 + 20k + 1)$ with $\tau = 3(120k^2 + 27k + 1)$ and $\theta = 2(12k + 1)(15k + 2)$.

CASE 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{5k-7}{4}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-7}{4}, \delta = \frac{9k-7}{4}, r = 7p$ and $\theta = 7p - \frac{5k^2-7k}{4}$. Using (2.10) we find that 56p - 21 = 5k(9k - 14). Replacing k with 28k + 7 we arrive at $p = 630k^2 + 280k + 31$. So we obtain that G is a strongly regular graph of order $n = 70(9k+2)^2$ and degree $r = 7(630k^2 + 280k + 31)$ with $\tau = 14(5k+1)(49k+12)$ and $\theta = 7(14k+3)(35k+8)$.

CASE 8 (t = 8). Using (i), (ii), (ii), (iv) and (v) we find that $\lambda_2 = \frac{5k-8}{4}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-8}{4}, \delta = \frac{9k-8}{4}, r = 8p$ and $\theta = 8p - \frac{5k^2 - 8k}{4}$. Using (2.10) we find that 32p - 32 = 5k(9k - 16). Replacing k with 8k we arrive at $p = 90k^2 - 20k + 1$. So we obtain that G is a strongly regular graph of order $n = 10(9k-1)^2$ and degree $r = 8(90k^2 - 20k + 1)$ with $\tau = 2(320k^2 - 71k + 3)$ and $\theta = 8(8k - 1)(10k - 1)$. \Box

REMARK 2.7. We note that $\overline{5K_2}$ is a strongly regular graph with $m_2 = (\frac{5}{4})m_3$. It is obtained from class Theorem 2.7 ($\overline{6}^0$) for k = 0.

THEOREM 2.7. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{5}{4})m_3$ or $m_3 = (\frac{5}{4})m_2$. Then G is one of the following strongly regular graphs:

- (1⁰) G is the strongly regular graph $\overline{5K_2}$ of order n = 10 and degree r = 8 with $\tau = 6$ and $\theta = 8$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -2$ with $m_2 = 5$ and $m_3 = 4$;
- (2⁰) G is a strongly regular graph of order $n = (9k 1)^2$ and degree r = 4k(9k 2) with $\tau = 16k^2 3k 1$ and $\theta = 4k(4k 1)$, where $k \in \mathbb{N}$. Its

eigenvalues are $\lambda_2 = 5k - 1$ and $\lambda_3 = -4k$ with $m_2 = 4k(9k - 2)$ and $m_3 = 5k(9k - 2)$;

- $(\overline{2}^0)$ G is a strongly regular graph of order $n = (9k 1)^2$ and degree r = 5k(9k 2) with $\tau = 25k^2 6k 1$ and $\theta = 5k(5k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 4k 1$ and $\lambda_3 = -5k$ with $m_2 = 5k(9k 2)$ and $m_3 = 4k(9k 2)$;
- (3⁰) G is a strongly regular graph of order $n = (9k + 1)^2$ and degree r = 4k(9k + 2) with $\tau = 16k^2 + 3k 1$ and $\theta = 4k(4k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 4k$ and $\lambda_3 = -(5k + 1)$ with $m_2 = 5k(9k + 2)$ and $m_3 = 4k(9k + 2)$;
- $(\overline{3}^0)$ G is a strongly regular graph of order $n = (9k+1)^2$ and degree r = 5k(9k+2) with $\tau = 25k^2 + 6k 1$ and $\theta = 5k(5k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 5k$ and $\lambda_3 = -(4k+1)$ with $m_2 = 4k(9k+2)$ and $m_3 = 5k(9k+2)$;
- (4⁰) G is a strongly regular graph of order $n = 10(9k-1)^2$ and degree $r = 90k^2 20k + 1$ with $\tau = 2k(5k-2)$ and $\theta = 2k(5k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 8k - 1$ and $\lambda_3 = -(10k-1)$ with $m_2 = 5(90k^2 - 20k + 1)$ and $m_3 = 4(90k^2 - 20k + 1)$;
- ($\overline{4}^{0}$) G is a strongly regular graph of order $n = 10(9k-1)^{2}$ and degree $r = 8(90k^{2}-20k+1)$ with $\tau = 2(320k^{2}-71k+3)$ and $\theta = 8(8k-1)(10k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 10k-2$ and $\lambda_{3} = -8k$ with $m_{2} = 4(90k^{2}-20k+1)$ and $m_{3} = 5(90k^{2}-20k+1)$;
- (5⁰) G is a strongly regular graph of order $n = 10(9k-1)^2$ and degree $r = 3(90k^2 20k + 1)$ with $\tau = 18k(5k-1)$ and $\theta = (6k-1)(15k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 15k-2$ and $\lambda_3 = -(12k-1)$ with $m_2 = 4(90k^2 20k + 1)$ and $m_3 = 5(90k^2 20k + 1)$;
- (5) G is a strongly regular graph of order $n = 10(9k-1)^2$ and degree $r = 6(90k^2 20k+1)$ with $\tau = 3(120k^2 27k+1)$ and $\theta = 2(12k-1)(15k-2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 12k-2$ and $\lambda_3 = -(15k-1)$ with $m_2 = 5(90k^2 20k+1)$ and $m_3 = 4(90k^2 20k+1)$;
- (6⁰) G is a strongly regular graph of order $n = 10(9k+1)^2$ and degree $r = 90k^2 + 20k + 1$ with $\tau = 2k(5k+2)$ and $\theta = 2k(5k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 10k+1$ and $\lambda_3 = -(8k+1)$ with $m_2 = 4(90k^2 + 20k+1)$ and $m_3 = 5(90k^2 + 20k+1)$;
- ($\overline{6}^{0}$) G is a strongly regular graph of order $n = 10(9k+1)^{2}$ and degree $r = 8(90k^{2}+20k+1)$ with $\tau = 2(320k^{2}+71k+3)$ and $\theta = 8(8k+1)(10k+1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 8k$ and $\lambda_{3} = -(10k+2)$ with $m_{2} = 5(90k^{2}+20k+1)$ and $m_{3} = 4(90k^{2}+20k+1)$;
- (7⁰) G is a strongly regular graph of order $n = 10(9k + 1)^2$ and degree $r = 3(90k^2 + 20k + 1)$ with $\tau = 18k(5k + 1)$ and $\theta = (6k + 1)(15k + 1)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 12k + 1$ and $\lambda_3 = -(15k + 2)$ with $m_2 = 5(90k^2 + 20k + 1)$ and $m_3 = 4(90k^2 + 20k + 1)$;
- ($\overline{7}^{0}$) G is a strongly regular graph of order $n = 10(9k+1)^{2}$ and degree $r = 6(90k^{2}+20k+1)$ with $\tau = 3(120k^{2}+27k+1)$ and $\theta = 2(12k+1)(15k+2)$,

where $k \ge 0$. Its eigenvalues are $\lambda_2 = 15k + 1$ and $\lambda_3 = -(12k + 2)$ with $m_2 = 4(90k^2 + 20k + 1)$ and $m_3 = 5(90k^2 + 20k + 1)$;

- (8⁰) G is a strongly regular graph of order $n = 70(9k-2)^2$ and degree $r = 2(630k^2-280k+31)$ with $\tau = 280k^2-119k+12$ and $\theta = 14(4k-1)(5k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 35k-8$ and $\lambda_3 = -(28k-6)$ with $m_2 = 4(630k^2-280k+31)$ and $m_3 = 5(630k^2-280k+31)$;
- ($\overline{8}^0$) G is a strongly regular graph of order $n = 70(9k-2)^2$ and degree $r = 7(630k^2-280k+31)$ with $\tau = 14(5k-1)(49k-12)$ and $\theta = 7(14k-3)(35k-8)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 28k-7$ and $\lambda_3 = -(35k-7)$ with $m_2 = 5(630k^2-280k+31)$ and $m_3 = 4(630k^2-280k+31)$;
- (9⁰) G is a strongly regular graph of order $n = 70(9k+2)^2$ and degree $r = 2(630k^2+280k+31)$ with $\tau = 280k^2+119k+12$ and $\theta = 14(4k+1)(5k+1)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 28k+6$ and $\lambda_3 = -(35k+8)$ with $m_2 = 5(630k^2+280k+31)$ and $m_3 = 4(630k^2+280k+31)$;
- ($\overline{9}^{0}$) G is a strongly regular graph of order $n = 70(9k+2)^{2}$ and degree $r = 7(630k^{2}+280k+31)$ with $\tau = 14(5k+1)(49k+12)$ and $\theta = 7(14k+3)(35k+8)$, where $k \ge 0$. Its eigenvalues are $\lambda_{2} = 35k+7$ and $\lambda_{3} = -(28k+7)$ with $m_{2} = 4(630k^{2}+280k+31)$ and $m_{3} = 5(630k^{2}+280k+31)$.

PROOF. First, according to Remark 2.3 we have $4\alpha(\beta - 1) = 5(\alpha - 1)$, from which we find that $\alpha = 5$, $\beta = 2$. In view of this we obtain the strongly regular graph represented in Theorem 2.7 (1⁰). Next, according to Proposition 2.9 it turns out that G belongs to the class ($\overline{2}^0$) or ($\overline{3}^0$) or ($\overline{4}^0$) or ($\overline{5}^0$) or ($\overline{6}^0$) or ($\overline{7}^0$) or ($\overline{8}^0$) or (9^0) if $m_2 = (\frac{5}{4})m_3$. According to Proposition 2.10 it turns out that G belongs to the class (2^0) or ($\overline{3}^0$) or ($\overline{4}^0$) or (5^0) or ($\overline{6}^0$) or ($\overline{8}^0$) or ($\overline{9}^0$) if $m_3 = (\frac{5}{4})m_2$.

PROPOSITION 2.11. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{6}{5})m_3$. Then G belongs to the class $(\overline{2}^0)$ or (3^0) or (4^0) or $(\overline{5}^0)$ or $(\overline{6}^0)$ or $(\overline{7}^0)$ or (8^0) or $(\overline{9}^0)$ or $(\overline{10}^0)$ or (11^0) represented in Theorem 2.8.

PROOF. Let $m_2 = 6p$, $m_3 = 5p$ and n = 11p+1 where $p \in \mathbb{N}$. Let $\lambda_2 = k$ where k is a positive integer. Then according to Theorem 2.1 we have (i) $\lambda_3 = -\frac{6k+t}{5}$; (ii) $\tau - \theta = -\frac{k+t}{5}$; (iii) $\delta = \frac{11k+t}{5}$; (iv) r = pt and (v) $\theta = pt - \frac{6k^2+kt}{5}$, where $t = 1, 2, \ldots, 10$. In this case we can easily see that Theorem 2.1 (8⁰) reduces to

(2.11) $(5p+1)t^2 - 5(11p+1)t + 66k^2 + 12kt = 0.$

CASE 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{6k+1}{5}$, $\tau - \theta = -\frac{k+1}{5}$, $\delta = \frac{11k+1}{5}$, r = p and $\theta = p - \frac{6k^2+k}{5}$. Using (2.11) we find that 25p+2 = 3k(11k+2). Replacing k with 5k-1 we arrive at $p = 33k^2 - 12k + 1$. So we obtain that G is a strongly regular graph of order $n = 3(11k-2)^2$ and degree $r = 33k^2 - 12k + 1$ with $\tau = k(3k-2)$ and $\theta = k(3k-1)$.

CASE 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{6k+2}{5}$, $\tau - \theta = -\frac{k+2}{5}$, $\delta = \frac{11k+2}{5}$, r = 2p and $\theta = 2p - \frac{6k^2+2k}{5}$. Using (2.11) we find that 15p+1 = k(11k+4). Replacing k with 15k-7 we arrive at $p = 165k^2 - 150k + 34$.

54

So we obtain that G is a strongly regular graph of order $n = 15(11k-5)^2$ and degree $r = 2(165k^2 - 150k + 34)$ with $\tau = 60k^2 - 57k + 13$ and $\theta = 6(2k-1)(5k-2)$.

CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{6k+3}{5}$, $\tau - \theta = -\frac{k+3}{5}$, $\delta = \frac{11k+3}{5}$, r = 3p and $\theta = 3p - \frac{6k^2+3k}{5}$. Using (2.11) we find that 20p + 1 = k(11k+6). Replacing k with 10k - 3 we arrive at $p = 55k^2 - 30k + 4$. So we obtain that G is a strongly regular graph of order $n = 5(11k-3)^2$ and degree $r = 3(55k^2 - 30k + 4)$ with $\tau = 45k^2 - 26k + 3$ and $\theta = 3(3k - 1)(5k - 1)$.

CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{6k+4}{5}$, $\tau - \theta = -\frac{k+4}{5}$, $\delta = \frac{11k+4}{5}$, r = 4p and $\theta = 4p - \frac{6k^2+4k}{5}$. Using (2.11) we find that 70p + 2 = 3k(11k + 8). Replacing k with 70k + 6 we arrive at $p = 2310k^2 + 420k + 19$. So we obtain that G is a strongly regular graph of order $n = 210(11k+1)^2$ and degree $r = 4(2310k^2 + 420k + 19)$ with $\tau = 2(1680k^2 + 301k + 13)$ and $\theta = 28(10k+1)(12k+1)$.

CASE 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{6k+5}{5}$, $\tau - \theta = -\frac{k+5}{5}$, $\delta = \frac{11k+5}{5}$, r = 5p and $\theta = 5p - \frac{6k^2+5k}{5}$. Using (2.11) we find that 25p = k(11k + 10). Replacing k with 5k we arrive at p = k(11k + 2). So we obtain that G is a strongly regular graph of order $n = (11k + 1)^2$ and degree r = 5k(11k + 2) with $\tau = 25k^2 + 4k - 1$ and $\theta = 5k(5k + 1)$.

CASE 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{6k+6}{5}$, $\tau - \theta = -\frac{k+6}{5}$, $\delta = \frac{11k+6}{5}$, r = 6p and $\theta = 6p - \frac{6k^2+6k}{5}$. Using (2.11) we find that 25p - 1 = k(11k + 12). Replacing k with 5k - 1 we arrive at p = k(11k - 2). So we obtain that G is a strongly regular graph of order $n = (11k - 1)^2$ and degree r = 6k(11k - 2) with $\tau = 36k^2 - 7k - 1$ and $\theta = 6k(6k - 1)$.

CASE 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{6k+7}{5}$, $\tau - \theta = -\frac{k+7}{5}$, $\delta = \frac{11k+7}{5}$, r = 7p and $\theta = 7p - \frac{6k^2+7k}{5}$. Using (2.11) we find that 70p - 7 = 3k(11k + 14). Replacing k with 70k - 7 we arrive at $p = 2310k^2 - 420k + 19$. So we obtain that G is a strongly regular graph of order $n = 210(11k-1)^2$ and degree $r = 7(2310k^2 - 420k+19)$ with $\tau = 14(735k^2 - 134k+6)$ and $\theta = 14(21k-2)(35k-3)$.

CASE 8 (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{6k+8}{5}$, $\tau - \theta = -\frac{k+8}{5}$, $\delta = \frac{11k+8}{5}$, r = 8p and $\theta = 8p - \frac{6k^2 + 8k}{5}$. Using (2.11) we find that 20p - 4 = k(11k + 16). Replacing k with 10k + 2 we arrive at $p = 55k^2 + 30k + 4$. So we obtain that G is a strongly regular graph of order $n = 5(11k + 3)^2$ and degree $r = 8(55k^2 + 30k + 4)$ with $\tau = 2(5k + 1)(32k + 11)$ and $\theta = 8(4k + 1)(10k + 3)$.

CASE 9 (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{6k+9}{5}$, $\tau - \theta = -\frac{k+9}{5}$, $\delta = \frac{11k+9}{5}$, r = 9p and $\theta = 9p - \frac{6k^2+9k}{5}$. Using (2.11) we find that 15p - 6 = k(11k + 18). Replacing k with 15k + 6 we arrive at $p = 165k^2 + 150k + 34$. So we obtain that G is a strongly regular graph of order $n = 15(11k+5)^2$ and degree $r = 9(165k^2+150k+34)$ with $\tau = 3(405k^2+368k+83)$ and $\theta = 9(9k+4)(15k+7)$.

CASE 10 (t = 10). Using (i), (ii), (ii), (iv) and (v) we find that $\lambda_2 = k$ and $\lambda_3 = -\frac{6k+10}{5}$, $\tau - \theta = -\frac{k+10}{5}$, $\delta = \frac{11k+10}{5}$, r = 10p and $\theta = 10p - \frac{6k^2 + 10k}{5}$. Using

(2.11) we find that 25p - 25 = 3k(11k + 20). Replacing k with 5k we arrive at $p = 33k^2 + 12k + 1$. So we obtain that G is a strongly regular graph of order $n = 3(11k + 2)^2$ and degree $r = 10(33k^2 + 12k + 1)$ with $\tau = 300k^2 + 109k + 8$ and $\theta = 10(5k + 1)(6k + 1)$.

PROPOSITION 2.12. Let G be a connected strongly regular graph of order n and degree r with $m_3 = (\frac{6}{5})m_2$. Then G belongs to the class (2^0) or $(\overline{3}^0)$ or $(\overline{4}^0)$ or (5^0) or $(\overline{6}^0)$ or (7^0) or $(\overline{8}^0)$ or (9^0) or (10^0) or $(\overline{11}^0)$ represented in Theorem 2.8.

PROOF. Let $m_2 = 5p$, $m_3 = 6p$ and n = 11p + 1 where $p \in \mathbb{N}$. Let $\lambda_3 = -k$ where k is a positive integer. Then according to Theorem 2.2 we have (i) $\lambda_2 = \frac{6k-t}{5}$; (ii) $\tau - \theta = \frac{k-t}{5}$; (iii) $\delta = \frac{11k-t}{5}$; (iv) r = pt and (v) $\theta = pt - \frac{6k^2-kt}{5}$, where $t = 1, 2, \ldots, 10$. In this case we can easily see that Theorem 2.2 (8⁰) reduces to

(2.12)
$$(5p+1)t^2 - 5(11p+1)t + 66k^2 - 12kt = 0$$

CASE 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{6k-1}{5}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-1}{5}, \delta = \frac{11k-1}{5}, r = p$ and $\theta = p - \frac{6k^2-k}{5}$. Using (2.12) we find that 25p+2 = 3k(11k-2). Replacing k with 5k+1 we arrive at $p = 33k^2+12k+1$. So we obtain that G is a strongly regular graph of order $n = 3(11k+2)^2$ and degree $r = 33k^2 + 12k + 1$ with $\tau = k(3k+2)$ and $\theta = k(3k+1)$.

CASE 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{6k-2}{5}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-2}{5}, \delta = \frac{11k-2}{5}, r = 2p$ and $\theta = 2p - \frac{6k^2 - 2k}{5}$. Using (2.12) we find that 15p+1 = k(11k-4). Replacing k with 15k+7 we arrive at $p = 165k^2+150k+34$. So we obtain that G is a strongly regular graph of order $n = 15(11k+5)^2$ and degree $r = 2(165k^2 + 150k + 34)$ with $\tau = 60k^2 + 57k + 13$ and $\theta = 6(2k+1)(5k+2)$.

CASE 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{6k-3}{5}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-3}{5}, \delta = \frac{11k-3}{5}, r = 3p$ and $\theta = 3p - \frac{6k^2 - 3k}{5}$. Using (2.12) we find that 20p + 1 = k(11k - 6). Replacing k with 10k + 3 we arrive at $p = 55k^2 + 30k + 4$. So we obtain that G is a strongly regular graph of order $n = 5(11k + 3)^2$ and degree $r = 3(55k^2 + 30k + 4)$ with $\tau = 45k^2 + 26k + 3$ and $\theta = 3(3k + 1)(5k + 1)$.

CASE 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{6k-4}{5}$ and $\lambda_3 = -k, \ \tau - \theta = \frac{k-4}{5}, \ \delta = \frac{11k-4}{5}, \ r = 4p$ and $\theta = 4p - \frac{6k^2-4k}{5}$. Using (2.12) we find that 70p + 2 = 3k(11k - 8). Replacing k with 70k - 6 we arrive at $p = 2310k^2 - 420k + 19$. So we obtain that G is a strongly regular graph of order $n = 210(11k-1)^2$ and degree $r = 4(2310k^2 - 420k + 19)$ with $\tau = 2(1680k^2 - 301k + 13)$ and $\theta = 28(10k-1)(12k-1)$.

CASE 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{6k-5}{5}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-5}{5}, \delta = \frac{11k-5}{5}, r = 5p$ and $\theta = 5p - \frac{6k^2-5k}{5}$. Using (2.12) we find that 25p = k(11k - 10). Replacing k with 5k we arrive at p = k(11k - 2). So we obtain that G is a strongly regular graph of order $n = (11k - 1)^2$ and degree r = 5k(11k - 2) with $\tau = 25k^2 - 4k - 1$ and $\theta = 5k(5k - 1)$.

CASE 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{6k-6}{5}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-6}{5}, \delta = \frac{11k-6}{5}, r = 6p$ and $\theta = 6p - \frac{6k^2 - 6k}{5}$. Using (2.12) we find

that 25p - 1 = k(11k - 12). Replacing k with 5k + 1 we arrive at p = k(11k + 2). So we obtain that G is a strongly regular graph of order $n = (11k + 1)^2$ and degree r = 6k(11k + 2) with $\tau = 36k^2 + 7k - 1$ and $\theta = 6k(6k + 1)$.

CASE 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{6k-7}{5}$ and $\lambda_3 = -k, \ \tau - \theta = \frac{k-7}{5}, \ \delta = \frac{11k-7}{5}, \ r = 7p$ and $\theta = 7p - \frac{6k^2-7k}{5}$. Using (2.12) we find that 70p - 7 = 3k(11k - 14). Replacing k with 70k + 7 we arrive at $p = 2310k^2 + 420k + 19$. So we obtain that G is a strongly regular graph of order $n = 210(11k+1)^2$ and degree $r = 7(2310k^2+420k+19)$ with $\tau = 14(735k^2+134k+6)$ and $\theta = 14(21k+2)(35k+3)$.

CASE 8 (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{6k-8}{5}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-8}{5}, \delta = \frac{11k-8}{5}, r = 8p$ and $\theta = 8p - \frac{6k^2 - 8k}{5}$. Using (2.12) we find that 20p - 4 = k(11k - 16). Replacing k with 10k - 2 we arrive at $p = 55k^2 - 30k + 4$. So we obtain that G is a strongly regular graph of order $n = 5(11k - 3)^2$ and degree $r = 8(55k^2 - 30k + 4)$ with $\tau = 2(5k - 1)(32k - 11)$ and $\theta = 8(4k - 1)(10k - 3)$.

CASE 9 (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{6k-9}{5}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-9}{5}, \delta = \frac{11k-9}{5}, r = 9p$ and $\theta = 9p - \frac{6k^2-9k}{5}$. Using (2.12) we find that 15p - 6 = k(11k - 18). Replacing k with 15k - 6 we arrive at $p = 165k^2 - 150k + 34$. So we obtain that G is a strongly regular graph of order $n = 15(11k-5)^2$ and degree $r = 9(165k^2 - 150k + 34)$ with $\tau = 3(405k^2 - 368k + 83)$ and $\theta = 9(9k - 4)(15k - 7)$. CASE 10 (t = 10). Using (i), (ii), (iii), (iv) and (v) we find that $\lambda_2 = \frac{6k-10}{5}$ and $\lambda_3 = -k, \tau - \theta = \frac{k-10}{5}, \delta = \frac{11k-10}{5}, r = 10p$ and $\theta = 10p - \frac{6k^2 - 10k}{5}$. Using (2.12) we find that 25p - 25 = 3k(11k - 20). Replacing k with 5k we arrive at $p = 33k^2 - 12k + 1$. So we obtain that G is a strongly regular graph of order $n = 3(11k - 2)^2$ and degree $r = 10(33k^2 - 12k + 1)$ with $\tau = 300k^2 - 109k + 8$ and $\theta = 10(5k - 1)(6k - 1)$.

REMARK 2.8. We note that $\overline{6K_2}$ is a strongly regular graph with $m_2 = (\frac{6}{5})m_3$. It is obtained from the class Theorem 2.8 $(\overline{5}^0)$ for k = 0.

THEOREM 2.8. Let G be a connected strongly regular graph of order n and degree r with $m_2 = (\frac{6}{5})m_3$ or $m_3 = (\frac{6}{5})m_2$. Then G is one of the following strongly regular graphs:

- (1⁰) G is the strongly regular graph $\overline{6K_2}$ of order n = 12 and degree r = 10with $\tau = 8$ and $\theta = 10$. Its eigenvalues are $\lambda_2 = 0$ and $\lambda_3 = -2$ with $m_2 = 6$ and $m_3 = 5$;
- (2⁰) G is a strongly regular graph of order $n = (11k 1)^2$ and degree r = 5k(11k 2) with $\tau = 25k^2 4k 1$ and $\theta = 5k(5k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 6k 1$ and $\lambda_3 = -5k$ with $m_2 = 5k(11k 2)$ and $m_3 = 6k(11k 2)$;
- $(\overline{2}^0)$ G is a strongly regular graph of order $n = (11k 1)^2$ and degree r = 6k(11k 2) with $\tau = 36k^2 7k 1$ and $\theta = 6k(6k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 5k 1$ and $\lambda_3 = -6k$ with $m_2 = 6k(11k 2)$ and $m_3 = 5k(11k 2)$;

- (3⁰) G is a strongly regular graph of order $n = (11k + 1)^2$ and degree r = 5k(11k + 2) with $\tau = 25k^2 + 4k 1$ and $\theta = 5k(5k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 5k$ and $\lambda_3 = -(6k + 1)$ with $m_2 = 6k(11k + 2)$ and $m_3 = 5k(11k + 2)$;
- ($\overline{3}^0$) G is a strongly regular graph of order $n = (11k + 1)^2$ and degree r = 6k(11k + 2) with $\tau = 36k^2 + 7k 1$ and $\theta = 6k(6k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 6k$ and $\lambda_3 = -(5k + 1)$ with $m_2 = 5k(11k + 2)$ and $m_3 = 6k(11k + 2)$;
- (4⁰) G is a strongly regular graph of order $n = 3(11k 2)^2$ and degree $r = 33k^2 12k + 1$ with $\tau = k(3k 2)$ and $\theta = k(3k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 5k 1$ and $\lambda_3 = -(6k 1)$ with $m_2 = 6(33k^2 12k + 1)$ and $m_3 = 5(33k^2 12k + 1)$;
- ($\overline{4}^{0}$) G is a strongly regular graph of order $n = 3(11k-2)^{2}$ and degree $r = 10(33k^{2}-12k+1)$ with $\tau = 300k^{2}-109k+8$ and $\theta = 10(5k-1)(6k-1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 6k-2$ and $\lambda_{3} = -5k$ with $m_{2} = 5(33k^{2}-12k+1)$ and $m_{3} = 6(33k^{2}-12k+1)$;
- (5⁰) G is a strongly regular graph of order $n = 3(11k + 2)^2$ and degree $r = 33k^2 + 12k + 1$ with $\tau = k(3k + 2)$ and $\theta = k(3k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 6k+1$ and $\lambda_3 = -(5k+1)$ with $m_2 = 5(33k^2+12k+1)$ and $m_3 = 6(33k^2+12k+1)$;
- ($\overline{5}^{0}$) G is a strongly regular graph of order $n = 3(11k + 2)^{2}$ and degree $r = 10(33k^{2} + 12k + 1)$ with $\tau = 300k^{2} + 109k + 8$ and $\theta = 10(5k + 1)(6k + 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 5k$ and $\lambda_{3} = -(6k + 2)$ with $m_{2} = 6(33k^{2} + 12k + 1)$ and $m_{3} = 5(33k^{2} + 12k + 1)$;
- (6⁰) G is a strongly regular graph of order $n = 5(11k 3)^2$ and degree $r = 3(55k^2 30k + 4)$ with $\tau = 45k^2 26k + 3$ and $\theta = 3(3k 1)(5k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 10k 3$ and $\lambda_3 = -(12k 3)$ with $m_2 = 6(55k^2 30k + 4)$ and $m_3 = 5(55k^2 30k + 4)$;
- ($\overline{6}^{0}$) G is a strongly regular graph of order $n = 5(11k 3)^{2}$ and degree $r = 8(55k^{2} 30k + 4)$ with $\tau = 2(5k 1)(32k 11)$ and $\theta = 8(4k 1)(10k 3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_{2} = 12k 4$ and $\lambda_{3} = -(10k 2)$ with $m_{2} = 5(55k^{2} 30k + 4)$ and $m_{3} = 6(55k^{2} 30k + 4)$;
- (7⁰) G is a strongly regular graph of order $n = 5(11k+3)^2$ and degree $r = 3(55k^2+30k+4)$ with $\tau = 45k^2+26k+3$ and $\theta = 3(3k+1)(5k+1)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 12k+3$ and $\lambda_3 = -(10k+3)$ with $m_2 = 5(55k^2+30k+4)$ and $m_3 = 6(55k^2+30k+4)$;
- (7⁰) G is a strongly regular graph of order $n = 5(11k+3)^2$ and degree $r = 8(55k^2+30k+4)$ with $\tau = 2(5k+1)(32k+11)$ and $\theta = 8(4k+1)(10k+3)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 10k+2$ and $\lambda_3 = -(12k+4)$ with $m_2 = 6(55k^2+30k+4)$ and $m_3 = 5(55k^2+30k+4)$;
- (8⁰) G is a strongly regular graph of order $n = 15(11k 5)^2$ and degree $r = 2(165k^2 150k + 34)$ with $\tau = 60k^2 57k + 13$ and $\theta = 6(2k 1)(5k 2)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 15k 7$ and $\lambda_3 = -(18k 8)$ with $m_2 = 6(165k^2 150k + 34)$ and $m_3 = 5(165k^2 150k + 34)$;

58

- ($\overline{8}^0$) G is a strongly regular graph of order $n = 15(11k 5)^2$ and degree $r = 9(165k^2 150k + 34)$ with $\tau = 3(405k^2 368k + 83)$ and $\theta = 9(9k 4)(15k 7)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 18k 9$ and $\lambda_3 = -(15k 6)$ with $m_2 = 5(165k^2 150k + 34)$ and $m_3 = 6(165k^2 150k + 34)$;
- (9⁰) G is a strongly regular graph of order $n = 15(11k + 5)^2$ and degree $r = 2(165k^2 + 150k + 34)$ with $\tau = 60k^2 + 57k + 13$ and $\theta = 6(2k + 1)(5k + 2)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 18k + 8$ and $\lambda_3 = -(15k + 7)$ with $m_2 = 5(165k^2 + 150k + 34)$ and $m_3 = 6(165k^2 + 150k + 34)$;
- ($\overline{9}^{0}$) G is a strongly regular graph of order $n = 15(11k + 5)^{2}$ and degree $r = 9(165k^{2}+150k+34)$ with $\tau = 3(405k^{2}+368k+83)$ and $\theta = 9(9k+4)(15k+7)$, where $k \ge 0$. Its eigenvalues are $\lambda_{2} = 15k + 6$ and $\lambda_{3} = -(18k + 9)$ with $m_{2} = 6(165k^{2}+150k+34)$ and $m_{3} = 5(165k^{2}+150k+34)$;
- (10⁰) G is a strongly regular graph of order $n = 210(11k 1)^2$ and degree $r = 4(2310k^2 420k + 19)$ with $\tau = 2(1680k^2 301k + 13)$ and $\theta = 28(10k 1)(12k 1)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 84k 8$ and $\lambda_3 = -(70k 6)$ with $m_2 = 5(2310k^2 420k + 19)$ and $m_3 = 6(2310k^2 420k + 19)$;
- ($\overline{10}^0$) G is a strongly regular graph of order $n = 210(11k 1)^2$ and degree $r = 7(2310k^2 420k + 19)$ with $\tau = 14(735k^2 134k + 6)$ and $\theta = 14(21k 2)(35k 3)$, where $k \in \mathbb{N}$. Its eigenvalues are $\lambda_2 = 70k 7$ and $\lambda_3 = -(84k 7)$ with $m_2 = 6(2310k^2 420k + 19)$ and $m_3 = 5(2310k^2 420k + 19)$;
- (11⁰) G is a strongly regular graph of order $n = 210(11k + 1)^2$ and degree $r = 4(2310k^2 + 420k + 19)$ with $\tau = 2(1680k^2 + 301k + 13)$ and $\theta = 28(10k + 1)(12k + 1)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 70k + 6$ and $\lambda_3 = -(84k + 8)$ with $m_2 = 6(2310k^2 + 420k + 19)$ and $m_3 = 5(2310k^2 + 420k + 19)$;
- (11⁰) G is a strongly regular graph of order $n = 210(11k + 1)^2$ and degree $r = 7(2310k^2 + 420k + 19)$ with $\tau = 14(735k^2 + 134k + 6)$ and $\theta = 14(21k + 2)(35k + 3)$, where $k \ge 0$. Its eigenvalues are $\lambda_2 = 84k + 7$ and $\lambda_3 = -(70k + 7)$ with $m_2 = 5(2310k^2 + 420k + 19)$ and $m_3 = 6(2310k^2 + 420k + 19)$.

PROOF. First, according to Remark 2.3 we have $5\alpha(\beta - 1) = 6(\alpha - 1)$, from which we find that $\alpha = 6$, $\beta = 2$. In view of this we obtain the strongly regular graph represented in Theorem 2.8 (1⁰). Next, according to Proposition 2.11 it turns out that G belongs to the class ($\overline{2}^0$) or (3^0) or (4^0) or ($\overline{5}^0$) or (6^0) or ($\overline{7}^0$) or (8^0) or ($\overline{9}^0$) or ($\overline{10}^0$) or (11^0) if $m_2 = (\frac{6}{5})m_3$. According to Proposition 2.12 it turns out that G belongs to the class (2^0) or ($\overline{3}^0$) or ($\overline{4}^0$) or (5^0) or ($\overline{6}^0$) or (7^0) or ($\overline{8}^0$) or (9^0) or (10^0) or ($\overline{11}^0$) if $m_3 = (\frac{6}{5})m_2$.

3. Concluding remarks

Using Theorems 2.1 and 2.2 it is possible to describe the parameters n, r, τ and θ for any connected strongly regular graph by using only one parameter k. In the forthcoming paper we shall describe the parameters n, r, τ and θ for strongly⁴ regular graphs⁵ with $m_2 = qm_3$ and $m_3 = qm_2$ for $q = \frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$.

Acknowledgments. The author is very grateful to the referees for their valuable comments and suggestions.

References

- 1. D. Cvetković, M. Doob, H. Sachs, *Spectra of graphs–Theory and applications*, 3rd revised and enlarged edition, J. A. Barth Verlag, Heidelberg–Leipzig, 1995.
- R. J. Elzinga, Strongly regular graphs: values of λ and μ for which there are only finitely many feasible (v, k, λ, μ), Electr. J. Linear Algebra 10 (2003), 232–239.
- 3. C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, 2001.
- 4. M. Lepović, On strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$, Serdica Math. J. **37** (2011), 1001–1012.
- 5. _____, On strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 5, 6, 7, 8, Sarajevo J. Math. **15(28)**(2) (2019), 209–225.
- 6. _____, On strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 9, 10, submitted.
- 7. _____, On strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for q = 11, 12, submitted.

Department of Mathematics University of Kragujevac Kragujevac Serbia lepovic@kg.ac.rs (Received 15 12 2019) (Revised 04 10 2020)

 $^{^{4}}$ All the results in this paper are verified by using the computer program srgpar.exe, written by the author in the programming language Borland C++Builder 5.5.

⁵One can use the web page https://www.win.tue.nl/ \sim {}aeb/graphs/srg/srgtab.html that contains the parameters of strongly regular graphs from 5 up to 1300 vertices.