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ON STRONGLY REGULAR GRAPHS WITH

m2 = qm3 AND m3 = qm2 WHERE q ∈ Q

Mirko Lepović

Abstract. We say that a regular graph G of order n and degree r > 1 (which
is not the complete graph) is strongly regular if there exist non-negative in-
tegers τ and θ such that |Si ∩ Sj | = τ for any two adjacent vertices i and j,
and |Si ∩ Sj | = θ for any two distinct non-adjacent vertices i and j, where
Sk denotes the neighborhood of the vertex k. Let λ1 = r, λ2 and λ3 be the
distinct eigenvalues of a connected strongly regular graph. Let m1 = 1, m2

and m3 denote the multiplicity of r, λ2 and λ3, respectively. We here describe
the parameters n, r, τ and θ for strongly regular graphs with m2 = qm3 and
m3 = qm2 for q = 3
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1. Introduction

Let G be a simple graph of order n with vertex set V (G) = {1, 2, . . . , n}. The
spectrum of G consists of the eigenvalues λ1 > λ2 > . . . > λn of its (0,1) adjacency
matrix A and is denoted by σ(G). We say that a regular graph G of order n and
degree r > 1 (which is not the complete graph Kn) is strongly regular if there
exist non-negative integers τ and θ such that |Si ∩ Sj | = τ for any two adjacent
vertices i and j, and |Si ∩ Sj | = θ for any two distinct non-adjacent vertices i and
j, where Sk ⊆ V (G) denotes the neighborhood of the vertex k. We know that a
regular connected graph G is strongly regular if and only if it has exactly three
distinct eigenvalues [1] (see also [3]). Let λ1 = r, λ2 and λ3 denote the distinct
eigenvalues of a connected strongly regular graph G. Let m1 = 1, m2 and m3

denote the multiplicity of r, λ2 and λ3. Further, let r = (n − 1) − r, λ2 = −λ3 − 1

and λ3 = −λ2 − 1 denote the distinct eigenvalues of the strongly regular graph G,
where G denotes the complement of G. Then τ = n − 2r − 2 + θ and θ = n − 2r + τ

where τ = τ(G) and θ = θ(G).

Remark 1.1. (i) if G is a disconnected strongly regular graph of degree r then
G = mKr+1, where mH denotes the m-fold union of the graph H ; (ii) G is a
disconnected strongly regular graph if and only if θ = 0.
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Remark 1.2. (i) a strongly regular graph G of order n = 4k + 1 and degree
r = 2k with τ = k −1 and θ = k is called a conference graph; (ii) a strongly regular
graph is a conference graph if and only if m2 = m3 and (iii) if m2 6= m3 then G is
an integral1 graph.

We have recently started to investigate strongly regular graphs with m2 = qm3

and m3 = qm2, where q is a positive integer [4]. In the same work we have
described the parameters n, r, τ and θ for strongly regular graphs with m2 = qm3

and m3 = qm2 for q = 2, 3, 4. Besides, (i) we have described in [5] the parameters
n, r, τ and θ for strongly regular graphs with m2 = qm3 and m3 = qm2 for
q = 5, 6, 7, 8; (ii) we have described in [6] the parameters n, r, τ and θ for strongly
regular graphs with m2 = qm3 and m3 = qm2 for q = 9, 10 and (iii) we have
described in [7] the parameters n, r, τ and θ for strongly regular graphs with
m2 = qm3 and m3 = qm2 for q = 11, 12. We now proceed to investigate strongly
regular graphs with m2 = qm3 and m3 = qm2, where q is a positive rational
number. In particular, we here describe the parameters of strongly regular graphs
with m2 = qm3 and m3 = qm2 for q = 3

2 , 4
3 , 5

2 , 5
3 , 5

4 , 6
5 , as follows. First,

Proposition 1.1 (Elzinga [2]). Let G be a connected or disconnected strongly

regular graph of order n and degree r. Then

(1.1) r2 − (τ − θ + 1)r − (n − 1)θ = 0.

Proposition 1.2 (Elzinga [2]). Let G be a connected strongly regular graph of

order n and degree r. Then

(1.2) 2r + (τ − θ)(m2 + m3) + δ(m2 − m3) = 0,

where δ = λ2 − λ3.

Second, in what follows (x, y) denotes the greatest common divisor of integers
x, y ∈ N, while x | y means that x divides y.

Remark 1.3. We note that (m2 = qm3 and m3 = qm2) is equivalent to the
assertion that (m2 = q−1m3 and m3 = q−1m2). In view of this2 we may assume
that q = a

b
so that (a, b) = 1 and a > b.

Using a similar procedure applied in [4], we can establish the parameters n, r,
τ and θ for strongly regular graphs with m2 = qm3 and m3 = qm2 for any fixed
value q ∈ Q, where q = a

b
so that (a, b) = 1 and a > b, as follows. First, let m3 = p

and m2 = (a
b
) p, where p is a positive integer. Since (a, b) = 1 it follows that b | p.

Replacing p with bp we obtain m3 = bp and m2 = ap. Since m2 + m3 = n − 1 we
obtain n = (a + b)p + 1. Next, since τ − θ = λ2 + λ3 and δ = λ2 − λ3 using (1.2)
we obtain r = p(b|λ3| − aλ2). Let b|λ3| − aλ2 = t where3 t = 1, 2, . . . , a + b − 1. Let

1We say that a connected or disconnected graph G is integral if its spectrum σ(G) consists
only of integral values.

2It exactly means that (m2 = qm3 and m3 = qm2) and (m2 = q−1m3 and m3 = q−1m2)
are related to the same classes of strongly regular graphs.

3We note first that t is a positive integer because r = pt. Second, we note that t > (a + b) is
not possible because in that case we have r = pt > (a + b)p > n − 1, a contradiction.
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λ2 = k where k is a positive integer. Then (i) λ3 = − ak+t
b

; (ii) τ − θ = − (a−b)k+t

b
;

(iii) δ = (a+b)k+t

b
and (iv) r = pt. Since δ2 = (τ − θ)2 + 4(r − θ) (see [2]) we obtain

(v) θ = pt − ak2+kt
b

. Using (ii), (iv) and (v), we can easily see that (1.1) reduces to

(1.3) (bp + 1)t2 − b
(

(a + b)p + 1
)

t + a(a + b)k2 + 2akt = 0.

Second, let m2 = bp, m3 = ap and n = (a+b)p+1 where (a, b) = 1 and a > b. Using
(1.2) we obtain r = p(a|λ3| − bλ2). Let a|λ3| − bλ2 = t where t = 1, 2, . . . , a + b − 1.

Let λ3 = −k where k is a positive integer. Then (i) λ2 = ak−t
b

; (ii) τ −θ = (a−b)k−t

b
;

(iii) δ = (a+b)k−t

b
; (iv) r = pt and (v) θ = pt − ak2

−kt
b

. Using (ii), (iv) and (v) we
can easily see that (1.1) reduces to

(1.4) (bp + 1)t2 − b
(

(a + b)p + 1
)

t + a(a + b)k2 − 2akt = 0.

Using (1.3) and (1.4), we can obtain for t = 1, 2, . . . , a + b − 1 the corresponding
classes of strongly regular graphs with m2 = (a

b
)m3 and m3 = (a

b
)m2, respectively.

Finally, we arrive at the following two results.

2. Main results

Theorem 2.1. Let G be a connected strongly regular graph of order n and

degree r with m2 = ap and m3 = bp, where a, b, p ∈ N so that (a, b) = 1 and a > b.

Then:

(10) n = (a + b)p + 1, (20) r = pt, (30) τ =
(

pt −
ak2 + kt

b

)

−
(a − b)k + t

b
,

(40) θ = pt −
ak2+kt

b
, (50) λ2 = k, (60) λ3 = −

ak+t

b
, (70) δ =

(a+b)k+t

b
,

(80) (bp + 1)t2 − b((a + b)p + 1)t + a(a + b)k2 + 2akt = 0,

for k ∈ N and t = 1, 2, . . . , a + b − 1, where δ = λ2 − λ3.

Theorem 2.2. Let G be a connected strongly regular graph of order n and

degree r with m2 = bp and m3 = ap, where a, b, p ∈ N so that (a, b) = 1 and a > b.

Then:

(10) n = (a + b)p + 1, (20) r = pt, (30) τ =
(

pt −
ak2 − kt

b

)

+
(a − b)k − t

b
,

(40) θ = pt−
ak2−kt

b
, (50) λ2 =

ak−t

b
, (60) λ3 = −k, (70) δ =

(a+b)k−t

b
,

(80) (bp + 1)t2 − b((a + b)p + 1)t + a(a + b)k2 − 2akt = 0,

for k ∈ N and t = 1, 2, . . . , a + b − 1, where δ = λ2 − λ3.

Remark 2.1. Since m2(G) = m3(G) and m3(G) = m2(G), we note that if
m2(G) = qm3(G), then m3(G) = qm2(G).

Remark 2.2. In Theorems 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8 the complements of

strongly regular graphs appear in pairs in (k0) and (k
0
) classes, where k denotes

the corresponding number of a class.
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Remark 2.3. αKβ is a strongly regular graph of order n = αβ and degree
r = (α − 1)β with τ = (α − 2)β and θ = (α − 1)β. Its eigenvalues are λ2 = 0 and
λ3 = −β with m2 = α(β − 1) and m3 = α − 1.

Proposition 2.1. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 3
2 )m3. Then G belongs to the class (2

0
) or (30) or (40) or

(5
0
) represented in Theorem 2.3.

Proof. Let m2 = 3p, m3 = 2p and n = 5p + 1 where p ∈ N. Let λ2 = k where
k is a positive integer. Then according to Theorem 2.1, we have (i) λ3 = − 3k+t

2 ;

(ii) τ − θ = − k+t
2 ; (iii) δ = 5k+t

2 ; (iv) r = pt and (v) θ = pt − 3k2+kt
2 , where

t = 1, 2, . . . , 4. In this case we can easily see that Theorem 2.1 (80) reduces to

(2.1) (2p + 1)t2 − 2(5p + 1)t + 15k2 + 6kt = 0.

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 3k+1
2 , τ − θ = − k+1

2 , δ = 5k+1
2 , r = p and θ = p − 3k2+k

2 . Using (2.1) we find

that 8p + 1 = 3k(5k + 2). Replacing k with 4k − 1 we arrive at p = 30k2 − 12k + 1.
So we obtain that G is a strongly regular graph of order n = 6(5k − 1)2 and degree
r = 30k2 − 12k + 1 with τ = 2k(3k − 2) and θ = 2k(3k − 1).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 3k+2
2 , τ − θ = − k+2

2 , δ = 5k+2
2 , r = 2p and θ = 2p − 3k2+2k

2 . Using (2.1) we find
that 4p = k(5k + 4). Replacing k with 2k we arrive at p = k(5k + 2). So we obtain
that G is a strongly regular graph of order n = (5k + 1)2 and degree r = 2k(5k + 2)
with τ = 4k2 + k − 1 and θ = 2k(2k + 1).

Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 3k+3
2 , τ − θ = − k+3

2 , δ = 5k+3
2 , r = 3p and θ = 3p − 3k2+3k

2 . Using (2.1) we find
that 4p − 1 = k(5k + 6). Replacing k with 2k − 1 we arrive at p = k(5k − 2). So
we obtain that G is a strongly regular graph of order n = (5k − 1)2 and degree
r = 3k(5k − 2) with τ = 9k2 − 4k − 1 and θ = 3k(3k − 1).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 3k+4
2 , τ − θ = − k+4

2 , δ = 5k+4
2 , r = 4p and θ = 4p − 3k2+4k

2 . Using (2.1) we find

that 8p − 8 = 3k(5k + 8). Replacing k with 4k we arrive at p = 30k2 + 12k + 1.
So we obtain that G is a strongly regular graph of order n = 6(5k + 1)2 and degree
r = 4(30k2 + 12k + 1) with τ = 2(3k + 1)(16k + 1) and θ = 4(4k + 1)(6k + 1). �

Proposition 2.2. Let G be a connected strongly regular graph of order n and

degree r with m3 = ( 3
2 )m2. Then G belongs to the class (20) or (3

0
) or (4

0
) or

(50) represented in Theorem 2.3.

Proof. Let m2 = 2p, m3 = 3p and n = 5p+1 where p ∈ N. Let λ3 = −k where
k is a positive integer. Then according to Theorem 2.2 we have (i) λ2 = 3k−t

2 ; (ii)

τ −θ = k−t
2 ; (iii) δ = 5k−t

2 ; (iv) r = pt and (v) θ = pt− 3k2
−kt
2 , where t = 1, 2, . . . , 4.

In this case we can easily see that Theorem 2.2 (80) reduces to

(2.2) (2p + 1)t2 − 2(5p + 1)t + 15k2 − 6kt = 0.



ON STRONGLY REGULAR GRAPHS WITH m2 = qm3 AND m3 = qm2 39

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 3k−1
2 and

λ3 = −k, τ − θ = k−1
2 , δ = 5k−1

2 , r = p and θ = p − 3k2
−k

2 . Using (2.2) we find

that 8p + 1 = 3k(5k − 2). Replacing k with 4k + 1 we arrive at p = 30k2 + 12k + 1.
So we obtain that G is a strongly regular graph of order n = 6(5k + 1)2 and degree
r = 30k2 + 12k + 1 with τ = 2k(3k + 2) and θ = 2k(3k + 1).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 3k−2
2 and

λ3 = −k, τ − θ = k−2
2 , δ = 5k−2

2 , r = 2p and θ = 2p − 3k2
−2k
2 . Using (2.2) we find

that 4p = k(5k − 4). Replacing k with 2k we arrive at p = k(5k − 2). So we obtain
that G is a strongly regular graph of order n = (5k − 1)2 and degree r = 2k(5k − 2)
with τ = 4k2 − k − 1 and θ = 2k(2k − 1).

Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 3k−3
2 and

λ3 = −k, τ − θ = k−3
2 , δ = 5k−3

2 , r = 3p and θ = 3p − 3k2
−3k
2 . Using (2.2) we

find that 4p − 1 = k(5k − 6). Replacing k with 2k + 1 we arrive at p = k(5k + 2).
So we obtain that G is a strongly regular graph of order n = (5k + 1)2 and degree
r = 3k(5k + 2) with τ = 9k2 + 4k − 1 and θ = 3k(3k + 1).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 3k−4
2 and

λ3 = −k, τ − θ = k−4
2 , δ = 5k−4

2 , r = 4p and θ = 4p − 3k2
−4k
2 . Using (2.2) we find

that 8p − 8 = 3k(5k − 8). Replacing k with 4k we arrive at p = 30k2 − 12k + 1.
So we obtain that G is a strongly regular graph of order n = 6(5k − 1)2 and degree
r = 4(30k2 − 12k + 1) with τ = 2(3k − 1)(16k − 1) and θ = 4(4k − 1)(6k − 1). �

Remark 2.4. We note that 3K2 is a strongly regular graph with m2 = ( 3
2 )m3.

It is obtained from the class Theorem 2.3 (5
0
) for k = 0.

Theorem 2.3. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 3
2 )m3 or m3 = ( 3

2 )m2. Then G is one of the following

strongly regular graphs:

(10) G is the strongly regular graph 3K2 of order n = 6 and degree r = 4 with

τ = 2 and θ = 4. Its eigenvalues are λ2 = 0 and λ3 = −2 with m2 = 3
and m3 = 2,

(20) G is a strongly regular graph of order n = (5k − 1)2 and degree r =
2k(5k − 2) with τ = 4k2 − k − 1 and θ = 2k(2k − 1), where k ∈ N. Its

eigenvalues are λ2 = 3k − 1 and λ3 = −2k with m2 = 2k(5k − 2) and

m3 = 3k(5k − 2);

(2
0
) G is a strongly regular graph of order n = (5k − 1)2 and degree r =

3k(5k − 2) with τ = 9k2 − 4k − 1 and θ = 3k(3k − 1), where k ∈ N. Its

eigenvalues are λ2 = 2k − 1 and λ3 = −3k with m2 = 3k(5k − 2) and

m3 = 2k(5k − 2);
(30) G is a strongly regular graph of order n = (5k + 1)2 and degree r =

2k(5k + 2) with τ = 4k2 + k − 1 and θ = 2k(2k + 1), where k ∈ N. Its

eigenvalues are λ2 = 2k and λ3 = −(3k + 1) with m2 = 3k(5k + 2) and

m3 = 2k(5k + 2);

(3
0
) G is a strongly regular graph of order n = (5k + 1)2 and degree r =

3k(5k + 2) with τ = 9k2 + 4k − 1 and θ = 3k(3k + 1), where k ∈ N. Its
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eigenvalues are λ2 = 3k and λ3 = −(2k + 1) with m2 = 2k(5k + 2) and

m3 = 3k(5k + 2);
(40) G is a strongly regular graph of order n = 6(5k − 1)2 and degree r =

30k2 − 12k + 1 with τ = 2k(3k − 2) and θ = 2k(3k − 1), where k ∈ N. Its

eigenvalues are λ2 = 4k−1 and λ3 = −(6k−1) with m2 = 3(30k2−12k+1)
and m3 = 2(30k2 − 12k + 1);

(4
0
) G is a strongly regular graph of order n = 6(5k − 1)2 and degree r =

4(30k2 − 12k + 1) with τ = 2(3k − 1)(16k − 1) and θ = 4(4k − 1)(6k − 1),
where k ∈ N. Its eigenvalues are λ2 = 6k − 2 and λ3 = −4k with m2 =
2(30k2 − 12k + 1) and m3 = 3(30k2 − 12k + 1);

(50) G is a strongly regular graph of order n = 6(5k + 1)2 and degree r =
30k2 + 12k + 1 with τ = 2k(3k + 2) and θ = 2k(3k + 1), where k ∈ N. Its

eigenvalues are λ2 = 6k+1 and λ3 = −(4k+1) with m2 = 2(30k2+12k+1)
and m3 = 3(30k2 + 12k + 1);

(5
0
) G is a strongly regular graph of order n = 6(5k + 1)2 and degree r =

4(30k2 + 12k + 1) with τ = 2(3k + 1)(16k + 1) and θ = 4(4k + 1)(6k + 1),
where k ∈ N. Its eigenvalues are λ2 = 4k and λ3 = −(6k + 2) with

m2 = 3(30k2 + 12k + 1) and m3 = 2(30k2 + 12k + 1).

Proof. First, according to Remark 2.3 we have 2α(β − 1) = 3(α − 1), from
which we find that α = 3, β = 2. In view of this we obtain the strongly regular
graph represented in Theorem 2.3 (10). Next, according to Proposition 2.1 it turns

out that G belongs to the class (2
0
) or (30) or (40) or (5

0
) if m2 = ( 3

2 )m3. According

to Proposition 2.2 it turns out that G belongs to the class (20) or (3
0
) or (4

0
) or

(50) if m3 = ( 3
2 )m2. �

Proposition 2.3. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 4
3 )m3. Then G belongs to the class (2

0
) or (30) or (40) or

(5
0
) or (6

0
) or (70) represented in Theorem 2.4.

Proof. Let m2 = 4p, m3 = 3p and n = 7p + 1 where p ∈ N. Let λ2 = k where
k is a positive integer. Then according to Theorem 2.1 we have (i) λ3 = − 4k+t

3 ;

(ii) τ − θ = − k+t
3 ; (iii) δ = 7k+t

3 ; (iv) r = pt and (v) θ = pt − 4k2+kt
3 , where

t = 1, 2, . . . , 6. In this case we can easily see that Theorem 2.1 (80) reduces to

(2.3) (3p + 1)t2 − 3(7p + 1)t + 28k2 + 8kt = 0.

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 4k+1
3 , τ − θ = − k+1

3 , δ = 7k+1
3 , r = p and θ = p − 4k2+k

3 . Using (2.3) we find

that 9p + 1 = 2k(7k + 2). Replacing k with 3k − 1 we arrive at p = 14k2 − 8k + 1.
So we obtain that G is a strongly regular graph of order n = 2(7k − 2)2 and degree
r = 14k2 − 8k + 1 with τ = 2k(k − 1) and θ = k(2k − 1).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 4k+2
3 , τ − θ = − k+2

3 , δ = 7k+2
3 , r = 2p and θ = 2p − 4k2+2k

3 . Using (2.3) we find

that 15p+1 = 2k(7k+4). Replacing k with 15k+4 we arrive at p = 210k2+120k+17.
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So we obtain that G is a strongly regular graph of order n = 30(7k +2)2 and degree
r = 2(210k2 + 120k + 17) with τ = 120k2 + 65k + 8 and θ = 10(3k + 1)(4k + 1).

Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 4k+3
3 , τ − θ = − k+3

3 , δ = 7k+3
3 , r = 3p and θ = 3p − 4k2+3k

3 . Using (2.3) we find
that 9p = k(7k + 6). Replacing k with 3k we arrive at p = k(7k + 2). So we obtain
that G is a strongly regular graph of order n = (7k + 1)2 and degree r = 3k(7k + 2)
with τ = 9k2 + 2k − 1 and θ = 3k(3k + 1).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 4k+4
3 , τ − θ = − k+4

3 , δ = 7k+4
3 , r = 4p and θ = 4p − 4k2+4k

3 . Using (2.3) we find
that 9p − 1 = k(7k + 8). Replacing k with 3k − 1 we arrive at p = k(7k − 2). So
we obtain that G is a strongly regular graph of order n = (7k − 1)2 and degree
r = 4k(7k − 2) with τ = 16k2 − 5k − 1 and θ = 4k(4k − 1).

Case 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 4k+5
3 , τ − θ = − k+5

3 , δ = 7k+5
3 , r = 5p and θ = 5p − 4k2+5k

3 . Using (2.3) we
find that 15p − 5 = 2k(7k + 10). Replacing k with 15k − 5 we arrive at p =
210k2 − 120k + 17. So we obtain that G is a strongly regular graph of order
n = 30(7k − 2)2 and degree r = 5(210k2 − 120k + 17) with τ = 10(75k2 − 43k + 6)
and θ = 5(10k − 3)(15k − 4).

Case 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 4k+6
3 , τ − θ = − k+6

3 , δ = 7k+6
3 , r = 6p and θ = 6p − 4k2+6k

3 . Using (2.3) we find

that 9p − 9 = 2k(7k + 12). Replacing k with 3k we arrive at p = 14k2 + 8k + 1.
So we obtain that G is a strongly regular graph of order n = 2(7k + 2)2 and degree
r = 6(14k2 + 8k + 1) with τ = (8k + 1)(9k + 4) and θ = 6(3k + 1)(4k + 1). �

Proposition 2.4. Let G be a connected strongly regular graph of order n and

degree r with m3 = ( 4
3 )m2. Then G belongs to the class (20) or (3

0
) or (4

0
) or

(50) or (60) or (7
0
) represented in Theorem 2.4.

Proof. Let m2 = 3p, m3 = 4p and n = 7p+1 where p ∈ N. Let λ3 = −k where
k is a positive integer. Then according to Theorem 2.2 we have (i) λ2 = 4k−t

3 ; (ii)

τ −θ = k−t
3 ; (iii) δ = 7k−t

3 ; (iv) r = pt and (v) θ = pt− 4k2
−kt
3 , where t = 1, 2, . . . , 6.

In this case we can easily see that Theorem 2.2 (80) reduces to

(2.4) (3p + 1)t2 − 3(7p + 1)t + 28k2 − 8kt = 0.

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 4k−1
3 and

λ3 = −k, τ − θ = k−1
3 , δ = 7k−1

3 , r = p and θ = p − 4k2
−k

3 . Using (2.4) we find

that 9p + 1 = 2k(7k − 2). Replacing k with 3k + 1 we arrive at p = 14k2 + 8k + 1.
So we obtain that G is a strongly regular graph of order n = 2(7k + 2)2 and degree
r = 14k2 + 8k + 1 with τ = 2k(k + 1) and θ = k(2k + 1).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 4k−2
3 and

λ3 = −k, τ − θ = k−2
3 , δ = 7k−2

3 , r = 2p and θ = 2p − 4k2
−2k
3 . Using (2.4) we find

that 15p+1 = 2k(7k−4). Replacing k with 15k−4 we arrive at p = 210k2−120k+17.
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So we obtain that G is a strongly regular graph of order n = 30(7k −2)2 and degree
r = 2(210k2 − 120k + 17) with τ = 120k2 − 65k + 8 and θ = 10(3k − 1)(4k − 1).

Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 4k−3
3 and

λ3 = −k, τ − θ = k−3
3 , δ = 7k−3

3 , r = 3p and θ = 3p − 4k2
−3k
3 . Using (2.4) we find

that 9p = k(7k − 6). Replacing k with 3k we arrive at p = k(7k − 2). So we obtain
that G is a strongly regular graph of order n = (7k − 1)2 and degree r = 3k(7k − 2)
with τ = 9k2 − 2k − 1 and θ = 3k(3k − 1).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 4k−4
3 and

λ3 = −k, τ − θ = k−4
3 , δ = 7k−4

3 , r = 4p and θ = 4p − 4k2
−4k
3 . Using (2.4) we

find that 9p − 1 = k(7k − 8). Replacing k with 3k + 1 we arrive at p = k(7k + 2).
So we obtain that G is a strongly regular graph of order n = (7k + 1)2 and degree
r = 4k(7k + 2) with τ = 16k2 + 5k − 1 and θ = 4k(4k + 1).

Case 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 4k−5
3 and λ3 =

−k, τ − θ = k−5
3 , δ = 7k−5

3 , r = 5p and θ = 5p − 4k2
−5k
3 . Using (2.4) we find that

15p−5 = 2k(7k −10). Replacing k with 15k +5 we arrive at p = 210k2 +120k +17.
So we obtain that G is a strongly regular graph of order n = 30(7k +2)2 and degree
r = 5(210k2 + 120k + 17) with τ = 10(75k2 + 43k + 6) and θ = 5(10k + 3)(15k + 4).

Case 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 4k−6
3 and

λ3 = −k, τ − θ = k−6
3 , δ = 7k−6

3 , r = 6p and θ = 6p − 4k2
−6k
3 . Using (2.4) we find

that 9p − 9 = 2k(7k − 12). Replacing k with 3k we arrive at p = 14k2 − 8k + 1.
So we obtain that G is a strongly regular graph of order n = 2(7k − 2)2 and degree
r = 6(14k2 − 8k + 1) with τ = (8k − 1)(9k − 4) and θ = 6(3k − 1)(4k − 1). �

Remark 2.5. We note that 4K2 is a strongly regular graph with m2 = ( 4
3 )m3.

It is obtained from the class Theorem 2.4 (5
0
) for k = 0.

Theorem 2.4. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 4
3 )m3 or m3 = ( 4

3 )m2. Then G is one of the following

strongly regular graphs:

(10) G is the strongly regular graph 4K2 of order n = 8 and degree r = 6 with

τ = 4 and θ = 6. Its eigenvalues are λ2 = 0 and λ3 = −2 with m2 = 4
and m3 = 3;

(20) G is a strongly regular graph of order n = (7k − 1)2 and degree r =
3k(7k − 2) with τ = 9k2 − 2k − 1 and θ = 3k(3k − 1), where k ∈ N. Its

eigenvalues are λ2 = 4k − 1 and λ3 = −3k with m2 = 3k(7k − 2) and

m3 = 4k(7k − 2);

(2
0
) G is a strongly regular graph of order n = (7k − 1)2 and degree r =

4k(7k − 2) with τ = 16k2 − 5k − 1 and θ = 4k(4k − 1), where k ∈ N. Its

eigenvalues are λ2 = 3k − 1 and λ3 = −4k with m2 = 4k(7k − 2) and

m3 = 3k(7k − 2);
(30) G is a strongly regular graph of order n = (7k + 1)2 and degree r =

3k(7k + 2) with τ = 9k2 + 2k − 1 and θ = 3k(3k + 1), where k ∈ N. Its
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eigenvalues are λ2 = 3k and λ3 = −(4k + 1) with m2 = 4k(7k + 2) and

m3 = 3k(7k + 2);

(3
0
) G is a strongly regular graph of order n = (7k + 1)2 and degree r =

4k(7k + 2) with τ = 16k2 + 5k − 1 and θ = 4k(4k + 1), where k ∈ N. Its

eigenvalues are λ2 = 4k and λ3 = −(3k + 1) with m2 = 3k(7k + 2) and

m3 = 4k(7k + 2);
(40) G is a strongly regular graph of order n = 2(7k − 2)2 and degree r =

14k2 − 8k + 1 with τ = 2k(k − 1) and θ = k(2k − 1), where k ∈ N. Its

eigenvalues are λ2 = 3k−1 and λ3 = −(4k−1) with m2 = 4(14k2−8k+1)
and m3 = 3(14k2 − 8k + 1);

(4
0
) G is a strongly regular graph of order n = 2(7k − 2)2 and degree r =

6(14k2 − 8k + 1) with τ = (8k − 1)(9k − 4) and θ = 6(3k − 1)(4k − 1),
where k ∈ N. Its eigenvalues are λ2 = 4k − 2 and λ3 = −3k with m2 =
3(14k2 − 8k + 1) and m3 = 4(14k2 − 8k + 1);

(50) G is a strongly regular graph of order n = 2(7k + 2)2 and degree r =
14k2 + 8k + 1 with τ = 2k(k + 1) and θ = k(2k + 1), where k ∈ N. Its

eigenvalues are λ2 = 4k+1 and λ3 = −(3k+1) with m2 = 3(14k2+8k+1)
and m3 = 4(14k2 + 8k + 1);

(5
0
) G is a strongly regular graph of order n = 2(7k + 2)2 and degree r =

6(14k2 + 8k + 1) with τ = (8k + 1)(9k + 4) and θ = 6(3k + 1)(4k + 1),
where k ∈ N. Its eigenvalues are λ2 = 3k and λ3 = −(4k + 2) with

m2 = 4(14k2 + 8k + 1) and m3 = 3(14k2 + 8k + 1);
(60) G is a strongly regular graph of order n = 30(7k − 2)2 and degree r =

2(210k2 −120k +17) with τ = 120k2 −65k +8 and θ = 10(3k −1)(4k −1),
where k ∈ N. Its eigenvalues are λ2 = 20k − 6 and λ3 = −(15k − 4) with

m2 = 3(210k2 − 120k + 17) and m3 = 4(210k2 − 120k + 17);

(6
0
) G is a strongly regular graph of order n = 30(7k − 2)2 and degree r =

5(210k2 −120k+17) with τ = 10(75k2 −43k+6) and θ = 5(10k−3)(15k−
4), where k ∈ N. Its eigenvalues are λ2 = 15k − 5 and λ3 = −(20k − 5)
with m2 = 4(210k2 − 120k + 17) and m3 = 3(210k2 − 120k + 17);

(70) G is a strongly regular graph of order n = 30(7k + 2)2 and degree r =
2(210k2 +120k +17) with τ = 120k2 +65k +8 and θ = 10(3k +1)(4k +1),
where k > 0. Its eigenvalues are λ2 = 15k + 4 and λ3 = −(20k + 6) with

m2 = 4(210k2 + 120k + 17) and m3 = 3(210k2 + 120k + 17);

(7
0
) G is a strongly regular graph of order n = 30(7k + 2)2 and degree r =

5(210k2 +120k+17) with τ = 10(75k2 +43k+6) and θ = 5(10k+3)(15k+
4), where k > 0. Its eigenvalues are λ2 = 20k + 5 and λ3 = −(15k + 5)
with m2 = 3(210k2 + 120k + 17) and m3 = 4(210k2 + 120k + 17).

Proof. First, according to Remark 2.3 we have 3α(β − 1) = 4(α − 1), from
which we find that α = 4, β = 2. In view of this, we obtain the strongly regular
graph represented in Theorem 2.4 (10). Next, according to Proposition 2.3 it turns

out that G belongs to the class (2
0
) or (30) or (40) or (5

0
) or (6

0
) or (70) if
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m2 = ( 4
3 )m3. According to Proposition 2.4 it turns out that G belongs to the class

(20) or (3
0
) or (4

0
) or (50) or (60) or (7

0
) if m3 = ( 4

3 )m2. �

Proposition 2.5. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 5
2 )m3. Then G belongs to the class (2

0
) or (30) or (40) or

(5
0
) or (6

0
) or (70) represented in Theorem 2.5.

Proof. Let m2 = 5p, m3 = 2p and n = 7p + 1 where p ∈ N. Let λ2 = k where
k is a positive integer. Then according to Theorem 2.1 we have (i) λ3 = − 5k+t

2 ;

(ii) τ − θ = − 3k+t
2 ; (iii) δ = 7k+t

2 ; (iv) r = pt and (v) θ = pt − 5k2+kt
2 , where

t = 1, 2, . . . , 6. In this case we can easily see that Theorem 2.1 (80) reduces to

(2.5) (2p + 1)t2 − 2(7p + 1)t + 35k2 + 10kt = 0.

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+1
2 , τ −θ = − 3k+1

2 , δ = 7k+1
2 , r = p and θ = p− 5k2+k

2 . Using (2.5) we find that

12p + 1 = 5k(7k + 2). Replacing k with 6k − 1 we arrive at p = 105k2 − 30k + 2. So
we obtain that G is a strongly regular graph of order n = 15(7k − 1)2 and degree
r = 105k2 − 30k + 2 with τ = 15k2 − 12k + 1 and θ = 3k(5k − 1).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+2
2 , τ − θ = − 3k+2

2 , δ = 7k+2
2 , r = 2p and θ = 2p − 5k2+2k

2 . Using (2.5) we find
that 4p = k(7k + 4). Replacing k with 2k we arrive at p = k(7k + 2). So we obtain
that G is a strongly regular graph of order n = (7k + 1)2 and degree r = 2k(7k + 2)
with τ = 4k2 − k − 1 and θ = 2k(2k + 1).

Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+3
2 , τ − θ = − 3k+3

2 , δ = 7k+3
2 , r = 3p and θ = 3p − 5k2+3k

2 . Using (2.5) we find

that 24p−3 = 5k(7k+6). Replacing k with 12k+3 we arrive at p = 210k2+120k+17.
So we obtain that G is a strongly regular graph of order n = 30(7k +2)2 and degree
r = 3(210k2 + 120k + 17) with τ = 18(3k + 1)(5k + 1) and θ = 6(3k + 1)(15k + 4).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+4
2 , τ − θ = − 3k+4

2 , δ = 7k+4
2 , r = 4p and θ = 4p − 5k2+4k

2 . Using (2.5) we find

that 24p−8 = 5k(7k+8). Replacing k with 12k−4 we arrive at p = 210k2−120k+17.
So we obtain that G is a strongly regular graph of order n = 30(7k −2)2 and degree
r = 4(210k2 −120k+17) with τ = 2(240k2 −141k+20) and θ = 12(4k−1)(10k−3).
Case 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+5
2 , τ − θ = − 3k+5

2 , δ = 7k+5
2 , r = 5p and θ = 5p − 5k2+5k

2 . Using (2.5) we
find that 4p − 3 = k(7k + 10). Replacing k with 2k − 1 we arrive at p = k(7k − 2).
So we obtain that G is a strongly regular graph of order n = (7k − 1)2 and degree
r = 5k(7k − 2) with τ = 25k2 − 8k − 1 and θ = 5k(5k − 1).

Case 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+6
2 , τ − θ = − 3k+6

2 , δ = 7k+6
2 , r = 6p and θ = 6p − 5k2+6k

2 . Using (2.5) we find

that 12p − 24 = 5k(7k + 12). Replacing k with 6k we arrive at p = 105k2 + 30k + 2.
So we obtain that G is a strongly regular graph of order n = 15(7k +1)2 and degree
r = 6(105k2 + 30k + 2) with τ = 9(5k + 1)(12k + 1) and θ = 6(6k + 1)(15k + 2). �
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Proposition 2.6. Let G be a connected strongly regular graph of order n and

degree r with m3 = ( 5
2 )m2. Then G belongs to the class (20) or (3

0
) or (4

0
) or

(50) or (60) or (7
0
) represented in Theorem 2.5.

Proof. Let m2 = 2p, m3 = 5p and n = 7p+1 where p ∈ N. Let λ3 = −k where
k is a positive integer. Then according to Theorem 2.2 we have (i) λ2 = 5k−t

2 ; (ii)

τ −θ = 3k−t
2 ; (iii) δ = 7k−t

2 ; (iv) r = pt and (v) θ = pt− 5k2
−kt
2 , where t = 1, 2, . . . , 6.

In this case we can easily see that Theorem 2.2 (80) reduces to

(2.6) (2p + 1)t2 − 2(7p + 1)t + 35k2 − 10kt = 0.

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−1
2 and

λ3 = −k, τ − θ = 3k−1
2 , δ = 7k−1

2 , r = p and θ = p − 5k2
−k

2 . Using (2.6) we find

that 12p+1 = 5k(7k−2). Replacing k with 6k+1 we arrive at p = 105k2 +30k+2.
So we obtain that G is a strongly regular graph of order n = 15(7k +1)2 and degree
r = 105k2 + 30k + 2 with τ = 15k2 + 12k + 1 and θ = 3k(5k + 1).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−2
2 and

λ3 = −k, τ − θ = 3k−2
2 , δ = 7k−2

2 , r = 2p and θ = 2p − 5k2
−2k
2 . Using (2.6) we find

that 4p = k(7k − 4). Replacing k with 2k we arrive at p = k(7k − 2). So we obtain
that G is a strongly regular graph of order n = (7k − 1)2 and degree r = 2k(7k − 2)
with τ = 4k2 + k − 1 and θ = 2k(2k − 1).

Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−3
2 and

λ3 = −k, τ − θ = 3k−3
2 , δ = 7k−3

2 , r = 3p and θ = 3p − 5k2
−3k
2 . Using (2.6) we find

that 24p−3 = 5k(7k−6). Replacing k with 12k−3 we arrive at p = 210k2−120k+17.
So we obtain that G is a strongly regular graph of order n = 30(7k −2)2 and degree
r = 3(210k2 − 120k + 17) with τ = 18(3k − 1)(5k − 1) and θ = 6(3k − 1)(15k − 4).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−4
2 and

λ3 = −k, τ − θ = 3k−4
2 , δ = 7k−4

2 , r = 4p and θ = 4p − 5k2
−4k
2 . Using (2.6) we find

that 24p−8 = 5k(7k−8). Replacing k with 12k+4 we arrive at p = 210k2+120k+17.
So we obtain that G is a strongly regular graph of order n = 30(7k +2)2 and degree
r = 4(210k2 +120k+17) with τ = 2(240k2 +141k+20) and θ = 12(4k+1)(10k+3).

Case 5. (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−5
2 and

λ3 = −k, τ − θ = 3k−5
2 , δ = 7k−5

2 , r = 5p and θ = 5p − 5k2
−5k
2 . Using (2.6) we

find that 4p − 3 = k(7k − 10). Replacing k with 2k + 1 we arrive at p = k(7k + 2).
So we obtain that G is a strongly regular graph of order n = (7k + 1)2 and degree
r = 5k(7k + 2) with τ = 25k2 + 8k − 1 and θ = 5k(5k + 1).

Case 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−6
2 and

λ3 = −k, τ − θ = 3k−6
2 , δ = 7k−6

2 , r = 6p and θ = 6p − 5k2
−6k
2 . Using (2.6) we find

that 12p − 24 = 5k(7k − 12). Replacing k with 6k we arrive at p = 105k2 − 30k + 2.
So we obtain that G is a strongly regular graph of order n = 15(7k −1)2 and degree
r = 6(105k2 − 30k + 2) with τ = 9(5k − 1)(12k − 1) and θ = 6(6k − 1)(15k − 2). �

Remark 2.6. We note that 5K3 is a strongly regular graph with m2 = ( 5
2 )m3.

It is obtained from the class Theorem 2.5 (5
0
) for k = 0.
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Theorem 2.5. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 5
2 )m3 or m3 = ( 5

2 )m2. Then G is one of the following

strongly regular graphs:

(10) G is the strongly regular graph 5K3 of order n = 15 and degree r = 12
with τ = 9 and θ = 12. Its eigenvalues are λ2 = 0 and λ3 = −3 with

m2 = 10 and m3 = 4;

(20) G is a strongly regular graph of order n = (7k − 1)2 and degree r =
2k(7k − 2) with τ = 4k2 + k − 1 and θ = 2k(2k − 1), where k ∈ N. Its

eigenvalues are λ2 = 5k − 1 and λ3 = −2k with m2 = 2k(7k − 2) and

m3 = 5k(7k − 2);

(2
0
) G is a strongly regular graph of order n = (7k − 1)2 and degree r =

5k(7k − 2) with τ = 25k2 − 8k − 1 and θ = 5k(5k − 1), where k ∈ N. Its

eigenvalues are λ2 = 2k − 1 and λ3 = −5k with m2 = 5k(7k − 2) and

m3 = 2k(7k − 2);
(30) G is a strongly regular graph of order n = (7k + 1)2 and degree r =

2k(7k + 2) with τ = 4k2 − k − 1 and θ = 2k(2k + 1), where k ∈ N. Its

eigenvalues are λ2 = 2k and λ3 = −(5k + 1) with m2 = 5k(7k + 2) and

m3 = 2k(7k + 2);

(3
0
) G is a strongly regular graph of order n = (7k + 1)2 and degree r =

5k(7k + 2) with τ = 25k2 + 8k − 1 and θ = 5k(5k + 1), where k ∈ N. Its

eigenvalues are λ2 = 5k and λ3 = −(2k + 1) with m2 = 2k(7k + 2) and

m3 = 5k(7k + 2);
(40) G is a strongly regular graph of order n = 15(7k − 1)2 and degree r =

105k2 − 30k + 2 with τ = 15k2 − 12k + 1 and θ = 3k(5k − 1), where

k ∈ N. Its eigenvalues are λ2 = 6k − 1 and λ3 = −(15k − 2) with

m2 = 5(105k2 − 30k + 2) and m3 = 2(105k2 − 30k + 2);

(4
0
) G is a strongly regular graph of order n = 15(7k − 1)2 and degree r =

6(105k2 −30k +2) with τ = 9(5k −1)(12k −1) and θ = 6(6k −1)(15k −2),
where k ∈ N. Its eigenvalues are λ2 = 15k − 3 and λ3 = −6k with

m2 = 2(105k2 − 30k + 2) and m3 = 5(105k2 − 30k + 2);
(50) G is a strongly regular graph of order n = 15(7k + 1)2 and degree r =

105k2 + 30k + 2 with τ = 15k2 + 12k + 1 and θ = 3k(5k + 1), where

k ∈ N. Its eigenvalues are λ2 = 15k + 2 and λ3 = −(6k + 1) with

m2 = 2(105k2 + 30k + 2) and m3 = 5(105k2 + 30k + 2);

(5
0
) G is a strongly regular graph of order n = 15(7k + 1)2 and degree r =

6(105k2 +30k +2) with τ = 9(5k +1)(12k +1) and θ = 6(6k +1)(15k +2),
where k ∈ N. Its eigenvalues are λ2 = 6k and λ3 = −(15k + 3) with

m2 = 5(105k2 + 30k + 2) and m3 = 2(105k2 + 30k + 2);
(60) G is a strongly regular graph of order n = 30(7k − 2)2 and degree r =

3(210k2−120k+17) with τ = 18(3k−1)(5k−1) and θ = 6(3k−1)(15k−4),
where k ∈ N. Its eigenvalues are λ2 = 30k − 9 and λ3 = −(12k − 3) with

m2 = 2(210k2 − 120k + 17) and m3 = 5(210k2 − 120k + 17) ;

(6
0
) G is a strongly regular graph of order n = 30(7k − 2)2 and degree r =

4(210k2−120k+17) with τ = 2(240k2−141k+20) and θ = 12(4k−1)(10k−
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3), where k ∈ N. Its eigenvalues are λ2 = 12k − 4 and λ3 = −(30k − 8)
with m2 = 5(210k2 − 120k + 17) and m3 = 2(210k2 − 120k + 17);

(70) G is a strongly regular graph of order n = 30(7k + 2)2 and degree r =
3(210k2+120k+17) with τ = 18(3k+1)(5k+1) and θ = 6(3k+1)(15k+4),
where k > 0. Its eigenvalues are λ2 = 12k + 3 and λ3 = −(30k + 9) with

m2 = 5(210k2 + 120k + 17) and m3 = 2(210k2 + 120k + 17);

(7
0
) G is a strongly regular graph of order n = 30(7k + 2)2 and degree r =

4(210k2+120k+17) with τ = 2(240k2+141k+20) and θ = 12(4k+1)(10k+
3), where k > 0. Its eigenvalues are λ2 = 30k + 8 and λ3 = −(12k + 4)
with m2 = 2(210k2 + 120k + 17) and m3 = 5(210k2 + 120k + 17).

Proof. First, according to Remark 2.3 we have 2α(β − 1) = 5(α − 1), from
which we find that α = 5, β = 3. In view of this we obtain the strongly regular
graph represented in Theorem 2.5 (10). Next, according to Proposition 2.5 it turns

out that G belongs to the class (2
0
) or (30) or (40) or (5

0
) or (6

0
) or (70) if

m2 = ( 5
2 )m3. According to Proposition 2.6 it turns out that G belongs to the class

(20) or (3
0
) or (4

0
) or (50) or (60) or (7

0
) if m3 = ( 5

2 )m2. �

Proposition 2.7. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 5
3 )m3. Then G belongs to the class (1

0
) or (20) or (30) or

(4
0
) represented in Theorem 2.6.

Proof. Let m2 = 5p, m3 = 3p and n = 8p + 1 where p ∈ N. Let λ2 = k where
k is a positive integer. Then according to Theorem 2.1 we have (i) λ3 = − 5k+t

3 ;

(ii) τ − θ = − 2k+t
3 ; (iii) δ = 8k+t

3 ; (iv) r = pt and (v) θ = pt − 5k2+kt
3 , where

t = 1, 2, . . . , 7. In this case we can easily see that Theorem 2.1 (80) reduces to

(2.7) (3p + 1)t2 − 3(8p + 1)t + 40k2 + 10kt = 0.

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+1
3 , τ −θ = − 2k+1

3 , δ = 8k+1
3 , r = p and θ = p− 5k2+k

3 . Using (2.7) we find that

21p+2 = 10k(4k+1). Replacing k with 21k−8 we arrive at p = 840k2−630k+118.
So we obtain that G is a strongly regular graph of order n = 105(8k−3)2 and degree
r = 840k2 − 630k + 118 with τ = 105k2 − 91k + 19 and θ = 7(3k − 1)(5k − 2).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+2
3 , τ − θ = − 2k+2

3 , δ = 8k+2
3 , r = 2p and θ = 2p − 5k2+2k

3 . Using (2.7) we find
that 18p + 1 = 10k(2k + 1), a contradiction because 2 ∤ 18p + 1.

Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+3
3 , τ − θ = − 2k+3

3 , δ = 8k+3
3 , r = 3p and θ = 3p − 5k2+3k

3 . Using (2.7) we
find that 9p = 2k(4k + 3). Replacing k with 3k we arrive at p = 2k(4k + 1). So
we obtain that G is a strongly regular graph of order n = (8k + 1)2 and degree
r = 6k(4k + 1) with τ = 9k2 + k − 1 and θ = 3k(3k + 1).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+4
3 , τ − θ = − 2k+4

3 , δ = 8k+4
3 , r = 4p and θ = 4p − 5k2+4k

3 . Using (2.7) we find
that 12p − 1 = 10k(k + 1), a contradiction because 2 ∤ 12p − 1.
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Case 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+5
3 , τ − θ = − 2k+5

3 , δ = 8k+5
3 , r = 5p and θ = 5p − 5k2+5k

3 . Using (2.7) we find
that 9p − 2 = 2k(4k + 5). Replacing k with 3k − 1 we arrive at p = 2k(4k − 1).
So we obtain that G is a strongly regular graph of order n = (8k − 1)2 and degree
r = 10k(4k − 1) with τ = 25k2 − 7k − 1 and θ = 5k(5k − 1).

Case 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+6
3 , τ − θ = − 2k+6

3 , δ = 8k+6
3 , r = 6p and θ = 6p − 5k2+6k

3 . Using (2.7) we find
that 18p − 9 = 10k(2k + 3), a contradiction because 2 ∤ 18p − 9.

Case 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+7
3 , τ − θ = − 2k+7

3 , δ = 8k+7
3 , r = 7p and θ = 7p − 5k2+7k

3 . Using (2.7)
we find that 21p − 28 = 10k(4k + 7). Replacing k with 21k + 7 we arrive at
p = 840k2 + 630k + 118. So we obtain that G is a strongly regular graph of order
n = 105(8k+3)2 and degree r = 7(840k2+630k+118) with τ = 7(735k2+551k+103)
and θ = 7(21k + 8)(35k + 13). �

Proposition 2.8. Let G be a connected strongly regular graph of order n and

degree r with m3 = ( 5
3 )m2. Then G belongs to the class (10) or (2

0
) or (3

0
) or

(40) represented in Theorem 2.6.

Proof. Let m2 = 3p, m3 = 5p and n = 8p+1 where p ∈ N. Let λ3 = −k where
k is a positive integer. Then according to Theorem 2.2 we have (i) λ2 = 5k−t

3 ; (ii)

τ −θ = 2k−t
3 ; (iii) δ = 8k−t

3 ; (iv) r = pt and (v) θ = pt− 5k2
−kt
3 , where t = 1, 2, . . . , 7.

In this case we can easily see that Theorem 2.2 (80) reduces to

(2.8) (3p + 1)t2 − 3(8p + 1)t + 40k2 − 10kt = 0.

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−1
3 and

λ3 = −k, τ −θ = 2k−1
3 , δ = 8k−1

3 , r = p and θ = p− 5k2
−k

3 . Using (2.8) we find that

21p+2 = 10k(4k−1). Replacing k with 21k+8 we arrive at p = 840k2+630k+118.
So we obtain that G is a strongly regular graph of order n = 105(8k+3)2 and degree
r = 840k2 + 630k + 118 with τ = 105k2 + 91k + 19 and θ = 7(3k + 1)(5k + 2).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−2
3 and

λ3 = −k, τ − θ = 2k−2
3 , δ = 8k−2

3 , r = 2p and θ = 2p − 5k2
−2k
3 . Using (2.8) we find

that 18p + 1 = 10k(2k − 1), a contradiction because 2 ∤ 18p + 1.

Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−3
3 and

λ3 = −k, τ − θ = 2k−3
3 , δ = 8k−3

3 , r = 3p and θ = 3p − 5k2
−3k
3 . Using (2.8) we

find that 9p = 2k(4k − 3). Replacing k with 3k we arrive at p = 2k(4k − 1). So
we obtain that G is a strongly regular graph of order n = (8k − 1)2 and degree
r = 6k(4k − 1) with τ = 9k2 − k − 1 and θ = 3k(3k − 1).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−4
3 and

λ3 = −k, τ − θ = 2k−4
3 , δ = 8k−4

3 , r = 4p and θ = 4p − 5k2
−4k
3 . Using (2.8) we find

that 12p − 1 = 10k(k − 1), a contradiction because 2 ∤ 12p − 1.

Case 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−5
3 and

λ3 = −k, τ − θ = 2k−5
3 , δ = 8k−5

3 , r = 5p and θ = 5p − 5k2
−5k
3 . Using (2.8) we find
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that 9p − 2 = 2k(4k − 5). Replacing k with 3k + 1 we arrive at p = 2k(4k + 1).
So we obtain that G is a strongly regular graph of order n = (8k + 1)2 and degree
r = 10k(4k + 1) with τ = 25k2 + 7k − 1 and θ = 5k(5k + 1).

Case 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−6
3 and

λ3 = −k, τ − θ = 2k−6
3 , δ = 8k−6

3 , r = 6p and θ = 6p − 5k2
−6k
3 . Using (2.8) we find

that 18p − 9 = 10k(2k − 3), a contradiction because 2 ∤ 18p − 9.

Case 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−7
3 and

λ3 = −k, τ − θ = 2k−7
3 , δ = 8k−7

3 , r = 7p and θ = 7p − 5k2
−7k
3 . Using (2.8)

we find that 21p − 28 = 10k(4k − 7). Replacing k with 21k − 7 we arrive at
p = 840k2 − 630k + 118. So we obtain that G is a strongly regular graph of order
n = 105(8k−3)2 and degree r = 7(840k2−630k+118) with τ = 7(735k2−551k+103)
and θ = 7(21k − 8)(35k − 13). �

Theorem 2.6. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 5
3 )m3 or m3 = ( 5

3 )m2. Then G is one of the following

strongly regular graphs:

(10) G is a strongly regular graph of order n = (8k − 1)2 and degree r =
6k(4k − 1) with τ = 9k2 − k − 1 and θ = 3k(3k − 1), where k ∈ N. Its

eigenvalues are λ2 = 5k − 1 and λ3 = −3k with m2 = 6k(4k − 1) and

m3 = 10k(4k − 1);

(1
0
) G is a strongly regular graph of order n = (8k − 1)2 and degree r =

10k(4k − 1) with τ = 25k2 − 7k − 1 and θ = 5k(5k − 1), where k ∈ N. Its

eigenvalues are λ2 = 3k − 1 and λ3 = −5k with m2 = 10k(4k − 1) and

m3 = 6k(4k − 1);
(20) G is a strongly regular graph of order n = (8k + 1)2 and degree r =

6k(4k + 1) with τ = 9k2 + k − 1 and θ = 3k(3k + 1), where k ∈ N. Its

eigenvalues are λ2 = 3k and λ3 = −(5k + 1) with m2 = 10k(4k + 1) and

m3 = 6k(4k + 1);

(2
0
) G is a strongly regular graph of order n = (8k + 1)2 and degree r =

10k(4k + 1) with τ = 25k2 + 7k − 1 and θ = 5k(5k + 1), where k ∈ N. Its

eigenvalues are λ2 = 5k and λ3 = −(3k + 1) with m2 = 6k(4k + 1) and

m3 = 10k(4k + 1);
(30) G is a strongly regular graph of order n = 105(8k − 3)2 and degree r =

840k2 − 630k + 118 with τ = 105k2 − 91k + 19 and θ = 7(3k − 1)(5k − 2),
where k ∈ N. Its eigenvalues are λ2 = 21k − 8 and λ3 = −(35k − 13) with

m2 = 5(840k2 − 630k + 118) and m3 = 3(840k2 − 630k + 118);

(3
0
) G is a strongly regular graph of order n = 105(8k − 3)2 and degree r =

7(840k2 − 630k + 118) with τ = 7(735k2 − 551k + 103) and θ = 7(21k −
8)(35k − 13), where k ∈ N. Its eigenvalues are λ2 = 35k − 14 and λ3 =
−(21k − 7) with m2 = 3(840k2 − 630k + 118) and m3 = 5(840k2 − 630k +
118);

(40) G is a strongly regular graph of order n = 105(8k + 3)2 and degree r =
840k2 + 630k + 118 with τ = 105k2 + 91k + 19 and θ = 7(3k + 1)(5k + 2),
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where k > 0. Its eigenvalues are λ2 = 35k + 13 and λ3 = −(21k + 8) with

m2 = 3(840k2 + 630k + 118) and m3 = 5(840k2 + 630k + 118);

(4
0
) G is a strongly regular graph of order n = 105(8k + 3)2 and degree r =

7(840k2 + 630k + 118) with τ = 7(735k2 + 551k + 103) and θ = 7(21k +
8)(35k + 13), where k > 0. Its eigenvalues are λ2 = 21k + 7 and λ3 =
−(35k +14) with m2 = 5(840k2 +630k +118) and m3 = 3(840k2 +630k +
118).

Proof. First, according to Remark 2.3 we have 3α(β − 1) = 5(α − 1), from
which we find no integral solution for α and β. Next, according to Proposition 2.7

it turns out that G belongs to the class (1
0
) or (20) or (30) or (4

0
) if m2 = ( 5

3 )m3.

According to Proposition 2.8 it turns out that G belongs to the class (10) or (2
0
)

or (3
0
) or (40) if m3 = ( 5

3 )m2. �

Proposition 2.9. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 5
4 )m3. Then G belongs to the class (2

0
) or (30) or (40) or

(5
0
) or (6

0
) or (70) or (8

0
) or (90) represented in Theorem 2.7.

Proof. Let m2 = 5p, m3 = 4p and n = 9p + 1 where p ∈ N. Let λ2 = k where
k is a positive integer. Then according to Theorem 2.1 we have (i) λ3 = − 5k+t

4 ;

(ii) τ − θ = − k+t
4 ; (iii) δ = 9k+t

4 ; (iv) r = pt and (v) θ = pt − 5k2+kt
4 , where

t = 1, 2, . . . , 8. In this case we can easily see that Theorem 2.1 (80) reduces to

(2.9) (4p + 1)t2 − 4(9p + 1)t + 45k2 + 10kt = 0.

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+1
4 , τ − θ = − k+1

4 , δ = 9k+1
4 , r = p and θ = p − 5k2+k

4 . Using (2.9) we find that

32p + 3 = 5k(9k + 2). Replacing k with 8k − 1 we arrive at p = 90k2 − 20k + 1. So
we obtain that G is a strongly regular graph of order n = 10(9k − 1)2 and degree
r = 90k2 − 20k + 1 with τ = 2k(5k − 2) and θ = 2k(5k − 1).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+2
4 , τ − θ = − k+2

4 , δ = 9k+2
4 , r = 2p and θ = 2p − 5k2+2k

4 . Using (2.9) we find

that 56p+4 = 5k(9k+4). Replacing k with 28k+6 we arrive at p = 630k2+280k+31.
So we obtain that G is a strongly regular graph of order n = 70(9k +2)2 and degree
r = 2(630k2 + 280k + 31) with τ = 280k2 + 119k + 12 and θ = 14(4k + 1)(5k + 1).

Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+3
4 , τ − θ = − k+3

4 , δ = 9k+3
4 , r = 3p and θ = 3p − 5k2+3k

4 . Using (2.9) we find

that 24p+1 = 5k(3k+2). Replacing k with 12k+1 we arrive at p = 90k2 +20k+1.
So we obtain that G is a strongly regular graph of order n = 10(9k +1)2 and degree
r = 3(90k2 + 20k + 1) with τ = 18k(5k + 1) and θ = (6k + 1)(15k + 1).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+4
4 , τ − θ = − k+4

4 , δ = 9k+4
4 , r = 4p and θ = 4p − 5k2+4k

4 . Using (2.9) we find
that 16p = k(9k +8). Replacing k with 4k we arrive at p = k(9k +2). So we obtain
that G is a strongly regular graph of order n = (9k + 1)2 and degree r = 4k(9k + 2)
with τ = 16k2 + 3k − 1 and θ = 4k(4k + 1).



ON STRONGLY REGULAR GRAPHS WITH m2 = qm3 AND m3 = qm2 51

Case 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+5
4 , τ − θ = − k+5

4 , δ = 9k+5
4 , r = 5p and θ = 5p − 5k2+5k

4 . Using (2.9) we find
that 16p − 1 = k(9k + 10). Replacing k with 4k − 1 we arrive at p = k(9k − 2).
So we obtain that G is a strongly regular graph of order n = (9k − 1)2 and degree
r = 5k(9k − 2) with τ = 25k2 − 6k − 1 and θ = 5k(5k − 1).

Case 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+6
4 , τ − θ = − k+6

4 , δ = 9k+6
4 , r = 6p and θ = 6p − 5k2+6k

4 . Using (2.9) we find

that 24p−4 = 5k(3k+4). Replacing k with 12k−2 we arrive at p = 90k2 −20k+1.
So we obtain that G is a strongly regular graph of order n = 10(9k −1)2 and degree
r = 6(90k2 − 20k + 1) with τ = 3(120k2 − 27k + 1) and θ = 2(12k − 1)(15k − 2).

Case 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 5k+7
4 , τ − θ = − k+7

4 , δ = 9k+7
4 , r = 7p and θ = 7p − 5k2+7k

4 . Using (2.9)
we find that 56p − 21 = 5k(9k + 14). Replacing k with 28k − 7 we arrive at
p = 630k2 − 280k + 31. So we obtain that G is a strongly regular graph of order
n = 70(9k −2)2 and degree r = 7(630k2 −280k +31) with τ = 14(5k −1)(49k −12)
and θ = 7(14k − 3)(35k − 8).
Case 8. (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and

λ3 = − 5k+8
4 , τ − θ = − k+8

4 , δ = 9k+8
4 , r = 8p and θ = 8p − 5k2+8k

4 . Using (2.9) we

find that 32p−32 = 5k(9k+16). Replacing k with 8k we arrive at p = 90k2+20k+1.
So we obtain that G is a strongly regular graph of order n = 10(9k +1)2 and degree
r = 8(90k2 + 20k + 1) with τ = 2(320k2 + 71k + 3) and θ = 8(8k + 1)(10k + 1). �

Proposition 2.10. Let G be a connected strongly regular graph of order n and

degree r with m3 = ( 5
4 )m2. Then G belongs to the class (20) or (3

0
) or (4

0
) or

(50) or (60) or (7
0
) or (80) or (9

0
) represented in Theorem 2.7.

Proof. Let m2 = 4p, m3 = 5p and n = 9p+1 where p ∈ N. Let λ3 = −k where
k is a positive integer. Then according to Theorem 2.2 we have (i) λ2 = 5k−t

4 ; (ii)

τ −θ = k−t
4 ; (iii) δ = 9k−t

4 ; (iv) r = pt and (v) θ = pt− 5k2
−kt
4 , where t = 1, 2, . . . , 8.

In this case we can easily see that Theorem 2.2 (80) reduces to

(2.10) (4p + 1)t2 − 4(9p + 1)t + 45k2 − 10kt = 0.

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−1
4 and

λ3 = −k, τ − θ = k−1
4 , δ = 9k−1

4 , r = p and θ = p − 5k2
−k

4 . Using (2.10) we find

that 32p + 3 = 5k(9k − 2). Replacing k with 8k + 1 we arrive at p = 90k2 + 20k + 1.
So we obtain that G is a strongly regular graph of order n = 10(9k +1)2 and degree
r = 90k2 + 20k + 1 with τ = 2k(5k + 2) and θ = 2k(5k + 1).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−2
4 and

λ3 = −k, τ − θ = k−2
4 , δ = 9k−2

4 , r = 2p and θ = 2p − 5k2
−2k
4 . Using (2.10) we find

that 56p+4 = 5k(9k−4). Replacing k with 28k−6 we arrive at p = 630k2−280k+31.
So we obtain that G is a strongly regular graph of order n = 70(9k −2)2 and degree
r = 2(630k2 − 280k + 31) with τ = 280k2 − 119k + 12 and θ = 14(4k − 1)(5k − 1).
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Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−3
4 and

λ3 = −k, τ − θ = k−3
4 , δ = 9k−3

4 , r = 3p and θ = 3p − 5k2
−3k
4 . Using (2.10) we find

that 24p+1 = 5k(3k−2). Replacing k with 12k−1 we arrive at p = 90k2 −20k+1.
So we obtain that G is a strongly regular graph of order n = 10(9k −1)2 and degree
r = 3(90k2 − 20k + 1) with τ = 18k(5k − 1) and θ = (6k − 1)(15k − 1).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−4
4 and

λ3 = −k, τ − θ = k−4
4 , δ = 9k−4

4 , r = 4p and θ = 4p − 5k2
−4k
4 . Using (2.10) we find

that 16p = k(9k −8). Replacing k with 4k we arrive at p = k(9k −2). So we obtain
that G is a strongly regular graph of order n = (9k − 1)2 and degree r = 4k(9k − 2)
with τ = 16k2 − 3k − 1 and θ = 4k(4k − 1).

Case 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−5
4 and

λ3 = −k, τ − θ = k−5
4 , δ = 9k−5

4 , r = 5p and θ = 5p − 5k2
−5k
4 . Using (2.10) we find

that 16p − 1 = k(9k − 10). Replacing k with 4k + 1 we arrive at p = k(9k + 2).
So we obtain that G is a strongly regular graph of order n = (9k + 1)2 and degree
r = 5k(9k + 2) with τ = 25k2 + 6k − 1 and θ = 5k(5k + 1).

Case 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−6
4 and

λ3 = −k, τ − θ = k−6
4 , δ = 9k−6

4 , r = 6p and θ = 6p − 5k2
−6k
4 . Using (2.10) we find

that 24p−4 = 5k(3k−4). Replacing k with 12k+2 we arrive at p = 90k2 +20k+1.
So we obtain that G is a strongly regular graph of order n = 10(9k +1)2 and degree
r = 6(90k2 + 20k + 1) with τ = 3(120k2 + 27k + 1) and θ = 2(12k + 1)(15k + 2).

Case 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−7
4 and

λ3 = −k, τ − θ = k−7
4 , δ = 9k−7

4 , r = 7p and θ = 7p − 5k2
−7k
4 . Using (2.10)

we find that 56p − 21 = 5k(9k − 14). Replacing k with 28k + 7 we arrive at
p = 630k2 + 280k + 31. So we obtain that G is a strongly regular graph of order
n = 70(9k +2)2 and degree r = 7(630k2 +280k +31) with τ = 14(5k +1)(49k +12)
and θ = 7(14k + 3)(35k + 8).

Case 8 (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 5k−8
4 and

λ3 = −k, τ − θ = k−8
4 , δ = 9k−8

4 , r = 8p and θ = 8p − 5k2
−8k
4 . Using (2.10) we find

that 32p − 32 = 5k(9k − 16). Replacing k with 8k we arrive at p = 90k2 − 20k + 1.
So we obtain that G is a strongly regular graph of order n = 10(9k −1)2 and degree
r = 8(90k2 − 20k + 1) with τ = 2(320k2 − 71k + 3) and θ = 8(8k − 1)(10k − 1). �

Remark 2.7. We note that 5K2 is a strongly regular graph with m2 = ( 5
4 )m3.

It is obtained from class Theorem 2.7 (6
0
) for k = 0.

Theorem 2.7. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 5
4 )m3 or m3 = ( 5

4 )m2. Then G is one of the following

strongly regular graphs:

(10) G is the strongly regular graph 5K2 of order n = 10 and degree r = 8 with

τ = 6 and θ = 8. Its eigenvalues are λ2 = 0 and λ3 = −2 with m2 = 5
and m3 = 4;

(20) G is a strongly regular graph of order n = (9k − 1)2 and degree r =
4k(9k − 2) with τ = 16k2 − 3k − 1 and θ = 4k(4k − 1), where k ∈ N. Its
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eigenvalues are λ2 = 5k − 1 and λ3 = −4k with m2 = 4k(9k − 2) and

m3 = 5k(9k − 2);

(2
0
) G is a strongly regular graph of order n = (9k − 1)2 and degree r =

5k(9k − 2) with τ = 25k2 − 6k − 1 and θ = 5k(5k − 1), where k ∈ N. Its

eigenvalues are λ2 = 4k − 1 and λ3 = −5k with m2 = 5k(9k − 2) and

m3 = 4k(9k − 2);
(30) G is a strongly regular graph of order n = (9k + 1)2 and degree r =

4k(9k + 2) with τ = 16k2 + 3k − 1 and θ = 4k(4k + 1), where k ∈ N. Its

eigenvalues are λ2 = 4k and λ3 = −(5k + 1) with m2 = 5k(9k + 2) and

m3 = 4k(9k + 2);

(3
0
) G is a strongly regular graph of order n = (9k + 1)2 and degree r =

5k(9k + 2) with τ = 25k2 + 6k − 1 and θ = 5k(5k + 1), where k ∈ N. Its

eigenvalues are λ2 = 5k and λ3 = −(4k + 1) with m2 = 4k(9k + 2) and

m3 = 5k(9k + 2);
(40) G is a strongly regular graph of order n = 10(9k − 1)2 and degree r =

90k2 − 20k + 1 with τ = 2k(5k − 2) and θ = 2k(5k − 1), where k ∈ N.

Its eigenvalues are λ2 = 8k − 1 and λ3 = −(10k − 1) with m2 = 5(90k2 −
20k + 1) and m3 = 4(90k2 − 20k + 1);

(4
0
) G is a strongly regular graph of order n = 10(9k − 1)2 and degree r =

8(90k2 − 20k + 1) with τ = 2(320k2 − 71k + 3) and θ = 8(8k − 1)(10k − 1),
where k ∈ N. Its eigenvalues are λ2 = 10k − 2 and λ3 = −8k with

m2 = 4(90k2 − 20k + 1) and m3 = 5(90k2 − 20k + 1);
(50) G is a strongly regular graph of order n = 10(9k − 1)2 and degree r =

3(90k2 − 20k + 1) with τ = 18k(5k − 1) and θ = (6k − 1)(15k − 1), where

k ∈ N. Its eigenvalues are λ2 = 15k − 2 and λ3 = −(12k − 1) with

m2 = 4(90k2 − 20k + 1) and m3 = 5(90k2 − 20k + 1);

(5
0
) G is a strongly regular graph of order n = 10(9k − 1)2 and degree r =

6(90k2 −20k+1) with τ = 3(120k2 −27k+1) and θ = 2(12k−1)(15k−2),
where k ∈ N. Its eigenvalues are λ2 = 12k − 2 and λ3 = −(15k − 1) with

m2 = 5(90k2 − 20k + 1) and m3 = 4(90k2 − 20k + 1);
(60) G is a strongly regular graph of order n = 10(9k + 1)2 and degree r =

90k2 + 20k + 1 with τ = 2k(5k + 2) and θ = 2k(5k + 1), where k ∈ N.

Its eigenvalues are λ2 = 10k + 1 and λ3 = −(8k + 1) with m2 = 4(90k2 +
20k + 1) and m3 = 5(90k2 + 20k + 1);

(6
0
) G is a strongly regular graph of order n = 10(9k + 1)2 and degree r =

8(90k2 + 20k + 1) with τ = 2(320k2 + 71k + 3) and θ = 8(8k + 1)(10k + 1),
where k ∈ N. Its eigenvalues are λ2 = 8k and λ3 = −(10k + 2) with

m2 = 5(90k2 + 20k + 1) and m3 = 4(90k2 + 20k + 1);
(70) G is a strongly regular graph of order n = 10(9k + 1)2 and degree r =

3(90k2 + 20k + 1) with τ = 18k(5k + 1) and θ = (6k + 1)(15k + 1), where

k > 0. Its eigenvalues are λ2 = 12k + 1 and λ3 = −(15k + 2) with

m2 = 5(90k2 + 20k + 1) and m3 = 4(90k2 + 20k + 1);

(7
0
) G is a strongly regular graph of order n = 10(9k + 1)2 and degree r =

6(90k2 +20k+1) with τ = 3(120k2 +27k+1) and θ = 2(12k+1)(15k+2),
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where k > 0. Its eigenvalues are λ2 = 15k + 1 and λ3 = −(12k + 2) with

m2 = 4(90k2 + 20k + 1) and m3 = 5(90k2 + 20k + 1);
(80) G is a strongly regular graph of order n = 70(9k − 2)2 and degree r =

2(630k2−280k+31) with τ = 280k2−119k+12 and θ = 14(4k−1)(5k−1),
where k ∈ N. Its eigenvalues are λ2 = 35k − 8 and λ3 = −(28k − 6) with

m2 = 4(630k2 − 280k + 31) and m3 = 5(630k2 − 280k + 31);

(8
0
) G is a strongly regular graph of order n = 70(9k − 2)2 and degree r =

7(630k2−280k+31) with τ = 14(5k−1)(49k−12) and θ = 7(14k−3)(35k−
8), where k ∈ N. Its eigenvalues are λ2 = 28k − 7 and λ3 = −(35k − 7)
with m2 = 5(630k2 − 280k + 31) and m3 = 4(630k2 − 280k + 31);

(90) G is a strongly regular graph of order n = 70(9k + 2)2 and degree r =
2(630k2+280k+31) with τ = 280k2+119k+12 and θ = 14(4k+1)(5k+1),
where k > 0. Its eigenvalues are λ2 = 28k + 6 and λ3 = −(35k + 8) with

m2 = 5(630k2 + 280k + 31) and m3 = 4(630k2 + 280k + 31);

(9
0
) G is a strongly regular graph of order n = 70(9k + 2)2 and degree r =

7(630k2+280k+31) with τ = 14(5k+1)(49k+12) and θ = 7(14k+3)(35k+
8), where k > 0. Its eigenvalues are λ2 = 35k + 7 and λ3 = −(28k + 7)
with m2 = 4(630k2 + 280k + 31) and m3 = 5(630k2 + 280k + 31).

Proof. First, according to Remark 2.3 we have 4α(β − 1) = 5(α − 1), from
which we find that α = 5, β = 2. In view of this we obtain the strongly regular
graph represented in Theorem 2.7 (10). Next, according to Proposition 2.9 it turns

out that G belongs to the class (2
0
) or (30) or (40) or (5

0
) or (6

0
) or (70) or

(8
0
) or (90) if m2 = ( 5

4 )m3. According to Proposition 2.10 it turns out that G

belongs to the class (20) or (3
0
) or (4

0
) or (50) or (60) or (7

0
) or (80) or (9

0
) if

m3 = ( 5
4 )m2. �

Proposition 2.11. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 6
5 )m3. Then G belongs to the class (2

0
) or (30) or (40) or

(5
0
) or (60) or (7

0
) or (80) or (9

0
) or (10

0
) or (110) represented in Theorem 2.8.

Proof. Let m2 = 6p, m3 = 5p and n = 11p+1 where p ∈ N. Let λ2 = k where
k is a positive integer. Then according to Theorem 2.1 we have (i) λ3 = − 6k+t

5 ;

(ii) τ − θ = − k+t
5 ; (iii) δ = 11k+t

5 ; (iv) r = pt and (v) θ = pt − 6k2+kt
5 , where

t = 1, 2, . . . , 10. In this case we can easily see that Theorem 2.1 (80) reduces to

(2.11) (5p + 1)t2 − 5(11p + 1)t + 66k2 + 12kt = 0.

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 6k+1
5 , τ − θ = − k+1

5 , δ = 11k+1
5 , r = p and θ = p − 6k2+k

5 . Using (2.11) we find

that 25p+2 = 3k(11k+2). Replacing k with 5k−1 we arrive at p = 33k2 −12k+1.
So we obtain that G is a strongly regular graph of order n = 3(11k −2)2 and degree
r = 33k2 − 12k + 1 with τ = k(3k − 2) and θ = k(3k − 1).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 6k+2
5 , τ −θ = − k+2

5 , δ = 11k+2
5 , r = 2p and θ = 2p− 6k2+2k

5 . Using (2.11) we find

that 15p+1 = k(11k+4). Replacing k with 15k−7 we arrive at p = 165k2−150k+34.
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So we obtain that G is a strongly regular graph of order n = 15(11k−5)2 and degree
r = 2(165k2 − 150k + 34) with τ = 60k2 − 57k + 13 and θ = 6(2k − 1)(5k − 2).

Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 6k+3
5 , τ −θ = − k+3

5 , δ = 11k+3
5 , r = 3p and θ = 3p− 6k2+3k

5 . Using (2.11) we find

that 20p+1 = k(11k+6). Replacing k with 10k−3 we arrive at p = 55k2 −30k+4.
So we obtain that G is a strongly regular graph of order n = 5(11k −3)2 and degree
r = 3(55k2 − 30k + 4) with τ = 45k2 − 26k + 3 and θ = 3(3k − 1)(5k − 1).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 6k+4
5 , τ − θ = − k+4

5 , δ = 11k+4
5 , r = 4p and θ = 4p − 6k2+4k

5 . Using (2.11)
we find that 70p + 2 = 3k(11k + 8). Replacing k with 70k + 6 we arrive at p =
2310k2 + 420k + 19. So we obtain that G is a strongly regular graph of order n =
210(11k +1)2 and degree r = 4(2310k2 +420k +19) with τ = 2(1680k2 +301k +13)
and θ = 28(10k + 1)(12k + 1).

Case 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 6k+5
5 , τ − θ = − k+5

5 , δ = 11k+5
5 , r = 5p and θ = 5p − 6k2+5k

5 . Using (2.11) we
find that 25p = k(11k + 10). Replacing k with 5k we arrive at p = k(11k + 2). So
we obtain that G is a strongly regular graph of order n = (11k + 1)2 and degree
r = 5k(11k + 2) with τ = 25k2 + 4k − 1 and θ = 5k(5k + 1).

Case 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 6k+6
5 , τ −θ = − k+6

5 , δ = 11k+6
5 , r = 6p and θ = 6p− 6k2+6k

5 . Using (2.11) we find
that 25p − 1 = k(11k + 12). Replacing k with 5k − 1 we arrive at p = k(11k − 2).
So we obtain that G is a strongly regular graph of order n = (11k − 1)2 and degree
r = 6k(11k − 2) with τ = 36k2 − 7k − 1 and θ = 6k(6k − 1).

Case 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 6k+7
5 , τ − θ = − k+7

5 , δ = 11k+7
5 , r = 7p and θ = 7p − 6k2+7k

5 . Using (2.11)
we find that 70p − 7 = 3k(11k + 14). Replacing k with 70k − 7 we arrive at
p = 2310k2 − 420k + 19. So we obtain that G is a strongly regular graph of order
n = 210(11k−1)2 and degree r = 7(2310k2−420k+19) with τ = 14(735k2−134k+6)
and θ = 14(21k − 2)(35k − 3).

Case 8 (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 6k+8
5 , τ −θ = − k+8

5 , δ = 11k+8
5 , r = 8p and θ = 8p− 6k2+8k

5 . Using (2.11) we find

that 20p−4 = k(11k+16). Replacing k with 10k+2 we arrive at p = 55k2+30k+4.
So we obtain that G is a strongly regular graph of order n = 5(11k +3)2 and degree
r = 8(55k2 + 30k + 4) with τ = 2(5k + 1)(32k + 11) and θ = 8(4k + 1)(10k + 3).

Case 9 (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and λ3 =

− 6k+9
5 , τ − θ = − k+9

5 , δ = 11k+9
5 , r = 9p and θ = 9p − 6k2+9k

5 . Using (2.11)
we find that 15p − 6 = k(11k + 18). Replacing k with 15k + 6 we arrive at p =
165k2 + 150k + 34. So we obtain that G is a strongly regular graph of order
n = 15(11k+5)2 and degree r = 9(165k2+150k+34) with τ = 3(405k2+368k+83)
and θ = 9(9k + 4)(15k + 7).

Case 10 (t = 10). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = k and

λ3 = − 6k+10
5 , τ − θ = − k+10

5 , δ = 11k+10
5 , r = 10p and θ = 10p − 6k2+10k

5 . Using
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(2.11) we find that 25p − 25 = 3k(11k + 20). Replacing k with 5k we arrive at
p = 33k2 + 12k + 1. So we obtain that G is a strongly regular graph of order
n = 3(11k + 2)2 and degree r = 10(33k2 + 12k + 1) with τ = 300k2 + 109k + 8 and
θ = 10(5k + 1)(6k + 1). �

Proposition 2.12. Let G be a connected strongly regular graph of order n and

degree r with m3 = ( 6
5 )m2. Then G belongs to the class (20) or (3

0
) or (4

0
) or

(50) or (6
0
) or (70) or (8

0
) or (90) or (100) or (11

0
) represented in Theorem 2.8.

Proof. Let m2 = 5p, m3 = 6p and n = 11p + 1 where p ∈ N. Let λ3 = −k

where k is a positive integer. Then according to Theorem 2.2 we have (i) λ2 = 6k−t
5 ;

(ii) τ − θ = k−t
5 ; (iii) δ = 11k−t

5 ; (iv) r = pt and (v) θ = pt − 6k2
−kt
5 , where

t = 1, 2, . . . , 10. In this case we can easily see that Theorem 2.2 (80) reduces to

(2.12) (5p + 1)t2 − 5(11p + 1)t + 66k2 − 12kt = 0.

Case 1 (t = 1). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 6k−1
5 and

λ3 = −k, τ − θ = k−1
5 , δ = 11k−1

5 , r = p and θ = p − 6k2
−k

5 . Using (2.12) we find

that 25p+2 = 3k(11k−2). Replacing k with 5k+1 we arrive at p = 33k2 +12k+1.
So we obtain that G is a strongly regular graph of order n = 3(11k +2)2 and degree
r = 33k2 + 12k + 1 with τ = k(3k + 2) and θ = k(3k + 1).

Case 2 (t = 2). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 6k−2
5 and

λ3 = −k, τ −θ = k−2
5 , δ = 11k−2

5 , r = 2p and θ = 2p− 6k2
−2k
5 . Using (2.12) we find

that 15p+1 = k(11k−4). Replacing k with 15k+7 we arrive at p = 165k2+150k+34.
So we obtain that G is a strongly regular graph of order n = 15(11k+5)2 and degree
r = 2(165k2 + 150k + 34) with τ = 60k2 + 57k + 13 and θ = 6(2k + 1)(5k + 2).

Case 3 (t = 3). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 6k−3
5 and

λ3 = −k, τ −θ = k−3
5 , δ = 11k−3

5 , r = 3p and θ = 3p− 6k2
−3k
5 . Using (2.12) we find

that 20p+1 = k(11k−6). Replacing k with 10k+3 we arrive at p = 55k2 +30k+4.
So we obtain that G is a strongly regular graph of order n = 5(11k +3)2 and degree
r = 3(55k2 + 30k + 4) with τ = 45k2 + 26k + 3 and θ = 3(3k + 1)(5k + 1).

Case 4 (t = 4). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 6k−4
5 and

λ3 = −k, τ − θ = k−4
5 , δ = 11k−4

5 , r = 4p and θ = 4p − 6k2
−4k
5 . Using (2.12)

we find that 70p + 2 = 3k(11k − 8). Replacing k with 70k − 6 we arrive at p =
2310k2 − 420k + 19. So we obtain that G is a strongly regular graph of order n =
210(11k −1)2 and degree r = 4(2310k2 −420k +19) with τ = 2(1680k2 −301k +13)
and θ = 28(10k − 1)(12k − 1).

Case 5 (t = 5). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 6k−5
5 and

λ3 = −k, τ − θ = k−5
5 , δ = 11k−5

5 , r = 5p and θ = 5p − 6k2
−5k
5 . Using (2.12) we

find that 25p = k(11k − 10). Replacing k with 5k we arrive at p = k(11k − 2). So
we obtain that G is a strongly regular graph of order n = (11k − 1)2 and degree
r = 5k(11k − 2) with τ = 25k2 − 4k − 1 and θ = 5k(5k − 1).

Case 6 (t = 6). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 6k−6
5 and

λ3 = −k, τ −θ = k−6
5 , δ = 11k−6

5 , r = 6p and θ = 6p− 6k2
−6k
5 . Using (2.12) we find



ON STRONGLY REGULAR GRAPHS WITH m2 = qm3 AND m3 = qm2 57

that 25p − 1 = k(11k − 12). Replacing k with 5k + 1 we arrive at p = k(11k + 2).
So we obtain that G is a strongly regular graph of order n = (11k + 1)2 and degree
r = 6k(11k + 2) with τ = 36k2 + 7k − 1 and θ = 6k(6k + 1).

Case 7 (t = 7). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 6k−7
5 and

λ3 = −k, τ − θ = k−7
5 , δ = 11k−7

5 , r = 7p and θ = 7p − 6k2
−7k
5 . Using (2.12)

we find that 70p − 7 = 3k(11k − 14). Replacing k with 70k + 7 we arrive at
p = 2310k2 + 420k + 19. So we obtain that G is a strongly regular graph of order
n = 210(11k+1)2 and degree r = 7(2310k2+420k+19) with τ = 14(735k2+134k+6)
and θ = 14(21k + 2)(35k + 3).

Case 8 (t = 8). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 6k−8
5 and

λ3 = −k, τ −θ = k−8
5 , δ = 11k−8

5 , r = 8p and θ = 8p− 6k2
−8k
5 . Using (2.12) we find

that 20p−4 = k(11k−16). Replacing k with 10k−2 we arrive at p = 55k2−30k+4.
So we obtain that G is a strongly regular graph of order n = 5(11k −3)2 and degree
r = 8(55k2 − 30k + 4) with τ = 2(5k − 1)(32k − 11) and θ = 8(4k − 1)(10k − 3).

Case 9 (t = 9). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 6k−9
5 and λ3 =

−k, τ − θ = k−9
5 , δ = 11k−9

5 , r = 9p and θ = 9p − 6k2
−9k
5 . Using (2.12) we find that

15p−6 = k(11k −18). Replacing k with 15k −6 we arrive at p = 165k2 −150k +34.
So we obtain that G is a strongly regular graph of order n = 15(11k−5)2 and degree
r = 9(165k2 −150k +34) with τ = 3(405k2 −368k +83) and θ = 9(9k −4)(15k −7).

Case 10 (t = 10). Using (i), (ii), (iii), (iv) and (v) we find that λ2 = 6k−10
5 and

λ3 = −k, τ − θ = k−10
5 , δ = 11k−10

5 , r = 10p and θ = 10p − 6k2
−10k
5 . Using

(2.12) we find that 25p − 25 = 3k(11k − 20). Replacing k with 5k we arrive at
p = 33k2 − 12k + 1. So we obtain that G is a strongly regular graph of order
n = 3(11k − 2)2 and degree r = 10(33k2 − 12k + 1) with τ = 300k2 − 109k + 8 and
θ = 10(5k − 1)(6k − 1). �

Remark 2.8. We note that 6K2 is a strongly regular graph with m2 = ( 6
5 )m3.

It is obtained from the class Theorem 2.8 (5
0
) for k = 0.

Theorem 2.8. Let G be a connected strongly regular graph of order n and

degree r with m2 = ( 6
5 )m3 or m3 = ( 6

5 )m2. Then G is one of the following

strongly regular graphs:

(10) G is the strongly regular graph 6K2 of order n = 12 and degree r = 10
with τ = 8 and θ = 10. Its eigenvalues are λ2 = 0 and λ3 = −2 with

m2 = 6 and m3 = 5;

(20) G is a strongly regular graph of order n = (11k − 1)2 and degree r =
5k(11k − 2) with τ = 25k2 − 4k − 1 and θ = 5k(5k − 1), where k ∈ N. Its

eigenvalues are λ2 = 6k − 1 and λ3 = −5k with m2 = 5k(11k − 2) and

m3 = 6k(11k − 2);

(2
0
) G is a strongly regular graph of order n = (11k − 1)2 and degree r =

6k(11k − 2) with τ = 36k2 − 7k − 1 and θ = 6k(6k − 1), where k ∈ N. Its

eigenvalues are λ2 = 5k − 1 and λ3 = −6k with m2 = 6k(11k − 2) and

m3 = 5k(11k − 2);
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(30) G is a strongly regular graph of order n = (11k + 1)2 and degree r =
5k(11k + 2) with τ = 25k2 + 4k − 1 and θ = 5k(5k + 1), where k ∈ N. Its

eigenvalues are λ2 = 5k and λ3 = −(6k + 1) with m2 = 6k(11k + 2) and

m3 = 5k(11k + 2);

(3
0
) G is a strongly regular graph of order n = (11k + 1)2 and degree r =

6k(11k + 2) with τ = 36k2 + 7k − 1 and θ = 6k(6k + 1), where k ∈ N. Its

eigenvalues are λ2 = 6k and λ3 = −(5k + 1) with m2 = 5k(11k + 2) and

m3 = 6k(11k + 2);
(40) G is a strongly regular graph of order n = 3(11k − 2)2 and degree r =

33k2 − 12k + 1 with τ = k(3k − 2) and θ = k(3k − 1), where k ∈ N. Its

eigenvalues are λ2 = 5k−1 and λ3 = −(6k−1) with m2 = 6(33k2−12k+1)
and m3 = 5(33k2 − 12k + 1);

(4
0
) G is a strongly regular graph of order n = 3(11k − 2)2 and degree r =

10(33k2 − 12k + 1) with τ = 300k2 − 109k + 8 and θ = 10(5k − 1)(6k − 1),
where k ∈ N. Its eigenvalues are λ2 = 6k − 2 and λ3 = −5k with m2 =
5(33k2 − 12k + 1) and m3 = 6(33k2 − 12k + 1);

(50) G is a strongly regular graph of order n = 3(11k + 2)2 and degree r =
33k2 + 12k + 1 with τ = k(3k + 2) and θ = k(3k + 1), where k ∈ N. Its

eigenvalues are λ2 = 6k+1 and λ3 = −(5k+1) with m2 = 5(33k2+12k+1)
and m3 = 6(33k2 + 12k + 1);

(5
0
) G is a strongly regular graph of order n = 3(11k + 2)2 and degree r =

10(33k2 + 12k + 1) with τ = 300k2 + 109k + 8 and θ = 10(5k + 1)(6k + 1),
where k ∈ N. Its eigenvalues are λ2 = 5k and λ3 = −(6k + 2) with

m2 = 6(33k2 + 12k + 1) and m3 = 5(33k2 + 12k + 1);
(60) G is a strongly regular graph of order n = 5(11k − 3)2 and degree r =

3(55k2 − 30k + 4) with τ = 45k2 − 26k + 3 and θ = 3(3k − 1)(5k − 1),
where k ∈ N. Its eigenvalues are λ2 = 10k − 3 and λ3 = −(12k − 3) with

m2 = 6(55k2 − 30k + 4) and m3 = 5(55k2 − 30k + 4);

(6
0
) G is a strongly regular graph of order n = 5(11k − 3)2 and degree r =

8(55k2 −30k +4) with τ = 2(5k −1)(32k −11) and θ = 8(4k −1)(10k −3),
where k ∈ N. Its eigenvalues are λ2 = 12k − 4 and λ3 = −(10k − 2) with

m2 = 5(55k2 − 30k + 4) and m3 = 6(55k2 − 30k + 4);
(70) G is a strongly regular graph of order n = 5(11k + 3)2 and degree r =

3(55k2 + 30k + 4) with τ = 45k2 + 26k + 3 and θ = 3(3k + 1)(5k + 1),
where k > 0. Its eigenvalues are λ2 = 12k + 3 and λ3 = −(10k + 3) with

m2 = 5(55k2 + 30k + 4) and m3 = 6(55k2 + 30k + 4);

(7
0
) G is a strongly regular graph of order n = 5(11k + 3)2 and degree r =

8(55k2 +30k +4) with τ = 2(5k +1)(32k +11) and θ = 8(4k +1)(10k +3),
where k > 0. Its eigenvalues are λ2 = 10k + 2 and λ3 = −(12k + 4) with

m2 = 6(55k2 + 30k + 4) and m3 = 5(55k2 + 30k + 4);
(80) G is a strongly regular graph of order n = 15(11k − 5)2 and degree r =

2(165k2 − 150k + 34) with τ = 60k2 − 57k + 13 and θ = 6(2k − 1)(5k − 2),
where k ∈ N. Its eigenvalues are λ2 = 15k − 7 and λ3 = −(18k − 8) with

m2 = 6(165k2 − 150k + 34) and m3 = 5(165k2 − 150k + 34);
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(8
0
) G is a strongly regular graph of order n = 15(11k − 5)2 and degree r =

9(165k2−150k+34) with τ = 3(405k2−368k+83) and θ = 9(9k−4)(15k−
7), where k ∈ N. Its eigenvalues are λ2 = 18k − 9 and λ3 = −(15k − 6)
with m2 = 5(165k2 − 150k + 34) and m3 = 6(165k2 − 150k + 34);

(90) G is a strongly regular graph of order n = 15(11k + 5)2 and degree r =
2(165k2 + 150k + 34) with τ = 60k2 + 57k + 13 and θ = 6(2k + 1)(5k + 2),
where k > 0. Its eigenvalues are λ2 = 18k + 8 and λ3 = −(15k + 7) with

m2 = 5(165k2 + 150k + 34) and m3 = 6(165k2 + 150k + 34);

(9
0
) G is a strongly regular graph of order n = 15(11k + 5)2 and degree r =

9(165k2+150k+34) with τ = 3(405k2+368k+83) and θ = 9(9k+4)(15k+
7), where k > 0. Its eigenvalues are λ2 = 15k + 6 and λ3 = −(18k + 9)
with m2 = 6(165k2 + 150k + 34) and m3 = 5(165k2 + 150k + 34);

(100) G is a strongly regular graph of order n = 210(11k − 1)2 and degree r =
4(2310k2 − 420k + 19) with τ = 2(1680k2 − 301k + 13) and θ = 28(10k −
1)(12k − 1), where k ∈ N. Its eigenvalues are λ2 = 84k − 8 and λ3 =
−(70k −6) with m2 = 5(2310k2 −420k +19) and m3 = 6(2310k2 −420k +
19);

(10
0
) G is a strongly regular graph of order n = 210(11k − 1)2 and degree r =

7(2310k2 − 420k + 19) with τ = 14(735k2 − 134k + 6) and θ = 14(21k −
2)(35k − 3), where k ∈ N. Its eigenvalues are λ2 = 70k − 7 and λ3 =
−(84k −7) with m2 = 6(2310k2 −420k +19) and m3 = 5(2310k2 −420k +
19);

(110) G is a strongly regular graph of order n = 210(11k + 1)2 and degree r =
4(2310k2 + 420k + 19) with τ = 2(1680k2 + 301k + 13) and θ = 28(10k +
1)(12k + 1), where k > 0. Its eigenvalues are λ2 = 70k + 6 and λ3 =
−(84k +8) with m2 = 6(2310k2 +420k +19) and m3 = 5(2310k2 +420k +
19);

(11
0
) G is a strongly regular graph of order n = 210(11k + 1)2 and degree r =

7(2310k2 + 420k + 19) with τ = 14(735k2 + 134k + 6) and θ = 14(21k +
2)(35k + 3), where k > 0. Its eigenvalues are λ2 = 84k + 7 and λ3 =
−(70k +7) with m2 = 5(2310k2 +420k +19) and m3 = 6(2310k2 +420k +
19).

Proof. First, according to Remark 2.3 we have 5α(β − 1) = 6(α − 1), from
which we find that α = 6, β = 2. In view of this we obtain the strongly regular
graph represented in Theorem 2.8 (10). Next, according to Proposition 2.11 it turns

out that G belongs to the class (2
0
) or (30) or (40) or (5

0
) or (60) or (7

0
) or (80)

or (9
0
) or (10

0
) or (110) if m2 = ( 6

5 )m3. According to Proposition 2.12 it turns

out that G belongs to the class (20) or (3
0
) or (4

0
) or (50) or (6

0
) or (70) or (8

0
)

or (90) or (100) or (11
0
) if m3 = ( 6

5 )m2. �
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3. Concluding remarks

Using Theorems 2.1 and 2.2 it is possible to describe the parameters n, r, τ

and θ for any connected strongly regular graph by using only one parameter k. In
the forthcoming paper we shall describe the parameters n, r, τ and θ for strongly4

regular graphs5 with m2 = qm3 and m3 = qm2 for q = 7
2 , 7

3 , 7
4 , 7

5 , 7
6 .
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