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In addition to a great variety of degree-based and distance-based 
molecular structure descriptors, there are a few degree-and-distance-
based topological indices. Two main such indices are the degree 
distance (DD) and the Gutman index (ZZ). Their mutual relations are 
analyzed and several new such relations established. It is shown that 
by conveniently chosen linear combinations of DD, ZZ and the 
Wiener index, it is possible to calculate several chemically 
interesting structural properties of molecular graphs. 
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INTRODUCTION* 

In the chemical and mathematical literature, 
several hundred graph-based molecular structure 
descriptors were considered, claimed to be related 
with some physical, chemical, pharmacological, or 
toxicological property of the underlying compounds. 
These are usually called “topological indices”.  The 
vast majority of currently studied topological indices 
are based on the distances between the vertices of the 
molecular graph, or on the degrees of the vertices of 
the molecular graph, or on both.  

The oldest distance-based descriptor is the Wiener 
index.1 Another among them is the much studied 
Balaban J index.2 More details on distance-based 
topological indices can be found in the reviews.3,4  

The first degree-based structure descriptors 
were conceived in the 1970s. There are the fist 
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Zagreb index,5 the second Zagreb index,6 and the 
Randić index.7 

Much later, the first degree-and-distance-based 
topological indices were put forward.8-10 

Initially, there was only a small number (less 
than one dozen) of topological indices.11 The rapid 
increase in their number started by a paper by 
Alexandru T. Balaban12, in which five new indices 
were simultaneously introduced. More details on 
the theory and applications of topological indices 
can be found in numerous surveys, for instance in 
the books.13-15   

DEGREE DISTANCE AND ITS CONGENERS 

Let G be a molecular graph with n vertices, 
labeled by 1 2, ,..., nv v v . The degree of the vertex 
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iv , denoted by ( )id v , is the number of its first 
neighbors. The distance between the vertices 

,i jv v , denoted by ( , )i jd v v , is the length of   
(= number of edges in) a shortest path in the 
underlying graph,, connecting iv  and jv  
Additional notions and definitions on molecular 
graphs can be found in the reviews16-18 and 
books.19-22 

In this paper, we are concerned with degree-
and-distance-based topological indices, of which 
the most important is the degree distance, DD. 
Before we introduce it, we recall that the classical 
Wiener index is defined as 

 ( ) ( , )i j
i j

W W G d v v
<

= =∑  (1) 

where the summation goes over all pairs of vertices 
of the underlying molecular graph G. The Wiener 
index was introduced in 1947 by Harold Wiener1 
and since then became one of the most extensively 
studied distance-based topological indices; for 
details see.22-24 

 Motivated by the success of the Wiener index, 
Dobrinin and Kochetova proposed its degree-
weighted version, named degree distance, defined as 

( ) [ ( ) ( )] ( , )i j i j
i j

DD DD G d v d v d v v
<

= = +∑ . (2) 

The degree distance was put forward in 1994. 
In the meantime, this degree-and-distance-based 
topological index became a popular topic for 
mathematical studies and chemical applications; 
for details see the recent papers25-28 and the 
references cited therein. However, five years 
before the concept of degree distance was 
conceived, Schultz considered a seemingly 
unrelated quantity, which he named molecular 
topological index, and defined as8 
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where A and D denote the adjacency and distance 
matrices (of the graph G). It can be shown that10 
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 The fact that in the case of acyclic graphs, there 
is a simple linear relation between MTI and the 
Wiener index was first noticed in29 and then 
mathematically proven by Douglas Klein.30 An 
independent proof  was offered by the present 
author.10 All this happened before the publication 
of the Dobrynin-Kochetova article.9 The respective 
result can be stated as:10,30 

 ( ) 4 ( ) ( 1)DD T W T n n= − −  (3) 

which holds for any tree T with n vertices. 
 The author of the paper10 noticed that by means 
of his proof technique, an identity analogous to Eq. 
(3) can be deduced for the expression in which the 
sum ( ) ( )i jd v d v+ is replaced by the product 

( ) ( )i jd v d v⋅ . Thus, for the quantity ZZ, defined 
as, 

 ( ) [ ( ) ( )] ( , )i j i j
i j

ZZ ZZ G d v d v d v v
<

= = ⋅∑  (4) 

the following result could be verified:10 

 ( ) 4 ( ) (2 1)( 1)ZZ T W T n n= − − − . (5) 

 The degree-and-distance-based quantity ZZ 
appeared in the paper10 for the first time. The sole 
reason for its introduction was to point out the 
analogy between Eqs. (3) and (5). There was no 
intention to consider it as a new molecular 
structure descriptor. No name for it was proposed. 
 When Todeschini and Consonni produced their 
“Handbooks of Molecular Descriptors”,14 they 
mentioned in it the quantity ZZ and named it 
Gutman index. This name was eventually accepted 
in the mathematical and chemical literature, see the 
recent articles26,31-35 and the references cited 
therein. Nevertheless, in the present paper we 
prefer to avoid using this name, and will call the 
topological index ZZ, Eq. (4), as the ZZ-index. 
 We now introduce the following generalizations 
of the degree distance, Eq. (2), and the ZZ-index, 
Eq. (4). Let t be a real number. Then we define 

 

 ( ) [ ( ) ] [ ( ) ] ( , )t t i j i j
i j

DD DD G d v t d v t d v v
<

⎡ ⎤= = − + −⎣ ⎦∑  (6) 

and 
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 ( ) [ ( ) ] [ ( ) ] ( , )t t i j i j
i j

ZZ ZZ G d v t d v t d v v
<

⎡ ⎤= = − ⋅ −⎣ ⎦∑ . (7) 

 At this point, one should note that in spite of what 
may be concluded from Eqs. (6) and (7), DDt and ZZt 
are not new topological indices. Namely, bearing in 
mind Eqs. (1), (2), and (4), it is elementary to show 
that for any connected graph G, 

 ( ) ( ) 2 ( )tDD G DD G tW G= −    (8)    

and       

 2( ) ( ) ( ) ( )tZZ G ZZ G t DD G t W G= − + . (9) 

 Thus, DDt and ZZt are just linear combinations 
of the previously conceived degree-and-distance 
based indices DD and ZZ, and the classical 
distance-based Wiener index W. Nevertheless, in 
the following two sections we show that by using 
conveniently chosen special cases of these linear 
combinations, it is possible to immediately 
calculate several chemically interesting structural 
properties of molecular graphs. 

APPLICATIONS: RELATIONS BETWEEN 
DD- AND ZZ-INDICES OF GRAPHS 

 A large number of molecular graphs have only 
vertices of degree two and three. Among these are 
the molecular graphs of benzenoid systems, 
phenylenes, fluoranthenes, and numerous other 
classes of polycyclic conjugated hydrocarbons, 
both alternant and nonalternant. Some 
characteristic examples are depicted in Fig. 1. 
 By Γ(p,q) we denote the set of all connected 
graphs in which all vertex degrees are equal to 
either p or q. 

Let G be a molecular graph belonging to the set 
Γ(2,3). Its Wiener index can be partitioned into three 
parts, 22 23 33( ) ( ) ( ) ( )W G W G W G W G= + + , where 

( )ijW G  for i=1,2, is the sum of distances between 
vertices of degree i and degree j of the graph G. 
 
Proposition 1. If (2,3)G∈Γ , then 

 22 ( ) 9 ( ) 3 ( ) ( )W G W G DD G ZZ G= − +  (10) 

 23( ) 5 ( ) 2 ( ) 12 ( )W G DD G ZZ G W G= − − (11) 

 33 ( ) ( ) 2 ( ) 4 ( )W G ZZ G DD G W G= − + . (12) 

Proof. Taking into account the definition (7), 
we see that 2 33( ) ( )ZZ G W G=  and by Eq. (9) we 
directly arrive at relation (12). Analogously, 
definition (6) implies 2 23( ) ( )DD G W G= +  

332 ( )W G+ , which by Eq. (8) yields 

23 33( ) 2 ( ) ( ) 4 ( )W G W G DD G W G+ = − . 
Combining this with (12) results in (11).  Finally, 
(10) is obtained by combining 22 ( ) ( )W G W G= −  

23 33( ) ( )W G W G− − with (11) and (12).                                         
In 1874, Arthur Cayley introduced the concept 

of molecular graph.36 He distinguished two types 
of such graphs, and named them plerogram and 
kenogram. In the plerogram, all atoms, including  
hydrogen atoms, are represented by vertices. In the 
kenogram, hydrogen atoms are disregarded. 
Plerograms and kenograms are sometimes referred 
to as hydrogen-filled and hydrogen-depleted 
molecular graphs. An example is given in Fig. 2. 
The vast majority of contemporary chemical 
applications of graph theory13-15,19-22 deals with 
kenograms. 
The plerograms of a saturated hydrocarbons 
belongs to the set Γ(1,4). Then, in analogy to 
Proposition 1, we have: 

Proposition 2.  If (1,4)G∈Γ , then 

11 14 44( ) ( ) ( ) ( )W G W G W G W G= + +  and 

  [ ]11
1( ) 14 ( ) 4 ( ) ( )
9

W G W G DD G ZZ G= − +  (13) 

 [ ]14
1( ) 5 ( ) 2 ( ) 6 ( )
9

W G DD G ZZ G W G= − −  (14) 

     [ ]44
1( ) ( ) ( ) ( )
9

W G ZZ G DD G W G= − + . (15) 

Proof.  Taking into account the definition (7), 
we see that 1 44( ) 9 ( )ZZ G W G=  and by Eq. (9) we 
directly arrive at relation (15). Definition (6) 
implies 1 14 44( ) 3 ( ) 6 ( )DD G W G W G= + , which 
by Eqs. (8) and (15) results in Eq. (14), whereas 
Eq. (13) is obtained by substituting (14) and (15) 
back into 11 14 44( ) ( ) ( ) ( )W G W G W G W G= − − . 
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Fig. 1 – Examples of molecular graphs belonging to Γ(2,3): a molecular graph of  a  benzenoid system (1), phenylene (2), 

fluoranthene (3), and bicalicene (4). 
  

 
Fig. 2 – The molecular graph of camphene, C10H18. Ke is its kenogram (hydrogen-depleted graph), in which vertices correspond only 

to carbon atoms; Pl is its plerogram (hydrogen-filled graph), in which vertices correspond to both carbon and hydrogen atoms. 
 

APPLICATIONS: RELATIONS BETWEEN 
DD- AND ZZ-INDICES OF TREES 

 In the case of trees, the fundamental relations 
for the DD- and ZZ-indices are Eqs. (3) and (5), 
known since the 1990s.10,30 An immediate and 
remarkable consequence of these relations is the 
following: 
 

Proposition 3. Let T be a tree with n vertices. 
Then 

2( ) ( ) ( 1)DD T ZZ T n− = −  
i.e., 

2[ ( ) ( ) ( ) ( )] ( , ) ( 1) .i j i j i j
i j

d v d v d v d v d v v n
<

+ − ⋅ = −∑
 Thus, the difference between the ZZ- and  
DD-indices is independent of the structure of the 
tree T, and depends only on its size. 

 In analogy to Proposition 3, we have 
 

2 ( ) ( 1)DD T n n= − −           
 and           

2 ( ) 1ZZ T n= −  

which are obtained by substituting Eqs. (3) and (5) 
back into (8) and (9). 
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 If the graph G in Proposition 2 is a tree, i.e., if it 
corresponds to the plerogram of an alkane, then by 
using Eqs. (3) and (5) we get: 
 
Proposition 4. If (1, 4)T ∈Γ is a tree with n 
vertices, then 

 [ ]11
1( ) 2 ( ) (2 1)( 1)
9

W T W T n n= + + −  

 [ ]14
1( ) 6 ( ) ( 2)( 1)
9

W T W T n n= − + −   

 2
44

1( ) ( ) ( 1)
9

W T W T n⎡ ⎤= − −⎣ ⎦ . (16) 

 
If T is the kenogram Ke of an alkane CNH2N+2 , 

then ( )W T is the Wiener index of the kenogram, 
i.e., ( ) ( )W T W Ke≡ . Then 44 ( )W T is the Wiener 
index of the respective kenogram, i.e., 

44 ( ) ( )W T W Ke= . Noting that 3 2n N= + ,  
Eq. (16) can be rewritten as 

2( ) 9 ( ) (3 1)W Pl W Ke N= + +  a formula that 
earlier37 was obtained by a different method. 
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