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notions of the lower and upper generalized inverses will be proved. The important
properties of this class that are related to two classical integral transformations will be
proved, also.
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1. Introduction and results

A measurable function f : [a,+∞) → (0,+∞) (a > 0) is called slowly varying in the sense of Karamata (see e.g. [10])
if it satisfies the following condition:

lim
x→+∞

f (λx)
f (x)

= 1 (1)

for every λ > 0. The class of all these functions (denoted by SV ) is the main object in Karamata’s theory (see e.g. [1]).
A measurable function f : [a,+∞) → (0,+∞) (a > 0) is called rapidly varying in the sense of de Haan with the index

of variability+∞ (see e.g. [3]) if it satisfies the following condition:

lim
x→+∞

f (λx)
f (x)

= +∞ (2)

for every λ > 1.
This functional class is denoted by R∞. The theory of rapid variability (with its generalizations) is an important part of

asymptotical analysis and game theory (see e.g. [1,4,7,5,9,11]).

Remark 1.1. In this paper we will consider an elements from classes SV and R∞ defined in (0,+∞), without loss of
generality.

Let F (∞) be the set of all functions f : (0,+∞) → (0,+∞) which are bounded in (0, α) for every α ∈ (0,+∞), and for
which lim supx→+∞ f (x) = +∞ (see [2]).
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For any f ∈ F (∞), the positive, nondecreasing and unbounded function

f←(y) = inf{x > 0 | f (x) > y} (3)

defined in (b,+∞) for every y > b = inf

f (t) | t ∈ (0,+∞)


≥ 0 is its generalized inverse (see e.g. [1]). It is a very

important object in asymptotic analysis (see e.g. [7,8,6,5]) and it can be used to characterize relationships between functional
classes SV and R∞ (see e.g. [1,7]).

Let F∞ =

f ∈ F (∞)

| lim inft→+∞ f (t) = +∞

. Now, for any f ∈ F∞, we will consider the following two positive and

nondecreasing functions:

1◦ f← l(y) = inf

x > 0 | f (x) ≥ y


, and

2◦ f← u(y) = sup

x > 0 | f (x) ≤ y


,

for every y > b. These functions are important generalizations of the generalized inverse for elements from F∞ (see e.g. [2]).
Actually, f← l(y) ≤ f←(y) ≤ f← u(y) is satisfied for any f ∈ F∞, and every y ∈ (b,+∞). Furthermore, if f is a continuous
and strictly increasing function, the previous inequalities become equalities and the observed value is equal to f −1(y), where
f −1 is the inverse of a function f . It can be proved that f← l


f (x)


≤ x ≤ f← u


f (x)


is satisfied for any f ∈ F∞ and every

x > 0. Also, it can be proved that the following two assertions:

1. x < f← l(y) if and only if f (x) < y and
2. f← u(y) < x if and only if f (x) > y

are satisfied for x > 0 and y > b, where

3◦ f (x) = sup

f (t) | t ≤ x


and

4◦ f (x) = inf

f (t) | t ≥ x


,

for every x > 0. More about functions f and f , for f ∈ F∞, can be found in [1]. Here we note that these functions
are positive and nondecreasing and it holds that f (x) ≤ f (x) ≤ f (x) for every x > 0. Thus, it can be concluded that
f← l(y) = sup


x > 0 | f (x) < y


and f← u(y) = inf


x > 0 | y < f (x)


, for any f ∈ F∞ and every y > b.

In the following theoremwe givemultiple characterizations of functions from the class R∞ which belong to the class F∞.

Theorem 1.1. Let f ∈ F∞ be a measurable function. The following assertions are mutually equivalent:

(a) a function f belongs to R∞;
(b) limx→+∞ infλ≥L

f (x)
f ( x

λ
)
= +∞ for every L > 1;

(c) limx→+∞
f (λx)

f (x)
= +∞ for every λ > 1;

(d) limy→+∞
f← u(λy)
f← l(y)

= 1 for every λ > 1;
(e) let g: (b,+∞) → (0,+∞) be ameasurable function such that f← l(y) ≤ g(y) ≤ f← u(y) for every y > b; then the function

g ∈ SV ;
(f) a function f← l belongs to SV and f← l(y) ∼ f← u(y) for y → +∞ (where ∼ is the strong asymptotic equivalence relation

(see e.g. [1])).

In the following theoremwe give some properties for elements from the class SV∩F∞ (which are analogous to properties
given in the previous theorem (assertions (d) and (e)) for elements from the class R∞ ∩ F∞).

Theorem 1.2. Let g ∈ SV ∩ F∞. Then the following assertions hold:

(a) limy→+∞
g← l(λy)
g← u(y) = +∞ for every λ > 1;

(b) every measurable function f : [b,+∞) → (0,+∞) such that g← l(y) ≤ f (y) ≤ g← u(y) for every y > b belongs to the class
R∞.

Now, we consider an interesting equivalence relation for the class R∞. Let f and g be positive functions in (0,+∞). For
these functions we say that they are mutually rapidly equivalent (denoted by f (x)

r
∼ g(x) for x→+∞) if the condition

lim
x→+∞

f (λx)
g(x)

= lim
x→+∞

g(λx)
f (x)

= +∞, (4)

is satisfied for every λ > 1. More about relation (4) can be found in [1,8,6].

Theorem 1.3. Let f and g be a positive functions in (0,+∞). Then the following assertions hold:

(a) if f and g are measurable functions such that f (x)
r
∼ g(x) for x→+∞, then f , g belong to R∞;

(b) the relation
r
∼ is an equivalence relation in the class R∞;
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(c) let f ∈ R∞ and let f (x) ≍ g(x) for x → +∞ (where ≍ is the weak asymptotic equivalence relation (see e.g. [1])); then
f (x)

r
∼ g(x) for x→+∞;

(d) let f be a measurable function; a function f belongs to R∞ if and only if f (x)
r
∼ f (x) for x→+∞;

(e) let f belong to R∞ and let f (x) ≤ g(x) ≤ f (x) for x ≥ x0 > 0; if g is a measurable function then g belongs to R∞.

Now, we will consider two integral transformations in the class R∞.
For a measurable function f : (0,+∞) → (0,+∞) such that f (x) is a bounded function in (0, x) for every x > 0, we

define the transformation

f
∼

(x) =
1
x

 x

0
f (t)dt =

 1

0
f (xu)du (5)

for x > 0. On the other hand, for a measurable function f : (0,+∞) → (0,+∞) such that 1
f (x) is a bounded function in

(0, x) for every x > 0, we define the transformation

f (x) = 1

x

+∞

x
dt

t2f (t)

=
1 1

0
du

f ( x
u )

(6)

for x > 0. More about transformations (5) and (6) can be found in [1].

Theorem 1.4. Let f ∈ R∞ be a bounded function in (0, x) for every x > 0. Also, let 1
f (x) be a bounded function for every x > 0.

Then the following assertions hold:

(a) f
∼

(x)
r
∼ f (x)

r
∼f (x) for x→+∞;

(b) functions f
∼

,f ∈ R∞;

(c) f
∼

(x) ∼
 1
1−ε

f (xu)du for x→ +∞ and every ε ∈ (0, 1], and 1f (x) ∼  1
1−ε

du
f ( x

u )
for x→ +∞ and every ε ∈ (0, 1] (where

∼ is the strong asymptotic equivalence relation (see e.g. [1]));
(d) f
∼

(x) = o

f (x)


for x→+∞, and f (x) = o

f (x) for x→+∞ (where o is the Landau symbol (see e.g. [1])).

Corollary 1.1. (a) Let f ∈ R∞ be a function with the same properties as in Theorem 1.4. Then it holds that the function x
0 f (t)dt ∈ R∞ for x > 0, and the function 1

+∞

x
dt
f (t)
∈ R∞ for x > 0. Also, it holds that

 x
0 f (t)dt ∼

 x
x
λ
f (t)dt for

x→+∞ and every λ > 1, and

+∞

x
dt
f (t) ∼

 λx
x

dt
f (t) for x→+∞ and every λ > 1.

(b) Let f ∈ R∞ be a nondecreasing function. Then f
∼

(x) = o

f (x)


for x→+∞, and f (x) = o

f (x) for x→+∞.

Theorem 1.5. Let f : (0,+∞) → (0,+∞) be a nondecreasing function.
(a) If f

∼

(x) = o

f (x)


for x→+∞, then f ∈ R∞.

(b) If f (x) = o
f (x) for x→+∞, then f ∈ R∞.

The set of all measurable functions f : (0,+∞) → (0,+∞)whose lowerMatuszewska index is equal to+∞ is denoted
byMR∞ (see e.g. [1]). It is well-known thatMR∞  R∞. Hence, if we observe a function from the setMR∞ in Theorem 1.4(d),
we will get stronger conclusions than we got for a function from the set R∞. We discuss this in the following theorem.

Theorem 1.6. Let f ∈ MR∞ be a function with the same properties as in the assumptions of Theorem 1.4. Then f
∼

(x) = o

f (x)


for x→+∞, and f (x) = o

f (x) for x→+∞.

Example 1.1. (1) Let

f (x) =

ex, for x ∈ (0,+∞) \ N;
xex, for x ∈ N.

Then f ∈ R∞ \MR∞ and f
∼

(x) ≠ o(f (x)) for x→+∞.

(2) Let

f (x) =


ex

x2
, for x ∈ (0,+∞) \ N;

ex

x
, for x ∈ N.

Then f ∈ R∞ \MR∞ and f (x) ≠ o(f (x)) for x→+∞.
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2. Proofs

Proof of Theorem 1.1.

(a)⇒ (b)


LetM > 1. On the basis of the theorem of uniform convergence for the rapidly varying

functions (see e.g. [1]), for every L > 1 there exists x0 > 0 such that for every x ≥ x0 and every λ > L it holds that f (λx)
f (x) > M .

Now, there is an x1 > 0 such that f (x) ≥ M · sup

f (t) | t ∈ (0, x0]


is satisfied for every x ≥ x1. Then the following

assertions hold:

1. if x
λ
≤ x0, then

f (x)
f ( x

λ )
≥

f (x)

sup

f (t)|t∈(0,x0]

 ≥ M;

2. if x
λ
≥ x0, then

f (x)
f ( x

λ )
=

f (λ x
λ )

f ( x
λ )
≥ M;

for every λ > L and x > x1. In any case, it holds that inf


f (x)
f ( x

λ )
| λ ≥ L, x ≥ x1


≥ M , and we obtain limx→+∞ infλ≥L

f (x)
f ( x

λ
)

= +∞.
(b)⇒ (c)


Let λ > 1. Then for x > 0 it holds that

f (λx)

f (x)
=

inf

f (t) | t ≥ λx


sup


f (s) | s ∈ (0, x]


= inf


f (t)
f (s)
| s ∈ (0, x], t ≥ λx



≥ inf

 f (t)

f


t
µ

 | µ ≥ λ, t ≥ λx

 .

Hence, we obtain lim infx→+∞
f (λx)

f (x)
≥ limt→+∞ infµ≥λ

f (t)
f ( t

µ )
= +∞.

(c)⇒ (a)

Let λ > 1 and x > 0. Then from f (λx)

f (x) ≥
f (λx)

f (x)
, we obtain limx→+∞

f (λx)
f (x) = +∞, i.e. f ∈ R∞.

(a)⇒ (d)

Let λ > 1. Then it holds that

f← u(λx)
f← l(x)

=
sup {s | f (s) ≤ λx}
inf {t | f (t) ≥ x}

= sup
 s
t
| f (s) ≤ λx, f (t) ≥ x


≤ sup


µ > 0 |

f (µt)
f (t)

≤ λ, f (t) ≥ x


.

From results obtained in [9] it follows that

lim sup
x→+∞

f← u(λx)
f← l(x)

≤ lim sup
t→+∞

sup

µ > 0 |

f (µt)
f (t)

≤ λ


≤ 1.

On the other hand, it is obvious that

f← u(λx)
f← l(x)

≥
f← u(x)
f← l(x)

≥ 1,

is satisfied for the same x and λ. Hence, limx→+∞
f← u(λx)
f← l(x)

= 1 for λ > 1.
(d) ⇒ (a)


Let assertion (d) hold. We will assume that f ∉ R∞. Then from results obtained in [9] there is a sequence

of real numbers (xn) such that limn→+∞ xn = +∞, and there is a sequence of positive real numbers (λn) such that
lim infn→+∞ λn > λ > 1, and for those two sequences it holds that lim supn→+∞

f (λnxn)
f (xn)

< µ < +∞ for some λ > 1
and µ > 1. Furthermore, inequalities f← l


f (xn)


≤ xn and f← u


µf (xn)


= sup


x > 0 | f (x) ≤ µ · f (xn)


≥ λn · xn > λ · xn

are satisfied for sufficiently large n (because for sufficiently large n it holds that f (λnxn) ≤ µ · f (xn)) which implies that

lim sup
y→+∞

f← u(µy)
f← l(y)

≥ lim sup
n→+∞

f← u

µf (xn)


f← l


f (xn)

 ≥ lim sup
n→+∞

λ · xn
xn

> 1.

The last inequality is a contradiction to assertion (d). Hence, f ∈ R∞.
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(d)⇒ (e)


From f← l(y) ≤ g(y) ≤ f← u(y) for every y ∈ (b,+∞), we have that

F(λ, y) =
f← u(λy)
f← l(y)

≥
g(λy)
g(y)

≥
f← l(λy)
f← u(y)

≥
f← l(y)
f← u(λy)

=
1

F(λ, y)

is satisfied for the same y and every λ > 1. Hence, limy→+∞
g(λy)
g(y) = 1 for the same λ, and we obtain that g ∈ SV , because g

is a measurable function.
(e)⇒ (f)


Trivially, on the basis of assertion (e) it holds that f← l

∈ SV (similarly, f← u
∈ SV ). Now, we will assume that

g(y) =

f← l(y), for y ≥ b, y ∈ Q,
f← u(y), for y ≥ b, y ∈ R \ Q.

Then g ∈ SV , and it holds that

1 ≤ lim
y→+∞

f← u(λy)
f← l(y)

≤ lim
y→+∞

sup
1
λ
≤µ≤λ

g(µy)
g(y)

= 1

for λ > 1. Hence, we obtain f← l(y) ∼ f← u(y) for y→+∞.
(f)⇒ (d)


Let λ > 1. On the basis of assertion (f) it follows that

lim
y→+∞

f← u(λy)
f← l(y)

= lim
y→+∞

f← u(λy)
f← l(λy)

· lim
y→+∞

f← l(λy)
f← l(y)

= 1.

Finally, assertion (d) holds. �

Proof of Theorem 1.2. (a) Let λ > 1. Then it holds that

g← l(λx)
g← u(x)

=
inf

s | g(s) ≥ λx


sup


t | g(t) ≤ x


= inf

 s
t
| g(t) ≤ x, g(s) ≥ λx


≥ inf


µ > 0 |

g(µt)
g(t)

≥ λ, g(t) ≤ x


for x ≥ b. Since g ∈ SV , we obtain that

lim inf
x→+∞

g← l(λx)
g← u(x)

≥ lim inf
t→+∞

inf

µ > 0 |

g(µt)
g(g)

≥ λ


= +∞.

This completes the proof of assertion (a).
(b) Let λ > 1. Since f is a measurable function we have that

lim
x→+∞

f (λx)
f (x)

≥ lim
x→+∞

g← l(λx)
g← u(x)

= +∞

is satisfied. Hence, f ∈ R∞. �

Proof of Theorem 1.3. (a) Let f , g be a measurable functions such that f (x)
r
∼ g(x) for x→+∞. Then

lim
x→+∞

f (λx)
f (x)

= lim
x→+∞

f (λx)

g(
√

λ x)
· lim
x→+∞

g(
√

λ x)
f (x)

= +∞,

is satisfied for λ > 1. Therefore, f ∈ R∞ and similarly g ∈ R∞.
(b) We will prove only that relation

r
∼ is the transitive relation (reflexivity and symmetry of this relation are obvious). Let

f (x)
r
∼ g(x) for x→+∞, and g(x)

r
∼ h(x) for x→+∞. Therefore, we have that the equalities

lim
x→+∞

f (λx)
h(x)

= lim
x→+∞

f (λx)

g(
√

λ x)
· lim
x→+∞

g(
√

λ x)
h(x)

= +∞

and

lim
x→+∞

h(λx)
f (x)

= lim
x→+∞

h(λx)

g(
√

λ x)
· lim
x→+∞

g(
√

λ x)
f (x)

= +∞

are satisfied, for λ > 1. Using assertion (a) we obtain that this assertion holds.
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(c) We have that

lim inf
x→+∞

f (λx)
g(x)

≥ lim inf
x→+∞

f (λx)
f (x)

· lim inf
x→+∞

f (x)
g(x)
= +∞

for λ > 1. Since f (x) ≍ g(x) for x→+∞, it follows that

lim inf
x→+∞

g(λx)
f (x)

≥ lim inf
x→+∞

g(λx)
f (λx)

· lim inf
x→+∞

f (λx)
f (x)

= +∞

for λ > 1. Hence, f (x)
r
∼ g(x) for x→+∞.

(d) (⇒) Let f ∈ R∞. Then, from Theorem 1.1 it holds that limx→+∞
f (λx)

f (x)
= +∞ for λ > 1. From previous computations, it

follows that limx→+∞
f (λx)
f (x) = +∞, i.e. f (x)

r
∼ f (x), for x→+∞.

(⇐) Let f (x)
r
∼ f (x) for x → +∞. Then, it follows that limx→+∞

f (λx)

f (x)
= +∞ for λ > 1, and applying Theorem 1.1

we obtain f ∈ R∞.

(e) Let f ∈ R∞. Then, it holds that

lim inf
x→+∞

g(λx)
g(x)

≥ lim inf
x→+∞

f (λx)

f (x)
= +∞

for λ > 1. Applying Theorem 1.1 and previous computations, we obtain g ∈ R∞. �

Proof of Theorem 1.4. (a) Let λ > 1. It is sufficient to prove that

lim
x→+∞

f
∼

(x)

f (λx)
= lim

x→+∞

f (x)f (λx) = lim
x→+∞

f (x)
f
∼

(λx)
= 0.

We have that
f
∼

(x)

f (λx)
=

 1

0

f (ux)
f (λx)

du −→ 0

is satisfied for x → +∞, because it holds that limx→+∞
f (ux)
f (λx) = 0 for λ > 1 and u ∈ (0, 1], and sup0<u≤1

 f (ux)f (λx)

 ≤ 1
for sufficiently large x is satisfied (based on Theorem 1.1(b)). Now, we can apply Lebesgue’s theorem of dominant
convergence. According to this theorem, it holds that

f (x)f (λx) =
 1

0

f (x)
f


λx
u

du −→ 0 (7)

for x→ +∞. Actually, condition (7) is satisfied because it holds that limx→+∞
f (x)

f


λx
u

 = 0 for λ > 1 and u ∈ (0, 1], and

sup0<u≤1

 f (x)

f


λx
u

  ≤ 1 for sufficiently large x is satisfied (on the basis of Theorem 1.1(b)).

Now, let λ > 1 and M ∈ (0,+∞). We have that λu
1
u

>
√

λ is satisfied for u ∈ (λ−
1
4 , 1). Hence, it holds that

f (λux)
f ( x

u )
> M

1−λ
−

1
4

2 for sufficiently large x. Applying the Cauchy–Schwarz inequality we obtain that it holds that

f
∼

(λx)

f (x) =
 1

0
f (λux)du ·

 1

0

du
f
 x
u

 ≥  1

0


f (λux)
f
 x
u

 du

2

≥

  1

λ
−

1
4


f (λux)
f
 x
u

 du

2

≥ M

for sufficiently large x. Hence, limx→+∞
f (x)
f
∼

(λx) = 0.

(b) Let λ > 1. Then from assertion (a), it holds that

lim
x→+∞

f
∼

(λx)

f
∼

(x)
= lim

x→+∞

 f
∼

(λx)

f (λ 2
3 x)
·

f (λ 2
3 x)

f (λ
1
3 x)
·
f (λ

1
3 x)

f
∼

(x)

 = +∞.
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Furthermore, f
∼

is a measurable and positive function in (0,+∞) which implies that f
∼

∈ R∞. Analogously, it can be

shown thatf ∈ R∞. This assertion can be proved by combining the results obtained in Theorems 1.4(a) and 1.3(a).

(c) Let ε > 0 and λ = 1
1−ε

> 1. Since f
∼

∈ R∞, it follows that limx→+∞

f
∼
( x

λ )

f
∼

(x) = 0. Furthermore, it holds that 1−ε

0
f (ux)du = λ−1

 1

0
f


t
λ
x

dt = o

 1

0
f (tx)dt


for x → +∞. Hence,

 1
1−ε

f (ux)du ∼ f
∼

(x) for x → +∞. Analogously, it can be shown that 1f (x) ∼  1
1−ε

du
f ( x

u )
for

x→+∞.
(d) We have that limx→+∞

f (ux)
f (x)
= 0 is satisfied for u ∈ (0, 1) (because f (x)

r
∼ f (x) for x→+∞). Also, sup0<u≤1

 f (ux)f (x)

 = 1

is satisfied for x > 0. Then, it follows that limx→+∞

f
∼

(x)

f (x)
= limx→+∞

 1
0

f (ux)
f (x)

du = 0 according to Lebesgue’s theorem of

dominant convergence. According to this theorem, we have that limx→+∞
f (x)f (x) = limx→+∞

 1
0

f (x)
f ( x

u )
du = 0 is satisfied,

because limx→+∞
f (x)
f ( x

u )
= 0 is satisfied for u ∈ (0, 1) (f (x)

r
∼ f (x) for x→+∞), and also sup0<u≤1

 f (x)
f ( x

u )

 = 1 is satisfied
for x > 0. �

Proof of Theorem 1.5. (a) Let us assume that f
∼

(x) = o

f (x)


for x → +∞ and f ∉ R∞. Then, there is a sequence (xn)

(of positive numbers) such that xn → +∞ for n → +∞, and there is a λ > 1 such that f (λxn)
f (xn)

< M < +∞ for some
M ∈ (0,+∞) and every n ∈ N. Also, it holds that λxn

xn
f (t)dt ≤

 λxn

0
f (t)dt = o


λ · xn · f (λxn)


for n→+∞. From the foregoing, it follows that λxn

xn
f (t)dt = o


xn · f (xn)


for n→+∞, and from

 λxn
xn

f (t)dt ≥ (λ− 1) · xn · f (xn) for n ∈ Nwe obtain that assumption f ∉ R∞ is wrong.
(b) Let us assume that f (x) = o

f (x) for x → +∞ and f ∉ R∞. Then there are a sequence (xn) and a number λ with the
same properties as in the proof of assertion (a). Also, the following two inequalities hold: λxn

xn

dt
t2f (t)

≤


+∞

xn

dt
t2f (t)

= o


1
xn · f (xn)


for n→+∞, and λxn

xn

dt
t2f (t)

≥
(λ− 1)xn

(λxn)2f (λxn)
≥

λ− 1
λ2M

·
1

xnf (xn)

for n ∈ N. Finally, we obtain that assumption f ∉ R∞ is wrong. �

Proof of Theorem 1.6. We will prove this theorem using Lebesgue’s theorem of dominant convergence. According to this
theorem, we have that

lim
x→+∞

f
∼

(x)

f (x)
= lim

x→+∞

 1

0

f (ux)
f (x)

du = 0,

is satisfied, because it holds that limx→+∞
f (ux)
f (x) du = 0 for u ∈ (0, 1), and sup0<u≤1

 f (ux)f (x)

 < M is satisfied for some
M ∈ (0,+∞) and sufficiently large x (the last inequality holds because β(f ) = +∞, where β(f ) is the lower Matuszewska
index (see e.g. [1]), and therefore α(f ) = +∞, where α(f ) is upper Matuszewska index).

Similarly, we have that

lim
x→+∞

f (x)f (x) = lim
x→+∞

 1

0

f (x)
f
 x
u

du = 0

is satisfied, because it holds that limx→+∞
f (x)
f ( x

u )
du = 0 for u ∈ (0, 1), and infλ>1

 f (λx)f (x)

 ≥ 1
M is satisfied for some

M ∈ (0,+∞) and sufficiently large x (this inequality holds because β(f ) = +∞). Hence, sup0<u<1

 f (x)
f ( x

u )

 ≤ M . �
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