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Abstract

The notion of exponents of convergence has many applications in different
mathematical disciplines. In this paper we consider exponents of convergence of
sequences of positive real numbers in connection with games and selection princi-
ples.
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1 Introduction

Let S denote the set of all sequences of positive real numbers and let

S0 =
{

(xn)n∈N ∈ S : lim
n→∞

xn = 0
}

,

S0 =
{

(xn)n∈N ∈ S : lim inf
n→∞

xn = 0
}

.
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A real numberλ is said to be thenumerical exponent of convergenceof a sequencea =

(an)n∈N ∈ S0 if for everyε > 0, the series
∞∑

n=1

aλ+ε
n converges while the series

∞∑
n=1

aλ−ε
n

diverges. If for everyε > 0, the series
∞∑

n=1

aε
n diverges, then we say that the sequence

a has the numerical exponent of convergence∞. It is evident that every sequence in
S0 has exactly one numerical exponent of convergenceλ ∈ [0,∞]. This notion was
(implicitly) introduced in [17] (see also [4, 16]). For a sequencea = (an)n∈N ∈ S0 we
use the following notation:

• e(a) = ρ denotes thatρ is the numerical exponent of convergence ofa;

• S0,ρ = {a ∈ S0 : e(a) = ρ}.

M. Petrovíc in [15] defined the following: A sequence(λn)n∈N ∈ S is said to be a
sequence of exponents of convergenceof a sequencea = (an)n∈N ∈ S0 if for every ε >

0, the series
∞∑

n=1

aλn(1+ε)
n converges and the series

∞∑
n=1

aλn(1−ε)
n diverges. In this article,

the sequence of exponents of convergence will be called theexponent of convergence.
Observe that for eacha = (an)n∈N ∈ S0, there is an exponent of convergence; it is the
sequenceλs = (λn)n∈N defined by

λn = − ln n

ln an

,

called thestandard exponent of convergenceof a. In [1] it was shown that for a given
a ∈ S0, there are infinitely many exponents of convergence ofa. Some nice results and
characterizations in connection with exponents of convergence and numerical exponents
of convergence have been obtained in [1,12,15,18]. Important generalizations of these
concepts have been studied in [7,8]. Also, we mention the paper [19] in which a natural
and essential generalization of exponents of convergence was given by using a sequence
of parameters of convergence. Exponents of convergence have many applications in
several branches of mathematics, e.g., in complex analysis [14], differential equations
(see [2,3,13] and references therein), and so on.

In this paper we investigate relationships among exponents of convergence of se-
quences, game theory, and the theory of selection principles, a growing field of mathe-
matics which has nice relations with different areas of mathematics.

2 Terminology and Notation

For a sequencea = (an)n∈N ∈ S0, we denote:

• E(a) = {λ = (λn)n∈N ∈ S : λ is the exponent of convergence ofa};
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• If λ = (λn)n∈N ∈ E(a), then we writeλ = λ(a) (andλn = λn(a), n ∈ N);

• [λ(a)] = {δ = (δn)n∈N ∈ S : δn ∼ λn, n → ∞}, where∼ is the sequence
asymptotic equivalence onS;

• [λ(a)]E(a) = [λ(a)] ∩ E(a);

• If λ = (λn)n∈N ∈ S, thenE←(λ) = {a = (an)n∈N ∈ S0 : λ ∈ E(a)};

• If a ∈ E←(λ), then we writea = a(λ) = (a(λ)
n )n∈N;

• [a(λ)] = {b = (bn)n∈N ∈ S0 : bn ∼ a(λ)
n , n →∞};

• [a(λ)]E←(λ) = [a(λ)] ∩ E←(λ).

Let us recall some facts about selection principles and games which will be considered
in this paper. For more information about selection principles and games, see [9–11].
Because we are interested here in classes of sequences, we formulate selection princi-
ples for subclassesA andB of S. We identify a sequencex and its image Im(x).

The selection hypothesisS1(A,B) states that for each sequence(An : n ∈ N) of
elements ofA, there is a sequence(bn : n ∈ N) such that for eachn, bn ∈ An,
and{bn : n ∈ N} is an element ofB. There is a two-person game corresponding to
S1(A,B). The symbolG1(A,B) denotes the infinitely long game for two players, ONE
and TWO, who play a round for each positive integer. In then-th round, ONE chooses
someAn ∈ A and TWO responds by choosing an elementbn ∈ An. TWO wins a play
A1, b1; . . . ; An, bn; . . . if {bn : n ∈ N} ∈ B; otherwise, ONE wins. Clearly, if ONE
does not have a winning strategy in the gameG1(A,B), then the selection hypothesis
S1(A,B) is true. The converse implication is not always true.

αi(A,B), i = 2, 3, 4, denotes the selection hypothesis that for each sequence(An :
n ∈ N) of elements ofA, there is an elementB ∈ B such that (see [10,11]):

• α2(A,B): for eachn ∈ N, the setAn ∩B is infinite;

• α3(A,B): for infinitely manyn ∈ N, the setAn ∩B is infinite;

• α4(A,B): for infinitely manyn ∈ N, the setAn ∩B is nonempty.

Evidently, α2(A,B) ⇒ α3(A,B) ⇒ α4(A,B). The following gameGα2(A,B) cor-
responds toα2(A,B): In the first round, ONE plays a sequencex1 = (x1,j)j∈N from
A and TWO responds by choosing a subsequenceyk1 = (x1,k1(j)) of x1. In then-th
round,n ≥ 2, ONE chooses a sequencexn = (xn,j)j∈N fromA and TWO responds by
choosing a subsequenceykn = (xn,kn(j)) of xn so that Im(kn(j))∩ Im(kp(j)) = ∅ for
eachp ≤ n − 1. The player TWO wins a playx1, yk1 ; . . . , xn, ykn ; . . . if and only if
elements ofY =

⋃
n∈N

⋃
j∈N

xn,kn(j), with respect to the second index, form a subsequence

y = (ym)m∈N of some element fromB. It is understood that if TWO has a winning
strategy in this game, then the selection principleα2(A,B) holds.
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3 Results

Theorem 3.1.The playerTWO has a winning strategy in the gameG1(S0, S0,0).

Proof. Suppose that in the first round, ONE plays a sequencex1 = (x1,m)m∈N ∈ S0.
TWO responds by choosing an arbitrary elementy1 = x1,m1. If in the n-th round,
n ≥ 2, ONE chooses a sequencexn = (xn,m)m∈N ∈ S0, then TWO picks an element
yn = xn,mn ∈ xn such that2nyn ≤ yn−1. We prove that the sequencey = (yn)n∈N
of moves of TWO belongs toS0,0. Obviously, from the definition, the sequencey is a
strictly decreasing sequence of positive real numbers, and thus it converges to a number
` ≥ 0. Since

lim sup
n→∞

yn+1

yn

≤ lim
n→∞

1

2n+1
= 0,

it follows ` = 0, i.e.,y ∈ S0. Therefore, for eachε > 0 the sequence(y−ε
n )n∈N tends to

∞ asn →∞, so that the series
∞∑

n=1

y−ε
n diverges. On the other hand, for the sameε we

have

lim sup
n→∞

yε
n+1

yε
n

≤ lim
n→∞

2−ε(n+1) = 0,

and by the d’Alembert criterion, the series
∞∑

n=1

yε
n converges. So, the numerical exponent

of convergence ofy is 0, i.e.,y ∈ S0,0.

Corollary 3.2. The selection principleS1(S0, S0,0) is true.

Remark3.3. By using standard techniques from [5], one can prove that selection prin-
ciplesαi(S0, S0,0), i = 2, 3, 4, are also satisfied.

For the proof of the following theorem, we employ the (modified) techniques used
in [5,6].

Theorem 3.4. TWO has a winning strategy in the gameGα2([λ(a)], [λ(a)]E(a)) for any
a ∈ S0.

Proof. Fix a = (an)n∈N ∈ S0 and letλ(a) = (λn(a))n∈N ∈ E(a). Let σ be a strategy
for TWO. Suppose that the first move of ONE is a sequencex1 = (x1,j)j∈N ∈ [λ(a)].
Then TWO chooses a subsequenceσ(x1) = yk1 = (x1,k1(j))j∈N of x1 so that Im(k1) is
the set of natural numbers which are divisible by 2, and not divisible by22. If in the i-th
round,i ≥ 2, ONE has played a sequencexi = (xi,j)j∈N ∈ [λ(a)], then TWO argues in
the following way. There isji ∈ N such that

1− 1

2i
≤ x1,j

xi,j

≤ 1 +
1

2i
for eachj ≥ ji.
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TWO plays a subsequenceσ(xi) = (xi,ki(j))j∈N of xi so that Im(ki) is the set of
natural numbers≥ ji which are divisible by2i and not divisible by2i+1. The set
Y =

⋃
i∈N

⋃
j∈N

xi,ki(j) is a set of positive real numbers indexed by two indices, and the

elements ofY can be enumerate in such a way to form a subsequence of the sequence
y = (ym)m∈N, where

ym =

{
xi,ki(j), if m = ki(j) for somei, j ∈ N;

x1,m, otherwise.

By construction ofy, one concludes thaty ∈ S and that its intersection with eachxi,
i ∈ N, is infinite.
Claim 1. y ∈ [λ(a)]. It suffices to prove thatym ∼ x1,m, m →∞. Let ε ∈ (0, 1). Pick

the smallesti ∈ N such that
1

2i
< ε. For eachk ∈ {1, 2, . . . , i − 1}, there isj∗k ∈ N

such that1 − ε ≤ x1,j

xk,j

≤ 1 + ε for all j ≥ j∗k . Setj∗ = max{j∗1 , . . . , j∗i−1}. Then

1 − ε ≤ x1,m

ym

≤ 1 + ε for eachm ≥ j∗. Becauseε was an arbitrary element of(0, 1)

we concludey ∈ [λ(a)].
Claim 2. y ∈ E(a). (Here we use techniques which are modified techniques from [1].)

Let ε > 0 be given, and letδ1 =
ε

2(1 + ε)
. For thisδ1 > 0, there isn0 = n0(δ1) ∈ N

such that
(1− δ1)x1,n ≤ yn ≤ (1 + δ1)x1,n for eachn ≥ n0.

For eachn ≥ n0, we also have(1− δ1)(1+ ε) > 1 and(1+ ε)yn ≥ (1+ ε)(1− δ1)x1,n.
Sincea ∈ S0, for n ≥ n0 it holds

ayn(1+ε)
n ≤ ax1,n(1+ε)(1−δ1)

n = a
x1,n(1+ ε

2
)

n .

Choose nowδ2 =
ε

2(1− ε)
for ε ∈ (0, 1). For thisδ2 > 0, there isn1 = n1(δ2) ∈ N

such that for eachn ≥ n1 it holds

(1− δ2)x1,n ≤ yn ≤ (1 + δ2)x1,n.

Forn ≥ n1, we also have

(1 + δ2)(1− ε) < 1 and (1− ε)yn ≤ (1− ε)(1 + δ2)x1,n.

As a ∈ S0, we have that forn ≥ n1,

ayn(1−ε)
n ≥ ax1,n(1−ε)(1+δ2)

n = a
x1,n(1− ε

2
)

n .

Since forε ≥ 1, the series
∞∑

n=1

ayn(1−ε)
n diverges, we gety ∈ E(a). So,y ∈ [λ(a)]E(a)

which completes the proof.
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Corollary 3.5. For eacha ∈ S0, the selection principlesαi([λ(a)], [λ(a)]E(a)), i =
2, 3, 4, are satisfied.

Theorem 3.6.TWO has a winning strategy in the gameGα2

(
[a(λ)], [a(λ)]E←(a)

)
for each

λ ∈ S.

Proof. Let λ = (λn)n∈N be a fixed element inS. A strategyϕ of the player TWO in
the gameGα2

(
[a(λ), [a(λ)]E←(a)

)
is similar to the strategyσ from the proof of Theorem

3.4: If in the i-th round,i ∈ N, ONE has played a sequencexi = (xi,j)j∈N ∈ [a(λ)],
then TWO’s response is a subsequence(xi,ki(j))j∈N of xi such to that Im(ki) is the set
of natural numbers≥ ji which are divisible by2i and not divisible by2i+1. Usingϕ,
TWO actually creates a sequencey = (ym)m∈N which belongs to[a(λ)] and intersects
eachxi in infinitely many elements.

It remains to prove thaty belongs toE←(λ), i.e., thatλ = (λm)m∈N is the exponent
of convergence ofy. Sincey ∈ [a(λ)], it holdsym = ampm for eachm ∈ N, where
a(λ) = (am)m∈N and lim

m→∞
pm = 1. Let ε > 0 be given. Then for sufficiently largem,

yλm(1+ε)
m = eλm(1+ε)lnam(1+ lnpm

lnam
)

so thatam < 1. Since for sufficiently largem ∈ N,
lnpm

lnam

> − ε

2(1 + ε)
, for the samem

we have
yλm(1+ε)

m ≤ a
λm(1+ ε

2
)

m ,

which implies that the series
∞∑

m=1

yλm(1+ε)
m converges. Becausey ∈ [a(λ)] anda(λ) ∈ S0,

we havey ∈ S0, and thus the series
∞∑

m=1

yλm(1−ε)
m diverges forε ≥ 1 (as lim

m→∞
yλm(1−ε)

m 6=

0). Let ε ∈ (0, 1). Then form large enough, we have

yλm(1−ε)
m = eλm(1−ε)lnam(1+ lnpm

lnam
),

so thatam < 1 for each suchm. Since form large enough, it holds

lnpm

lnam

<
ε

2(1− ε)
,

for the samem, we have
yλm(1−ε)

m ≥ a
λm(1− ε

2
)

m ,

which implies that the series
∞∑

m=1

yλm(1−ε)
m diverges. This meansy ∈ E←(λ) and thus

y ∈ [a(λ)]E←(λ).

Corollary 3.7. The selection principleα2

(
[a(λ)], [a(λ)]E←(a)

)
is satisfied for eachλ ∈ S.

Remark3.8. The winning strategy of the player TWO in Theorems 3.4 and 3.6 can be
realized in infinitely many manners.
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[10] Lj. D. R. Kočinac, Selection principles related toαi-properties,Taiwanese J. Math.
12 (2008), 561–571.
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