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We prove that some classes of summable sequences of positive real numbers satisfy several
selection principles related to a special kind of convergence.

1. Introduction

By �, �, and � we denote the set of natural numbers, real numbers, and the extended real
line � ∪ {−∞,∞}, respectively.

Let �denote the set of sequences a = (an)n∈� of positive real numbers.
We begin with the following definitions of selection principles.
LetA and B be nonempty subsets of �. Then the symbol S1(A,B) denotes the selection

principle.
For each sequence (an : n ∈ �) of elements of A there is a sequence b = (bn)n∈� ∈ B

such that bn ∈ an for each n ∈ �.
The following infinitely long game G1(A,B) is naturally associated to the previous

selection principle.

Two players, ONE and TWO, play a round for each positive integer. In the n-th
round ONE chooses a sequence an ∈ A, and TWO responds by choosing an element
bn ∈ an. TWO wins a play (a1, b1; . . . ; an, bn; . . .) if b = (bn)n∈� ∈ B; otherwise, ONE
wins.

Another selection principle �fin(A,B) is defined as follows.

For each sequence (an : n ∈ �) of elements of A there is a sequence b ∈ B such that
b ∩ an is finite for each n ∈ �.

It is clear how the corresponding game Gfin(A,B) is defined.
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A strategy of a player is a function σ from the set of all finite sequences of moves of
the other player into the set of admissible moves of the strategy owner.

A strategy σ for the player TWO is a coding strategy if TWO remembers only the most
recent move by ONE and by TWO before his next move. More precisely the moves of TWO
are b1 = σ(a1, ∅); bn = σ(an, bn−1), n ≥ 2.

In this paper we introduce also the following game. Let i ∈ � be a fixed (but arbitrary)
natural number. We define the game �(w=i)

1 (A,B) for two players, ONE and TWO, who play
a round for each n ∈ �. In the i-th round ONE plays a sequence ai = (ai,m)m∈� ∈ A, and TWO
responds by choosing a finite set Fi = {ai,mi1

, . . . , ai,mik
}. In the n-th round, n/= i, ONE plays a

sequence an = (an,m)m∈� ∈ A, and TWO responds by choosing an element an,mn ∈ an. TWO
wins a play if the sequence b = (a1,m1 , . . . , ai−1,mi−1 ; ai,mi1

, . . . , ai,mik
; ai+1,mi+1 , . . .) belongs to B;

otherwise, ONE wins.
For more information on selection principles and games see the survey papers in [1, 2]

and references therein.
In a number of papers by the authors published in the last few years it was

demonstrated that some subclasses A and B of � satisfy certain selection principles and
game theoretical statements (forA and B classes of divergent sequences related to celebrated
Karamata’s theory of regular variation [3–6] see [7–12], and forA and B classes of sequences
converging to 0 see [13]). For other results concerning sequences and sequence spaces see
[14–16].

In this paper our selections are related to special kinds of convergence of series. More
precisely, we start by a sequence of summable sequences and during the selection process we
control not only the convergence of series, but also the nature of that convergence.

2. Results

We use the following notations for the classes of sequences we deal with:

�1 =

{
a ∈ � :

∞∑
n=1

an < ∞
}
,

�1,S =

{
a ∈ � :

∞∑
n=1

an = S

}
, for S ∈ (0,∞],

�1,(α,β) =
{
a ∈ �1,S : S ∈ (

α, β
)}

, for α, β ∈ (0,∞),

�1,(α,β] = �1,(α,β)
⋃

�1,β, for α, β ∈ (0,∞).

(2.1)

Notice that the sequence x = (xn)n∈�, xn = S/2n, belongs to the class �1,S, so that all
the classes above are nonempty.

Theorem 2.1. For each S ∈ (0,∞) and each ε = ε(S) ∈ (0, S) TWO has a winning coding strategy
in the game �(w=1)

1 (�1,S, �1,(S−ε,S]).

Proof. Let σ denote a strategy of TWO, and let S > 0 and ε = ε(S) ∈ (0, S) be fixed. Suppose
that in the first round ONE chooses a sequence x1 = (x1,m)m∈� from �1,S. There is k ∈ �
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such that
∑∞

m=k+1 x1,m < ε/2, and thus M = S − ∑k
m=1 x1,m ∈ (0, ε/2). Player TWO plays

σ(x1) = {x1,1, . . . , x1,k}—a finite subset of x1.
In the second round ONE chooses a sequence x2 = (x2,m)m∈� ∈ �1,S, and then TWO

responds by choosing σ(x2, σ(x1)) = x2,m2 such that x2,m2 < M/2 (which is possible because
limm→∞x2,m = 0).

In the n-th round, n ≥ 3, ONE chooses xn = (xn,m)m∈� ∈ �1,S, and TWO’s response is
σ(xn, xn−1,mn−1) = xn,mn such that xn,mn < xn−1,mn−1/2

n−1 < M/2n−1, and so on.
Set yn = x1,n for n ≤ k and yn = xn−k+1,mn−k+1 for n > k. Let us prove y = (yn)n∈� ∈

�1,(S−ε,S]. We have

∞∑
n=1

yn =
k∑

n=1

yn +
∞∑

n=k+1

yn =
k∑

m=1

x1,m +
∞∑

n=k+1

yn

= S −M +
∞∑

n=k+1

yn < S −M +M

( ∞∑
i=1

1
2i

)
= S.

(2.2)

On the other hand,

∞∑
n=1

yn >
k∑

m=1

x1,m = S −M > S − ε

2
. (2.3)

That is, y ∈ �1,(S−ε,S].

Corollary 2.2. For each S ∈ (0,∞) and each ε = ε(S) ∈ (0, S) the selection principle
�fin(�1,S, �1,(S−ε,S]) is true.

Notice that one can prove a refinement of Theorem 2.1 (and Corollary 2.2) in the sense
that it is possible to have additional control of selections giving the sequence y. For this we
need the following definitions and notation.

Definition 2.3 (see [13]). A sequence (xn)n∈� ∈ � is said to belong to the class Tr(�−∞,�) if for
each λ ≥ 1 it satisfies

lim
n→∞

x[n+λ]

xn
= 0, (2.4)

where [r] denotes the integer part of r ∈ �.

Definition 2.4 (see [9]). For a sequence x = (xn)n∈� ∈ �, the Landau-Hurwicz sequence w(x) =
(wn(x))n∈� of x is defined by

wn(x) := sup{|xm − xk| : m ≥ n, k ≥ n}, n ∈ �. (2.5)
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Given a sequence x = (xn)n∈� ∈ �we denote by Sx = (Sn(x))n∈� the sequence defined
by

Sn(x) =
n∑
i=1

xi, n ∈ �. (2.6)

Let �1,(α,β]Tr(�−∞,�)
be the set of all sequences a = (an)n∈� ∈ �1,(α,β] such thatw(Sa) ∈ Tr(�−∞,�).

Theorem 2.5. For each S ∈ (0,∞) and each ε = ε(S) ∈ (0, S) TWO has a winning coding strategy
in the game �(w=1)

1 (�1,S, �1,(S−ε,S]Tr(�−∞,�)
).

Proof. The strategy σ of player TWO and the sequence y = (yn)n∈� are actually from the proof
of Theorem 2.1. Therefore, y ∈ �1,(S−ε,S]. Besides, since, by construction, the series

∞∑
n=1

yn+1

yn
(2.7)

is convergent, we have

lim
n→∞

( ∞∑
k=n

yk+1

yk

)
= 0. (2.8)

Consider now the sequence Sy = (Sn(y))n∈�. This sequence is convergent (by the
d’Alembert criterion), and let S(y) be its limit. It remains to prove w(Sy) = (wn(Sy))n∈� ∈
Tr(�−∞,�). It is enough to prove

lim
n→∞

wn+1
(
Sy

)
wn

(
Sy

) = 0. (2.9)

First, notice that

wn

(
Sy

)
= S

(
y
) − Sn

(
y
)
, n ∈ �. (2.10)

Thus we get

lim
n→∞

wn+1
(
Sy

)
wn

(
Sy

) = lim
n→∞

S
(
y
) − Sn+1

(
y
)

S
(
y
) − Sn

(
y
) = 1 − lim

n→∞
yn+1

yn+1 + yn+2 + · · · = 0. (2.11)

That is (2.9), since by (2.8) and the fact that for n sufficiently large it holds

yn+2

yn+1
+
yn+3

yn+1
+ · · · = yn+2

yn+1
+
yn+3

yn+2
· yn+2

yn+1
+ · · · ≤ yn+2

yn+1
+
yn+3

yn+2
+ · · · , (2.12)
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we have

lim
n→∞

yn+1

yn+1 + yn+2 + · · · = lim
n→∞

1
1 +

(
yn+2/yn+1

)
+
(
yn+3/yn+1

)
+ · · · = 1. (2.13)

The theorem is proved.

Corollary 2.6. The selection principle �fin(�1,S, �
1,(S−ε,S]
Tr(�−∞,�)

) is true.

The following two theorems give other selection results for defined classes of
sequences: one of the �fin-type and the other of the �1-type.

Theorem 2.7. For each S ∈ (0,∞] the selection principle �fin(�1,S, �1,∞) is satisfied.

Proof. Consider first the case S ∈ (0,∞). Let (xn : n ∈ �), xn = (xn,m)m∈�, be a sequence of
elements of �1,S. For each n ∈ � let zni = xn,i, i ≤ k = k(n), be a finite subset of xn such that
S/2 <

∑k
i=1 zni < S. Arrange now znp , n ∈ �, p ∈ {1, 2, . . . , k(n)}, in the sequence y = (yj)j∈�

in which the position of an element is determined first by n and then by p, that is,

y =
(
z11 , . . . , z1k(1) ; . . . ; zn1 , . . . , znk(n) ; . . .

)
. (2.14)

We have

n · S
2
<

n∑
m=1

k(m)∑
i=1

zmi =
k(n)∑
j=1

yj , (2.15)

where yk(n) is the last element of xn belonging to the sequence y. Therefore,

∞∑
j=1

yj = lim
n→∞

k(n)∑
j=1

yj > lim
n→∞

(
n · S

2

)
= ∞. (2.16)

That is, y ∈ �1,∞.
Suppose now that S = ∞. This case is treated similarly to the previous case, but here

we require
∑k

i=1 zni > 1 for each n ∈ �; the sequence y = (yj)j∈� is formed in a similar way as

in the first case. So we have n · 1 <
∑k(n)

j=1 yj for each n ∈ �, hence

∞∑
j=1

yj = lim
n→∞

k(n)∑
j=1

yj > lim
n→∞

(n · 1) = ∞. (2.17)

That is, y ∈ �1,∞. The theorem is proved.

Theorem 2.8. For each S ∈ (0,∞) and each α > 0 the selection principle �1(�1,S, �1,(0,α)) is true.

Proof. Let (xn : n ∈ �), xn = (xn,m)m∈�, be a sequence of elements in �1,S. For each n ∈ �

take yn = xn,mn ∈ xn so that y1 ∈ (0, α) (which is possible since x1,m → 0 as m → ∞) and
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yn < α−y1/2n−1 for n ≥ 2. Then the sequence y = (yn)n∈� witnesses that the statement is true,
because

∞∑
n=1

yn = y1 +
∞∑
n=2

yn < y1 +
(
α − y1

)
= α. (2.18)

That is, y ∈ �1,(0,α).

For the next result we have to define the following selection principles [2, 17]. Notice
that in [18] we developed an interesting technique for proving results concerning these
selection principles and certain classes of sequences from �. In [19] we proposed the use
of this technique (and these selection principles) in other fields of mathematics and its
applications.

Let, as before, A and B be certain nonempty subfamilies of �. Then the symbol
αi(A,B), i = 2, 3, 4, denotes the selection hypothesis that for each sequence (an : n ∈ �)
of elements of A there is an element b ∈ B such that:

α2(A,B): for each n ∈ � the set an ∩ b is infinite;

α3(A,B): for infinitely many n ∈ � the set an ∩ b is infinite;

α4(A,B): for infinitely many n ∈ � the set an ∩ b is nonempty.

Theorem 2.9. For each S ∈ (0,∞) and each α > 0 the selection principles αi(�1,S, �
1,(0,α)
Tr(�−∞,�)

), i =
2, 3, 4, are satisfied.

Proof. We prove that the principle α2 is true (hence also α3 and α4). Let (xn : n ∈ �), xn =
(xn,m)m∈�, be a sequence of sequences from �1,S. Let m1 ∈ � be such that

∑∞
m=m1+1 x1,m < α/2.

For k ≤ 2 let mk be a natural number such that
∑∞

m=mk+1 xk,m < α/2k. Consider the sequence
y = (yj)j∈� defined in this way:

y = (x1,m1+1, x1,m2+2, . . . ;x2,m2+1, x2,m2+2, . . . ;xk,mk+1, xk,mk+2, . . .). (2.19)

Then y ∩ xn is infinite for each n ∈ �. Further, y ∈ �1,(0,α) because

0 <
∞∑
j=1

yj =
∞∑
k=1

∞∑
m=mk+1

xk,m <
∞∑
k=1

α

2k
= α. (2.20)

We construct now a new sequence z = (zi) in the way described in Table 1 .
Evidently, z ∩ xn is infinite for each n ∈ �. Also, 0 <

∑∞
i=1 zi ≤ ∑∞

j=1 yj < α, that is,
z ∈ �1,(0,α). By a minor modification of the proof of Theorem 2.5 we obtain w(Sz) ∈ Tr(�−∞,�).
This means z ∈ �

1,(0,α)
Tr(�−∞,�)

.
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Table 1

x1 x2 x3 x4 How
z1 z1 ∈ y ∩ x1 — — — any
z2 — z2 ∈ y ∩ x2 — — z2/z1 < 1/2
z3 z3 ∈ y ∩ x1 — — — z3/z2 < 1/22

z4 — — z4 ∈ y ∩ x3 — z4/z3 < 1/23

z5 — z5 ∈ y ∩ x2 — — z5/z4 < 1/24

z6 z6 ∈ y ∩ x1 — — — z6/z5 < 1/25

z7 — — — z7 ∈ y ∩ x4 z7/z6 < 1/26

z8 — — z8 ∈ y ∩ x3 — z8/z7 < 1/27

z9 · · · · · · · · · · · · · · ·
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[11] D. Djurčić, L. D. R. Kočinac, and M. R. Žižović, “A few remarks on divergent sequences: rates of
divergence,” Journal of Mathematical Analysis and Applications, vol. 360, no. 2, pp. 588–598, 2009.
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