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Abstract. In this paper we discuss the relationship between the weak asymptotic equivalence
relation and the generalized inverse in the class A of all nondecreasing and unbounded functions,
defined and positive on a half-axis [a, +∞) (a > 0). In the main theorem, we prove a proper
characterization of the functional class ORV ∩ A, where ORV is the class of all O–regularly

varying functions (in the sense of Karamata).
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1. Introduction

A function f : [a, +∞) �→ (0, +∞) (a > 0) is called O–regularly varying in the
sense of Karamata if it is measurable and if

(1) kf (λ): = lim
x→+∞

f(λx)
f(x)

< +∞ (λ > 0).

Condition (1) is equivalent with condition

(2) kf (λ): = lim
x→+∞

f(λx)
f(x)

> 0 (λ > 0).

Function kf (λ) (λ > 0) is called index function of f , and function kf (λ) (λ > 0)
is called auxiliary index function of f . ORV is the class of all O–regularly varying
functions defined on some interval [a, +∞).

The class ORV is an important object in the qualitative analysis of divergent
processes (see e.g. [1] and [7]).

The Tauberian condition generated by condition (1) or (2) is an important
convergence condition in the theory of Tauberian theorems (see [3] and [17]), and
also in the asymptotic analysis in general (see [7]).

A measurable function f : [a, +∞) �→ (0, +∞) (a > 0) is said to belong the
class αRV if there is a λ0 ≥ 1 such that

(3) kf (λ) > 1

for every λ > λ0.
The class αRV contains as proper subclasses: class of regularly varying func-

tions (denoted by RV ) whose Karamata index of variability ρ is positive (e.g. see
[21]), class of rapidly varying functions (denoted by R∞) whose de Haan index is
+∞, (e.g. see [16]), the class ARV (e.g. see [15]), but it does not contain any
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element from the class of slowly varying Karamata functions (denoted by SV ) (e.g.
see [18]).

Since the class αRV is first introduced and investigated in papers [19], [8], [9]
and [10], we shall call the functions from the class αRV the Buldygin functions. The
denotation αRV is inspired by its very important proper subclass ARV , where “A”
should associate to V. Avakumović (1919–1990), the known serbian mathematician
who worked in asymptotic analysis (see e.g. [4], [5] and [2]).

Let A = {f : [a, +∞) �→ (0, +∞)(a > 0) | f is nondecreasing and unbounded}.
If f ∈ A, consider the set {f} = {g ∈ A | f(x) � g(x), x → +∞}, where f(x) �
g(x), x → +∞ is the weak asymptotic equivalence relation defined by

0 < lim
x→+∞

f(x)
g(x)

≤ lim
x→+∞

f(x)
g(x)

< +∞

(e.g. see [7]).
For any f ∈ A, the function f i(x) = inf{y ≥ a | f(y) > x} (x ≥ f(a)) is its

generalized invers (e.g. see [7]).
If f ∈ A is continuous and strictly increasing, then f i(x) = f−1(x), for x ≥

f(a). Besides, f i ∈ A whenever f ∈ A. For any right continuous function g ∈ A
there is an f ∈ A (f(x) = gi(x), x ≥ g(a)) such that g = f i.

A function f ∈ ORV is called regularly varying in Karamata sense if kρ(λ) = λρ

holds for all λ > 0 and some ρ ∈ R, where ρ is general index of variability of f .
The class of all regularly varying functions is denoted by RV . This class is the
main object of the Karamata theory of regular variability (e.g. see [21]), and its
variations and applications (see also [7], [11] and [20]).

For any function f ∈ A define [f ] = {g ∈ A | f(x) ∼ g(x), x → +∞}, where
f(x) ∼ g(x), x → +∞ is the strong asymptotic equivalence relation defined by

lim
x→+∞

f(x)
g(x)

= 1.

The next theorem is a modified combination of some results from [6] (see also
[7, p. 190, 14 (ii), (iii)]).

THEOREM A. Let f, g ∈ A and assume that f is a regularly varying function
whose index ρ > 0.

(a) If g ∈ [f ], then gi ∈ [f i].
(b) If gi ∈ [f i], then g ∈ [f ].

Some extensions of the Theorem A can be found in [12], [8] and [15]. Also, some
modifications of this theorem are given in [14] and [9], where another asymptotic
relation is considered, in fact the process (operator) of inverting the functions.

2. The main results

An extension of Theorem A in the sense of the weak asymptotic equivalence
relation for continuous and strictly increasing functions from the class A is proved in
[13]. In the next statements we shall extend these results and establish a complete
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relationship between weak asymptotic equivalence relation and generalized inverse
([7]) in the functional class A.

PROPOSITION 1. Let f, g ∈ A and f i ∈ ORV . If aditionally g ∈ {f},
then gi ∈ {f i}.

Proof. If f, g ∈ A and f i ∈ ORV , g ∈ {f}, then there are some constants
m, M ∈ R

+ (m ≤ M) such that m ≤ g(x)/f(x) ≤ M , x ≥ x0. Hence g(x) ≤ Mf(x)
for x ≥ x0. Therefore gi(x) ≥ f i(x/M), x ≥ x0, i.e. gi(x)/f i(x) ≥ f i(x/M)/f i(x),
x ≥ x0. We also have g(x) ≥ mf(x), x ≥ x0. Hence gi(x) ≤ f i(x/m) holds for
x ≥ x0, so that gi(x)/f i(x) ≤ f i(x/m)/f i(x) for such x. Therefore, for x ≥ x0

holds
f i(x/M)

f i(x)
≤ gi(x)

f i(x)
≤ f i(x/m)

f i(x)
.

Hence, we have

kfi(1/M) ≤ lim
x→+∞

gi(x)
f i(x)

≤ kfi(1/m),

and

kfi(1/M) ≤ lim
x→+∞

gi(x)
f i(x)

≤ kfi(1/m).

Therefore, it follows

0 < kfi(1/M) ≤ lim
x→+∞

gi(x)
f i(x)

≤ lim
x→+∞

gi(x)
f i(x)

≤ kfi(1/m),

hence gi ∈ {f i}. �

Example 1. In general case, if gi ∈ {f i} then it is not necessarily g ∈ {f}.
Take for example f(x) = ex, x ≥ 1 and g(x) =

1
2
ex, x ≥ 1.

PROPOSITION 2. Let f, g ∈ A. If gi ∈ {f i} for every g ∈ {f}, then
f i ∈ ORV (gi ∈ {ORV }).

Proof. Let f ∈ A and for every g ∈ A holds gi ∈ {f i} when g ∈ {f}. For
arbitrary and fixed λ > 0, consider the function g1(x) = λf(x), x ≥ a. Then
g1 ∈ {f}, so it follows gi

1 ∈ {f i}. Since gi
1(x) = f i(x/λ), x ≥ λa, we have

+∞ > M(λ) ≥ lim
x→+∞

f i(x)
f i(x/λ)

= lim
t→+∞

f i(λt)
f i(t)

= kfi(λ).

Therefore f i ∈ ORV .
Next, for every g ∈ {f} we have gi ∈ {f i}, so it follows gi(x) = h(x)f i(x),

x ≥ f(a), where

0 <
1

A(g)
≤ h(x) ≤ A(g) < +∞,

for all x ≥ f(a). Hence,

kgi(λ) ≤ kfi(λ)A2(g) < +∞, λ > 0,
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so it follows gi ∈ ORV . �

PROPOSITION 3. Let f ∈ A. Then f ∈ αRV if and only if f i ∈ ORV .

Proof. First assume f ∈ A∩αRV . Then for some λ0 ≥ 1 and for some λ > λ0

holds f(λx) ≥ c(λ)f(x), x ≥ x0 = x0(λ), where c(λ) = cf (λ) > 1 for λ > λ0. Hence,
for this λ and x we have f(λx)/c(λ) ≥ f(x), so it follows f i(c(λ)x)/λ ≤ f i(x).
Therefore, for this λ we have kfi(c(λ)) ≤ λ < +∞. Thus, f i ∈ ORV .

Next, assume that f i ∈ ORV ∩A. Then by [1] we have

lim
x→+∞ sup

λ∈[1,2]

f i(λx)
f i(x)

= lim
x→+∞

f i(2x)
f i(x)

= kfi(2) ≥ 1.

For every ε > 0 there is an x0 = x0(ε) > 0 such that

sup
λ∈[1,2]

f i(λx)
f i(x)

≤ kfi(2) + ε = M(ε), x ≥ x0,

so that for every x ≥ x0 and every λ ∈ [1, 2] we have

f i(λx)/f i(x) ≤ M(ε).

Now it follows:

f i(λx)
M(ε)

≤ f i(x),

⇒
((f(M(ε)x)

λ

)i
)i

≥ (
f i(x)

)i
,

⇒ f(x) ≤ f(M2(ε)x)
λ

,

⇒ f(M2(ε)x)
f(x)

≥ λ,

⇒ f(M2(ε)x)
f(x)

≥ 2 > 1,

⇒ lim
x→+∞

f(M2(ε)x)
f(x)

= kf (M2(ε)) ≥ 2 > 1.

Since kf (s) is nondecreasing for s > 0, we find that kf (λ) > 1, for λ > M2(ε) >

1. Hence, f ∈ αRV ∩ A.
This completes the proof. �

COROLLARY 1. Let f ∈ A. Then f, f i ∈ ORV if and only if f ∈ ORV ∩
αRV (f i ∈ ORV ∩ αRV ).

PROPOSITION 4. Let f ∈ A. Then f ∈ ORV if and only if f i ∈ αRV .

Proof. First assume f ∈ A ∩ ORV . Then by [1]

lim
x→+∞ sup

λ∈[1,2]

f(λx)
f(x)

= lim
x→+∞

f(2x)
f(x)

= kf (2) ≥ 1.
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For every ε > 0, there is an x0 = x0(ε) > 0 such that

sup
λ∈[1,2]

f(λx)
f(x)

≤ kf (2) + ε = m(ε), for all x ≥ x0,

so for the same x it and for every λ ∈ [1, 2] we have f(λx)/f(x) ≤ m(ε). Therefore,
f(λx)/m(ε) ≤ f(x), and it follows

f i(m(ε)x)
λ

≥ f i(x),

⇒ f i(m(ε)x) ≥ λf i(x),

⇒ f i(m(ε)x) ≥ 2f i(x),

⇒ f i(m(ε)x)
f i(x)

≥ 2 > 1,

⇒ lim
x→+∞

f i(m(ε)x)
f i(x)

≥ 2 > 1,

⇒ kfi(m(ε)) < 1.

Hence, kfi(λ) > 1 for λ > m(ε) = λ0 ≥ 1, so it follows f i ∈ αRV .
Next, assume that f i ∈ αRV ∩ A. Then for some λ0 ≥ 1 and all λ > λ0 we

have f i(λx) ≥ c(λ)f i(x), for all x ≥ x0 = x0(λ), where c(λ) = cf (λ) > 1, λ > λ0.
Hence, for that λ and x we have f i(λx)/c(λ) ≥ f i(x), so that

(
f(c(λ)x)/λ)

)i ≥
f i(x). Then, similarly as in the previous proof, we have f(c(λ)x)/λ ≤ f(

√
c(λ)x).

Therefore, f(c(λ)x)/f(
√

c(λ)x) ≤ λ, and consequently, for a fixed λ > λ0, we
obtain kf (

√
c(λ)) ≤ λ < +∞. In other words, f ∈ ORV . �

COROLLARY 2. Let f ∈ A. Then f, f i ∈ αRV if and only if f ∈ ORV ∩
αRV (f i ∈ ORV ∩ αRV ).

PROPOSITION 5. If f ∈ A ∩ ORV , then f(x) � (f i(x))i, for x → +∞,
i.e. f ∈ {(f i)i}.

Proof. We have that for x ≥ 0 and β > 1, f(x) ≤ (f i(x))i ≤ f(βx), so that

1 ≤ (f i(x))i

f(x)
≤ f(βx)

f(x)
.

Therefore,

0 < 1 ≤ lim
x→+∞

(f i(x))i

f(x)
≤ lim

x→+∞
f i(x))i

f(x)
≤ kf (β) < +∞.

Hence, f(x) � (f i(x))i, for x → +∞. �

PROPOSITION 6. Let f ∈ A ∩ ORV and g ∈ A. Then f(x) � g(x),
x → +∞, if and only if (f i(x))i � (gi(x))i, x → +∞.
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Proof. Let f ∈ A∩ORV and g ∈ A. If f(x) � g(x), x → +∞, then g ∈ ORV ,
so that by Proposition 5 we have f(x) � (f i(x))i, x → +∞ and g(x) � (gi(x))i,
x → +∞. Hence, (f i(x))i � (gi(x))i, x → +∞.

Conversely, assume that f ∈ A∩ORV , g ∈ A and (f i(x))i � (gi(x))i, x → +∞.
Then, by Proposition 5, we have f(x) � (gi(x))i as x → +∞, because f(x) �
(f i(x))i, x → +∞. Hence, (gi(x))i, x ≥ a belongs to ORV ∩A. By Proposition 3 we
have gi ∈ αRV , while by Proposition 4 it follows g ∈ ORV . Hence, by Proposition
5 we have that g(x) � (gi(x))i, x → +∞, so that f(x) � g(x), x → +∞.

�

PROPOSITION 7. (a) Let f, g ∈ A and f ∈ αRV ∩ORV . Then g ∈ {f} if
and only if gi ∈ {f i}.

(b) Let f ∈ A and f �∈ ORV ∩ αRV . Then there is a g ∈ A such that g ∈ {f}
and gi �∈ {f i}, or there is a g ∈ A such that gi ∈ {f i} and g �∈ {f}.

Proof. (a) Let f, g ∈ A and f ∈ αRV ∩ ORV .
First assume that g ∈ {f}. Since f ∈ αRV , by Proposition 3 we have f i ∈

ORV , so by Proposition 1 we get gi ∈ {f i}.
Conversely, assume that gi ∈ {f i}. Since f ∈ ORV , by Proposition 5 we have

f(x) � (f i(x))i, x → +∞. Therefore, (f i(x))i, x ≥ a belongs to ORV ∩ A. By
Proposition 1 it follows (f i(x))i � (gi(x))i, x → +∞, and by Proposition 6 we have
f(x) � g(x), x → +∞. Thus, g ∈ {f}.

(b) Assume that f ∈ A\ (ORV ∩αRV ). We shall discuss following three cases.
(10) Let f ∈ ORV \ ARV . Then by Corollary 1, f i �∈ ORV . Hence, by

Proposition 2 there is a g ∈ A such that g ∈ {f} and gi �∈ {f i}.
(20) Let f �∈ ORV ∪ αRV . Then by Proposition 3 f i �∈ ORV , and by Propo-

sition 4 f i �∈ αRV , so by Proposition 2 there is a g ∈ A such that g ∈ {f} and
gi �∈ {f i}.

(30) Let f ∈ αRV \ ORV . Then there is a p > 1 such that

kf (λ) = lim
x→+∞

f(λx)
f(x)

= +∞, λ ≥ p.

Consider a function g(x) = f(px), for x ≥ a. Then:

1 ≤ lim
x→+∞

g(x)
f(x)

≤ lim
x→+∞

g(x)
f(x)

= +∞,

so that g �∈ {f}. Since

gi(x) = (f(px))i = inf{y > 0 | f(py) > x} =

= inf{ t

p
> 0 | f(t) > x} =

f i(x)
p

,

we have f i(x) � gi(x), x → +∞, so there is a g ∈ A such that gi ∈ {f i} and
g �∈ {f}. �

Let a > 0. Functions f, g : [a, +∞) �→ (0, +∞) are called mutually “inverse
weak asymptotic” in +∞ (which is denoted by f(x)

∗�g(x), x → +∞) if there
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is a λ0 ≥ 1 such that for every λ > λ0 there is an x0 = x0(λ) > 0 so that
f(x/λ) ≤ g(x) ≤ f(λx) for all x ≥ x0 (see e.g. [6]).

PROPOSITION 8. Let f, g ∈ A. Then f i(x) � gi(x), x → +∞ if and only
if f(x)

∗�g(x), x → +∞.

Proof. First assume f, g ∈ A and f(x)
∗�g(x), x → +∞. Then there is a

fixed λ0 ≥ 1 such that for every λ > λ0 we have f(x/λ) ≤ g(x) ≤ f(λx) for
x ≥ x0 = x0(λ) > 0.

Since for such λ and x we have g(x) ≤ f(λx), it follows that gi(x) ≥ f i(x)/λ.
Consequently, we have gi(x)/f i(x) ≥ 1/λ for such λ and x.

From the previous, f(x/λ) ≤ g(x) holds for the mentioned λ and x, i.e.
λf i(x) ≥ gi(x) holds for the mentioned λ and sufficiently large x, therefore gi(x)/f i(x) ≤
λ. Now it follows 0 < 1/λ ≤ gi(x)/f i(x) ≤ λ < +∞, and hence gi(x) � f i(x),
x → +∞.

Conversely, assume that f, g ∈ A and f i(x) � gi(x), x → +∞. Then there is
an M > 1 such that

1
M

≤ gi(x)
f i(x)

≤ M, x ≥ x0(M) > 0.

First, for such x we have gi(x) ≤ Mf i(x), so it follows gi(x) ≤ (f(x/M))i,
and hence (gi(x))i ≥ ((f(x/M))i)i. Therefore, for such x and any λ > 1 we have
f(x/M) ≤ g(λx). If λ > 1 and x ≥ x0, put t = λx. Then for every t ≥ t0, we have
f(t/λM) ≤ g(t).

Next, for the same x, we have that gi(x) ≥ f i(x)/M , so that gi(x) ≥ (f(Mx))i.
Therefore, (gi(x))i ≤ ((f(Mx))i)i, so it follows g(x) ≤ f(λMx) for any λ > 1 and
x ≥ x0.

By taking t = x we obtain g(t) ≤ f(λMt) for any λ > 1 and t ≥ x0. Thus, if
λ > 1 and t ≥ t0 = t0(λ) it follows f(t/λM) ≤ g(t) ≤ f(λMt). Taking s = λM >

M > 1, for every s > M > 1 we have f(t/s) ≤ g(t) ≤ f(st) as t ≥ t0(s). This
finally gives f(x)

∗�g(x), x → +∞. �

To prove 9 we need the following lemma.

LEMMA 1. Let f ∈ αRV . Then there is a λ0 ≥ 1 and at least one function
c(λ) > 1 for every λ > λ0, depending on f , such that lim

λ→+∞
c(λ) = +∞ and

f(λx) ≥ c(λ)f(x) for every x ≥ x0(λ) > 0.

Proof. Let kf (λ) = lim
x→+∞

f(λx)
f(x)

, where λ > λ0 ≥ 1, and let define c(λ) =

1
2
(kf (λ) + 1) for that λ. Then c(λ) > 1 (λ > λ0).

Next, let λ1 > λ0 ≥ 1. If λ ∈ [λn
1 , λn+1

1 ) and n ≥ 2 we get

kf (λ) ≥ lim
x→+∞

f(λ1x)
f(x)

· · · lim
x→+∞

f(λn−1
1 x)

f(λn−2
1 x)

· lim
x→+∞

f(λx)
f(λn−1

1 x)
=

=
(
kf (λ1)

)n−1

·
(
kf

( λ

λn−1
1

))
,
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which gives lim
λ→+∞

kf (λ) = +∞, so that lim
λ→+∞

c(λ) = +∞. �

PROPOSITION 9. Let f, g : [a, +∞) �→ (0, +∞) (a > 0) and let f ∈ αRV .
If g ∈ {f}, then f(x)

∗�g(x), x → +∞.

Proof. Since f ∈ αRV , by Lemma 1, there is a function c(λ) > 1 (λ >

λ0 ≥ 1), depending on f , such that f(λx) ≥ c(λ)f(x) for every λ > λ0 and every
x ≥ x0(λ) ≥ a > 0, and such that lim

λ→+∞
c(λ) = +∞.

Since g ∈ {f}, there is an M ∈ R, M > 1 such that 1/M ≤ g(x)/f(x) ≤ M ,
for every x ≥ x1(M) = x1 > 0. Hence, for x ≥ max{x0, x1} we have f(λx) ≥
c(λ)f(x) ≥ c(λ)g(x)/M . Since c(λ)/M ≥ 1 for λ > λ′, we get f(λx) ≥ g(x) for
such λ and x. Next, since kf (1/λ) = 1/kf (λ) for λ ≥ λ0, for such λ we also
have kf (1/λ) ≤ 1/c(λ). Hence, for such λ and all x ≥ x2(λ) = x2 > 0 we have
f(x/λ) ≤ 2f(x)/(1 + c(λ)).

Therefore, for such λ and x ≥ max{x1, x2} we have f(x/λ) ≤ 2f(x)/(1 +
c(λ)) ≤ 2Mg(x)/(1 + c(λ)).

Since next 2M/(1 + c(λ)) ≤ 1 for λ ≥ λ′′, we have that f(x/λ) ≤ g(x) for
these λ and x. Therefore f(x/λ) ≤ g(x) ≤ f(λx) for λ ≥ max{λ′, λ′′} and x ≥
max{x0, x1, x2}, which means that f(x)

∗� g(x), x → +∞. �

PROPOSITION 10. Let f, g : [a, +∞) �→ (0, +∞) (a > 0) and let f ∈ ORV .
If f(x)

∗�g(x), x → +∞, then g ∈ {f}.

Proof. From all assumptions of Proposition 10 we have that

f(x/λ)
f(x)

≤ g(x)
f(x)

≤ f(λx)
f(x)

,

for every λ > λ0 ≥ 1 and every x ≥ x0 = x0(λ) ≥ a > 0. Therefore, for λ > λ0 we
have

0 < kf

( 1
λ

) ≤ lim
x→+∞

g(x)
f(x)

≤ lim
x→+∞

g(x)
f(x)

≤ kf (λ) < +∞,

because of f ∈ ORV which implies f(x) � g(x) for x → ∞, i.e. g ∈ {f}. �

COROLLARY 3. Let f, g : [a, +∞) �→ (0, +∞) (a > 0) and let f ∈ ORV ∩
αRV . Then g ∈ {f} if and only if f(x)

∗�g(x) as x → +∞.

We remark that the class ORV ∩αRV contains all regularly varying functions
whose index is positive as well as all functions from the class ERV (for the definition
see [7]) whose down Matuszewska index is positive (see [19]). More generaly, this
class contains all functions from the class IRV ∩ ARV (see [15]). Also notice that
the same class does not contain any slowly varying Karamata functions and any
rapidly varying function in the sense of de Haan (see e.g. [16]).

Example 2. The function f(x) = (2 + sinx)x, x ≥ 1, satisfies

f ∈ (αRV ∩ ORV ) \ (ARV ∩ IRV ).
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We end this paper with an open question.

Question. Is the class ORV ∩ αRV the largest class for which the Corollary
3 remains true?
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[3] Avakumović V.G.: Über einen O–inversionssatz, Bull. Int. Acad. Youg. Sci. 29–30 (1936),
107–117.
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Serbia. E–mail: dragandj@tfc.kg.ac.rs
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