THE WEAK ASYMPTOTIC EQUIVALENCE AND THE GENERALIZED INVERSE

D. Djurčić, R. Nikolić, A. Torgašev

Abstract

In this paper we discuss the relationship between the weak asymptotic equivalence relation and the generalized inverse in the class \mathcal{A} of all nondecreasing and unbounded functions, defined and positive on a half-axis $[a,+\infty)(a>0)$. In the main theorem, we prove a proper characterization of the functional class $O R V \cap \mathcal{A}$, where $O R V$ is the class of all \mathcal{O}-regularly varying functions (in the sense of Karamata).

AMS Subject Classification: Primary 26 A 12.
Key words: Regular variation, generalized inverse, weak asymptotic equivalence.

1. Introduction

A function $f:[a,+\infty) \mapsto(0,+\infty)(a>0)$ is called \mathcal{O}-regularly varying in the sense of Karamata if it is measurable and if

$$
\begin{equation*}
\bar{k}_{f}(\lambda):=\varlimsup_{x \rightarrow+\infty} \frac{f(\lambda x)}{f(x)}<+\infty \quad(\lambda>0) \tag{1}
\end{equation*}
$$

Condition (1) is equivalent with condition

$$
\begin{equation*}
\underline{k}_{f}(\lambda):=\lim _{x \rightarrow+\infty} \frac{f(\lambda x)}{f(x)}>0 \quad(\lambda>0) . \tag{2}
\end{equation*}
$$

Function $\bar{k}_{f}(\lambda)(\lambda>0)$ is called index function of f, and function $\underline{k}_{f}(\lambda)(\lambda>0)$ is called auxiliary index function of $f . O R V$ is the class of all \mathcal{O}-regularly varying functions defined on some interval $[a,+\infty)$.

The class $O R V$ is an important object in the qualitative analysis of divergent processes (see e.g. [1] and [7]).

The Tauberian condition generated by condition (1) or (2) is an important convergence condition in the theory of Tauberian theorems (see [3] and [17]), and also in the asymptotic analysis in general (see [7]).

A measurable function $f:[a,+\infty) \mapsto(0,+\infty)(a>0)$ is said to belong the class $\alpha R V$ if there is a $\lambda_{0} \geq 1$ such that

$$
\begin{equation*}
\underline{k}_{f}(\lambda)>1 \tag{3}
\end{equation*}
$$

for every $\lambda>\lambda_{0}$.
The class $\alpha R V$ contains as proper subclasses: class of regularly varying functions (denoted by $R V$) whose Karamata index of variability ρ is positive (e.g. see [21]), class of rapidly varying functions (denoted by R_{∞}) whose de Haan index is $+\infty$, (e.g. see [16]), the class $A R V$ (e.g. see [15]), but it does not contain any

[^0]element from the class of slowly varying Karamata functions (denoted by $S V$) (e.g. see [18]).

Since the class $\alpha R V$ is first introduced and investigated in papers [19], [8], [9] and [10], we shall call the functions from the class $\alpha R V$ the Buldygin functions. The denotation $\alpha R V$ is inspired by its very important proper subclass $A R V$, where " A " should associate to V. Avakumović (1919-1990), the known serbian mathematician who worked in asymptotic analysis (see e.g. [4], [5] and [2]).

Let $\mathcal{A}=\{f:[a,+\infty) \mapsto(0,+\infty)(a>0) \mid f$ is nondecreasing and unbounded $\}$. If $f \in \mathcal{A}$, consider the set $\{f\}=\{g \in \mathcal{A} \mid f(x) \asymp g(x), x \rightarrow+\infty\}$, where $f(x) \asymp$ $g(x), x \rightarrow+\infty$ is the weak asymptotic equivalence relation defined by

$$
0<\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)} \leq \varlimsup_{x \rightarrow+\infty} \frac{f(x)}{g(x)}<+\infty
$$

(e.g. see [7]).

For any $f \in \mathcal{A}$, the function $f^{i}(x)=\inf \{y \geq a \mid f(y)>x\}(x \geq f(a))$ is its generalized invers (e.g. see [7]).

If $f \in \mathcal{A}$ is continuous and strictly increasing, then $f^{i}(x)=f^{-1}(x)$, for $x \geq$ $f(a)$. Besides, $f^{i} \in \mathcal{A}$ whenever $f \in \mathcal{A}$. For any right continuous function $g \in \mathcal{A}$ there is an $f \in \mathcal{A}\left(f(x)=g^{i}(x), x \geq g(a)\right)$ such that $g=f^{i}$.

A function $f \in O R V$ is called regularly varying in Karamata sense if $\bar{k}_{\rho}(\lambda)=\lambda^{\rho}$ holds for all $\lambda>0$ and some $\rho \in \mathbb{R}$, where ρ is general index of variability of f. The class of all regularly varying functions is denoted by $R V$. This class is the main object of the Karamata theory of regular variability (e.g. see [21]), and its variations and applications (see also [7], [11] and [20]).

For any function $f \in \mathcal{A}$ define $[f]=\{g \in \mathcal{A} \mid f(x) \sim g(x), x \rightarrow+\infty\}$, where $f(x) \sim g(x), x \rightarrow+\infty$ is the strong asymptotic equivalence relation defined by $\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=1$.

The next theorem is a modified combination of some results from [6] (see also [7, p. 190, 14 (ii), (iii)]).

THEOREM A. Let $f, g \in \mathcal{A}$ and assume that f is a regularly varying function whose index $\rho>0$.
(a) If $g \in[f]$, then $g^{i} \in\left[f^{i}\right]$.
(b) If $g^{i} \in\left[f^{i}\right]$, then $g \in[f]$.

Some extensions of the Theorem A can be found in [12], [8] and [15]. Also, some modifications of this theorem are given in [14] and [9], where another asymptotic relation is considered, in fact the process (operator) of inverting the functions.

2. The main results

An extension of Theorem A in the sense of the weak asymptotic equivalence relation for continuous and strictly increasing functions from the class \mathcal{A} is proved in [13]. In the next statements we shall extend these results and establish a complete
relationship between weak asymptotic equivalence relation and generalized inverse ([7]) in the functional class \mathcal{A}.

PROPOSITION 1. Let $f, g \in \mathcal{A}$ and $f^{i} \in O R V$. If aditionally $g \in\{f\}$, then $g^{i} \in\left\{f^{i}\right\}$.

Proof. If $f, g \in \mathcal{A}$ and $f^{i} \in O R V, g \in\{f\}$, then there are some constants $m, M \in \mathbb{R}^{+}(m \leq M)$ such that $m \leq g(x) / f(x) \leq M, x \geq x_{0}$. Hence $g(x) \leq M f(x)$ for $x \geq x_{0}$. Therefore $g^{i}(x) \geq f^{i}(x / M), x \geq x_{0}$, i.e. $g^{i}(x) / f^{i}(x) \geq f^{i}(x / M) / f^{i}(x)$, $x \geq x_{0}$. We also have $g(x) \geq m f(x), x \geq x_{0}$. Hence $g^{i}(x) \leq f^{i}(x / m)$ holds for $x \geq x_{0}$, so that $g^{i}(x) / f^{i}(x) \leq f^{i}(x / m) / f^{i}(x)$ for such x. Therefore, for $x \geq x_{0}$ holds

$$
\frac{f^{i}(x / M)}{f^{i}(x)} \leq \frac{g^{i}(x)}{f^{i}(x)} \leq \frac{f^{i}(x / m)}{f^{i}(x)}
$$

Hence, we have

$$
\underline{k}_{f^{i}}(1 / M) \leq \lim _{x \rightarrow+\infty} \frac{g^{i}(x)}{f^{i}(x)} \leq \underline{k}_{f^{i}}(1 / m)
$$

and

$$
\bar{k}_{f^{i}}(1 / M) \leq \varlimsup_{x \rightarrow+\infty} \frac{g^{i}(x)}{f^{i}(x)} \leq \bar{k}_{f^{i}}(1 / m)
$$

Therefore, it follows

$$
0<\underline{k}_{f^{i}}(1 / M) \leq{\underset{\lim }{x \rightarrow+\infty}} \frac{g^{i}(x)}{f^{i}(x)} \leq \varlimsup_{x \rightarrow+\infty} \frac{g^{i}(x)}{f^{i}(x)} \leq \bar{k}_{f^{i}}(1 / m)
$$

hence $g^{i} \in\left\{f^{i}\right\}$.
Example 1. In general case, if $g^{i} \in\left\{f^{i}\right\}$ then it is not necessarily $g \in\{f\}$. Take for example $f(x)=\mathrm{e}^{x}, x \geq 1$ and $g(x)=\frac{1}{2} \mathrm{e}^{x}, x \geq 1$.

PROPOSITION 2. Let $f, g \in \mathcal{A}$. If $g^{i} \in\left\{f^{i}\right\}$ for every $g \in\{f\}$, then $f^{i} \in O R V\left(g^{i} \in\{O R V\}\right)$.

Proof. Let $f \in \mathcal{A}$ and for every $g \in \mathcal{A}$ holds $g^{i} \in\left\{f^{i}\right\}$ when $g \in\{f\}$. For arbitrary and fixed $\lambda>0$, consider the function $g_{1}(x)=\lambda f(x), x \geq a$. Then $g_{1} \in\{f\}$, so it follows $g_{1}^{i} \in\left\{f^{i}\right\}$. Since $g_{1}^{i}(x)=f^{i}(x / \lambda), x \geq \lambda a$, we have

$$
+\infty>M(\lambda) \geq \varlimsup_{x \rightarrow+\infty} \frac{f^{i}(x)}{f^{i}(x / \lambda)}=\varlimsup_{t \rightarrow+\infty} \frac{f^{i}(\lambda t)}{f^{i}(t)}=\bar{k}_{f^{i}}(\lambda)
$$

Therefore $f^{i} \in O R V$.
Next, for every $g \in\{f\}$ we have $g^{i} \in\left\{f^{i}\right\}$, so it follows $g^{i}(x)=h(x) f^{i}(x)$, $x \geq f(a)$, where

$$
0<\frac{1}{A(g)} \leq h(x) \leq A(g)<+\infty
$$

for all $x \geq f(a)$. Hence,

$$
\bar{k}_{g^{i}}(\lambda) \leq \bar{k}_{f^{i}}(\lambda) A^{2}(g)<+\infty, \quad \lambda>0
$$

so it follows $g^{i} \in O R V$.
PROPOSITION 3. Let $f \in \mathcal{A}$. Then $f \in \alpha R V$ if and only if $f^{i} \in O R V$.
Proof. First assume $f \in \mathcal{A} \cap \alpha R V$. Then for some $\lambda_{0} \geq 1$ and for some $\lambda>\lambda_{0}$ holds $f(\lambda x) \geq c(\lambda) f(x), x \geq x_{0}=x_{0}(\lambda)$, where $c(\lambda)=c_{f}(\lambda)>1$ for $\lambda>\lambda_{0}$. Hence, for this λ and x we have $f(\lambda x) / c(\lambda) \geq f(x)$, so it follows $f^{i}(c(\lambda) x) / \lambda \leq f^{i}(x)$. Therefore, for this λ we have $\bar{k}_{f^{i}}(c(\lambda)) \leq \lambda<+\infty$. Thus, $f^{i} \in O R V$.

Next, assume that $f^{i} \in O R V \cap \mathcal{A}$. Then by [1] we have

$$
\varlimsup_{x \rightarrow+\infty} \sup _{\lambda \in[1,2]} \frac{f^{i}(\lambda x)}{f^{i}(x)}=\varlimsup_{x \rightarrow+\infty} \frac{f^{i}(2 x)}{f^{i}(x)}=\bar{k}_{f^{i}}(2) \geq 1 .
$$

For every $\varepsilon>0$ there is an $x_{0}=x_{0}(\varepsilon)>0$ such that

$$
\sup _{\lambda \in[1,2]} \frac{f^{i}(\lambda x)}{f^{i}(x)} \leq \bar{k}_{f^{i}}(2)+\varepsilon=M(\varepsilon), \quad x \geq x_{0},
$$

so that for every $x \geq x_{0}$ and every $\lambda \in[1,2]$ we have

$$
f^{i}(\lambda x) / f^{i}(x) \leq M(\varepsilon) .
$$

Now it follows:

$$
\begin{aligned}
& \frac{f^{i}(\lambda x)}{M(\varepsilon)} \leq f^{i}(x), \\
\Rightarrow & \left(\left(\frac{f(M(\varepsilon) x)}{\lambda}\right)^{i}\right)^{i} \geq\left(f^{i}(x)\right)^{i}, \\
\Rightarrow & f(x) \leq \frac{f\left(M^{2}(\varepsilon) x\right)}{\lambda}, \\
\Rightarrow & \frac{f\left(M^{2}(\varepsilon) x\right)}{f(x)} \geq \lambda, \\
\Rightarrow & \frac{f\left(M^{2}(\varepsilon) x\right)}{f(x)} \geq 2>1, \\
\Rightarrow & \lim _{x \rightarrow+\infty} \frac{f\left(M^{2}(\varepsilon) x\right)}{f(x)}=\underline{k}_{f}\left(M^{2}(\varepsilon)\right) \geq 2>1 .
\end{aligned}
$$

Since $\underline{k}_{f}(s)$ is nondecreasing for $s>0$, we find that $\underline{k}_{f}(\lambda)>1$, for $\lambda>M^{2}(\varepsilon)>$ 1. Hence, $f \in \alpha R V \cap \mathcal{A}$.

This completes the proof.
COROLLARY 1. Let $f \in \mathcal{A}$. Then $f, f^{i} \in O R V$ if and only if $f \in O R V \cap$ $\alpha R V\left(f^{i} \in O R V \cap \alpha R V\right)$.

PROPOSITION 4. Let $f \in \mathcal{A}$. Then $f \in O R V$ if and only if $f^{i} \in \alpha R V$.
Proof. First assume $f \in \mathcal{A} \cap O R V$. Then by [1]

$$
\varlimsup_{x \rightarrow+\infty} \sup _{\lambda \in[1,2]} \frac{f(\lambda x)}{f(x)}=\varlimsup_{x \rightarrow+\infty} \frac{f(2 x)}{f(x)}=\bar{k}_{f}(2) \geq 1 .
$$

For every $\varepsilon>0$, there is an $x_{0}=x_{0}(\varepsilon)>0$ such that

$$
\sup _{\lambda \in[1,2]} \frac{f(\lambda x)}{f(x)} \leq \bar{k}_{f}(2)+\varepsilon=m(\varepsilon), \quad \text { for all } x \geq x_{0}
$$

so for the same x it and for every $\lambda \in[1,2]$ we have $f(\lambda x) / f(x) \leq m(\varepsilon)$. Therefore, $f(\lambda x) / m(\varepsilon) \leq f(x)$, and it follows

$$
\begin{aligned}
& \frac{f^{i}(m(\varepsilon) x)}{\lambda} \geq f^{i}(x), \\
\Rightarrow \quad & f^{i}(m(\varepsilon) x) \geq \lambda f^{i}(x), \\
\Rightarrow \quad & f^{i}(m(\varepsilon) x) \geq 2 f^{i}(x), \\
\Rightarrow \quad & \frac{f^{i}(m(\varepsilon) x)}{f^{i}(x)} \geq 2>1, \\
\Rightarrow \quad & \lim _{x \rightarrow+\infty} \frac{f^{i}(m(\varepsilon) x)}{f^{i}(x)} \geq 2>1, \\
\Rightarrow \quad & \underline{k}_{f^{i}}(m(\varepsilon))<1 .
\end{aligned}
$$

Hence, $\underline{k}_{f^{i}}(\lambda)>1$ for $\lambda>m(\varepsilon)=\lambda_{0} \geq 1$, so it follows $f^{i} \in \alpha R V$.
Next, assume that $f^{i} \in \alpha R V \cap \mathcal{A}$. Then for some $\lambda_{0} \geq 1$ and all $\lambda>\lambda_{0}$ we have $f^{i}(\lambda x) \geq c(\lambda) f^{i}(x)$, for all $x \geq x_{0}=x_{0}(\lambda)$, where $c(\lambda)=c_{f}(\lambda)>1, \lambda>\lambda_{0}$. Hence, for that λ and x we have $f^{i}(\lambda x) / c(\lambda) \geq f^{i}(x)$, so that $\left.(f(c(\lambda) x) / \lambda)\right)^{i} \geq$ $f^{i}(x)$. Then, similarly as in the previous proof, we have $f(c(\lambda) x) / \lambda \leq f(\sqrt{c(\lambda)} x)$. Therefore, $f(c(\lambda) x) / f(\sqrt{c(\lambda)} x) \leq \lambda$, and consequently, for a fixed $\lambda>\lambda_{0}$, we obtain $\bar{k}_{f}(\sqrt{c(\lambda)}) \leq \lambda<+\infty$. In other words, $f \in O R V$.

COROLLARY 2. Let $f \in \mathcal{A}$. Then $f, f^{i} \in \alpha R V$ if and only if $f \in O R V \cap$ $\alpha R V\left(f^{i} \in O R V \cap \alpha R V\right)$.

PROPOSITION 5. If $f \in \mathcal{A} \cap O R V$, then $f(x) \asymp\left(f^{i}(x)\right)^{i}$, for $x \rightarrow+\infty$, i.e. $f \in\left\{\left(f^{i}\right)^{i}\right\}$.

Proof. We have that for $x \geq 0$ and $\beta>1, f(x) \leq\left(f^{i}(x)\right)^{i} \leq f(\beta x)$, so that

$$
1 \leq \frac{\left(f^{i}(x)\right)^{i}}{f(x)} \leq \frac{f(\beta x)}{f(x)}
$$

Therefore,

$$
0<1 \leq \lim _{x \rightarrow+\infty} \frac{\left(f^{i}(x)\right)^{i}}{f(x)} \leq \varlimsup_{x \rightarrow+\infty} \frac{\left.f^{i}(x)\right)^{i}}{f(x)} \leq \bar{k}_{f}(\beta)<+\infty
$$

Hence, $f(x) \asymp\left(f^{i}(x)\right)^{i}$, for $x \rightarrow+\infty$.
PROPOSITION 6. Let $f \in \mathcal{A} \cap O R V$ and $g \in \mathcal{A}$. Then $f(x) \asymp g(x)$, $x \rightarrow+\infty$, if and only if $\left(f^{i}(x)\right)^{i} \asymp\left(g^{i}(x)\right)^{i}, x \rightarrow+\infty$.

Proof. Let $f \in \mathcal{A} \cap O R V$ and $g \in \mathcal{A}$. If $f(x) \asymp g(x), x \rightarrow+\infty$, then $g \in O R V$, so that by Proposition 5 we have $f(x) \asymp\left(f^{i}(x)\right)^{i}, x \rightarrow+\infty$ and $g(x) \asymp\left(g^{i}(x)\right)^{i}$, $x \rightarrow+\infty$. Hence, $\left(f^{i}(x)\right)^{i} \asymp\left(g^{i}(x)\right)^{i}, x \rightarrow+\infty$.

Conversely, assume that $f \in \mathcal{A} \cap O R V, g \in \mathcal{A}$ and $\left(f^{i}(x)\right)^{i} \asymp\left(g^{i}(x)\right)^{i}, x \rightarrow+\infty$. Then, by Proposition 5, we have $f(x) \asymp\left(g^{i}(x)\right)^{i}$ as $x \rightarrow+\infty$, because $f(x) \asymp$ $\left(f^{i}(x)\right)^{i}, x \rightarrow+\infty$. Hence, $\left(g^{i}(x)\right)^{i}, x \geq a$ belongs to $O R V \cap \mathcal{A}$. By Proposition 3 we have $g^{i} \in \alpha R V$, while by Proposition 4 it follows $g \in O R V$. Hence, by Proposition 5 we have that $g(x) \asymp\left(g^{i}(x)\right)^{i}, x \rightarrow+\infty$, so that $f(x) \asymp g(x), x \rightarrow+\infty$.

PROPOSITION 7. (a) Let $f, g \in \mathcal{A}$ and $f \in \alpha R V \cap O R V$. Then $g \in\{f\}$ if and only if $g^{i} \in\left\{f^{i}\right\}$.
(b) Let $f \in \mathcal{A}$ and $f \notin O R V \cap \alpha R V$. Then there is a $g \in \mathcal{A}$ such that $g \in\{f\}$ and $g^{i} \notin\left\{f^{i}\right\}$, or there is a $g \in \mathcal{A}$ such that $g^{i} \in\left\{f^{i}\right\}$ and $g \notin\{f\}$.

Proof. (a) Let $f, g \in \mathcal{A}$ and $f \in \alpha R V \cap O R V$.
First assume that $g \in\{f\}$. Since $f \in \alpha R V$, by Proposition 3 we have $f^{i} \in$ $O R V$, so by Proposition 1 we get $g^{i} \in\left\{f^{i}\right\}$.

Conversely, assume that $g^{i} \in\left\{f^{i}\right\}$. Since $f \in O R V$, by Proposition 5 we have $f(x) \asymp\left(f^{i}(x)\right)^{i}, x \rightarrow+\infty$. Therefore, $\left(f^{i}(x)\right)^{i}, x \geq a$ belongs to $O R V \cap \mathcal{A}$. By Proposition 1 it follows $\left(f^{i}(x)\right)^{i} \asymp\left(g^{i}(x)\right)^{i}, x \rightarrow+\infty$, and by Proposition 6 we have $f(x) \asymp g(x), x \rightarrow+\infty$. Thus, $g \in\{f\}$.
(b) Assume that $f \in \mathcal{A} \backslash(O R V \cap \alpha R V)$. We shall discuss following three cases.
$\left(1^{0}\right)$ Let $f \in O R V \backslash A R V$. Then by Corollary $1, f^{i} \notin O R V$. Hence, by Proposition 2 there is a $g \in \mathcal{A}$ such that $g \in\{f\}$ and $g^{i} \notin\left\{f^{i}\right\}$.
$\left(2^{0}\right)$ Let $f \notin O R V \cup \alpha R V$. Then by Proposition $3 f^{i} \notin O R V$, and by Proposition $4 f^{i} \notin \alpha R V$, so by Proposition 2 there is a $g \in \mathcal{A}$ such that $g \in\{f\}$ and $g^{i} \notin\left\{f^{i}\right\}$.
$\left(3^{0}\right)$ Let $f \in \alpha R V \backslash O R V$. Then there is a $p>1$ such that

$$
\bar{k}_{f}(\lambda)=\varlimsup_{x \rightarrow+\infty} \frac{f(\lambda x)}{f(x)}=+\infty, \quad \lambda \geq p
$$

Consider a function $g(x)=f(p x)$, for $x \geq a$. Then:

$$
1 \leq \lim _{x \rightarrow+\infty} \frac{g(x)}{f(x)} \leq \varlimsup_{x \rightarrow+\infty} \frac{g(x)}{f(x)}=+\infty
$$

so that $g \notin\{f\}$. Since

$$
\begin{aligned}
g^{i}(x) & =(f(p x))^{i}=\inf \{y>0 \mid f(p y)>x\}= \\
& =\inf \left\{\left.\frac{t}{p}>0 \right\rvert\, f(t)>x\right\}=\frac{f^{i}(x)}{p}
\end{aligned}
$$

we have $f^{i}(x) \asymp g^{i}(x), x \rightarrow+\infty$, so there is a $g \in \mathcal{A}$ such that $g^{i} \in\left\{f^{i}\right\}$ and $g \notin\{f\}$.

Let $a>0$. Functions $f, g:[a,+\infty) \mapsto(0,+\infty)$ are called mutually "inverse weak asymptotic" in $+\infty$ (which is denoted by $f(x) \stackrel{*}{\leftarrow} g(x), x \rightarrow+\infty$) if there
is a $\lambda_{0} \geq 1$ such that for every $\lambda>\lambda_{0}$ there is an $x_{0}=x_{0}(\lambda)>0$ so that $f(x / \lambda) \leq g(x) \leq f(\lambda x)$ for all $x \geq x_{0}$ (see e.g. [6]).

PROPOSITION 8. Let $f, g \in \mathcal{A}$. Then $f^{i}(x) \asymp g^{i}(x), x \rightarrow+\infty$ if and only if $f(x) \stackrel{*}{\rightleftharpoons} g(x), x \rightarrow+\infty$.

Proof. First assume $f, g \in \mathcal{A}$ and $f(x) \stackrel{*}{\asymp} g(x), x \rightarrow+\infty$. Then there is a fixed $\lambda_{0} \geq 1$ such that for every $\lambda>\lambda_{0}$ we have $f(x / \lambda) \leq g(x) \leq f(\lambda x)$ for $x \geq x_{0}=x_{0}(\lambda)>0$.

Since for such λ and x we have $g(x) \leq f(\lambda x)$, it follows that $g^{i}(x) \geq f^{i}(x) / \lambda$. Consequently, we have $g^{i}(x) / f^{i}(x) \geq 1 / \lambda$ for such λ and x.

From the previous, $f(x / \lambda) \leq g(x)$ holds for the mentioned λ and x, i.e. $\lambda f^{i}(x) \geq g^{i}(x)$ holds for the mentioned λ and sufficiently large x, therefore $g^{i}(x) / f^{i}(x) \leq$ λ. Now it follows $0<1 / \lambda \leq g^{i}(x) / f^{i}(x) \leq \lambda<+\infty$, and hence $g^{i}(x) \asymp f^{i}(x)$, $x \rightarrow+\infty$.

Conversely, assume that $f, g \in \mathcal{A}$ and $f^{i}(x) \asymp g^{i}(x), x \rightarrow+\infty$. Then there is an $M>1$ such that

$$
\frac{1}{M} \leq \frac{g^{i}(x)}{f^{i}(x)} \leq M, \quad x \geq x_{0}(M)>0
$$

First, for such x we have $g^{i}(x) \leq M f^{i}(x)$, so it follows $g^{i}(x) \leq(f(x / M))^{i}$, and hence $\left(g^{i}(x)\right)^{i} \geq\left((f(x / M))^{i}\right)^{i}$. Therefore, for such x and any $\lambda>1$ we have $f(x / M) \leq g(\lambda x)$. If $\lambda>1$ and $x \geq x_{0}$, put $t=\lambda x$. Then for every $t \geq t_{0}$, we have $f(t / \lambda M) \leq g(t)$.

Next, for the same x, we have that $g^{i}(x) \geq f^{i}(x) / M$, so that $g^{i}(x) \geq(f(M x))^{i}$. Therefore, $\left(g^{i}(x)\right)^{i} \leq\left((f(M x))^{i}\right)^{i}$, so it follows $g(x) \leq f(\lambda M x)$ for any $\lambda>1$ and $x \geq x_{0}$.

By taking $t=x$ we obtain $g(t) \leq f(\lambda M t)$ for any $\lambda>1$ and $t \geq x_{0}$. Thus, if $\lambda>1$ and $t \geq t_{0}=t_{0}(\lambda)$ it follows $f(t / \lambda M) \leq g(t) \leq f(\lambda M t)$. Taking $s=\lambda M>$ $M>1$, for every $s>M>1$ we have $f(t / s) \leq g(t) \leq f(s t)$ as $t \geq t_{0}(s)$. This finally gives $f(x) \stackrel{*}{\rightleftharpoons} g(x), x \rightarrow+\infty$.

To prove 9 we need the following lemma.
LEMMA 1. Let $f \in \alpha R V$. Then there is a $\lambda_{0} \geq 1$ and at least one function $c(\lambda)>1$ for every $\lambda>\lambda_{0}$, depending on f, such that $\lim _{\lambda \rightarrow+\infty} c(\lambda)=+\infty$ and $f(\lambda x) \geq c(\lambda) f(x)$ for every $x \geq x_{0}(\lambda)>0$.

Proof. Let $\underline{k}_{f}(\lambda)=\underline{\lim }_{x \rightarrow+\infty} \frac{f(\lambda x)}{f(x)}$, where $\lambda>\lambda_{0} \geq 1$, and let define $c(\lambda)=$ $\frac{1}{2}\left(\underline{k}_{f}(\lambda)+1\right)$ for that λ. Then $c(\lambda)>1\left(\lambda>\lambda_{0}\right)$.

Next, let $\lambda_{1}>\lambda_{0} \geq 1$. If $\lambda \in\left[\lambda_{1}^{n}, \lambda_{1}^{n+1}\right)$ and $n \geq 2$ we get

$$
\begin{aligned}
\underline{k}_{f}(\lambda) & \geq \lim _{x \rightarrow+\infty} \frac{f\left(\lambda_{1} x\right)}{f(x)} \cdots \lim _{x \rightarrow+\infty} \frac{f\left(\lambda_{1}^{n-1} x\right)}{f\left(\lambda_{1}^{n-2} x\right)} \cdot \lim _{x \rightarrow+\infty} \frac{f(\lambda x)}{f\left(\lambda_{1}^{n-1} x\right)}= \\
& =\left(\underline{k}_{f}\left(\lambda_{1}\right)\right)^{n-1} \cdot\left(\underline{k}_{f}\left(\frac{\lambda}{\lambda_{1}^{n-1}}\right)\right)
\end{aligned}
$$

which gives $\lim _{\lambda \rightarrow+\infty} \underline{k}_{f}(\lambda)=+\infty$, so that $\lim _{\lambda \rightarrow+\infty} c(\lambda)=+\infty$.
PROPOSITION 9. Let $f, g:[a,+\infty) \mapsto(0,+\infty)(a>0)$ and let $f \in \alpha R V$. If $g \in\{f\}$, then $f(x) \stackrel{*}{\asymp} g(x), x \rightarrow+\infty$.

Proof. Since $f \in \alpha R V$, by Lemma 1, there is a function $c(\lambda)>1(\lambda>$ $\lambda_{0} \geq 1$), depending on f, such that $f(\lambda x) \geq c(\lambda) f(x)$ for every $\lambda>\lambda_{0}$ and every $x \geq x_{0}(\lambda) \geq a>0$, and such that $\lim _{\lambda \rightarrow+\infty} c(\lambda)=+\infty$.

Since $g \in\{f\}$, there is an $M \in \mathbb{R}, M>1$ such that $1 / M \leq g(x) / f(x) \leq M$, for every $x \geq x_{1}(M)=x_{1}>0$. Hence, for $x \geq \max \left\{x_{0}, x_{1}\right\}$ we have $f(\lambda x) \geq$ $c(\lambda) f(x) \geq c(\lambda) g(x) / M$. Since $c(\lambda) / M \geq 1$ for $\lambda>\lambda^{\prime}$, we get $f(\lambda x) \geq g(x)$ for such λ and x. Next, since $\bar{k}_{f}(1 / \lambda)=1 / \underline{k}_{f}(\lambda)$ for $\lambda \geq \lambda_{0}$, for such λ we also have $\bar{k}_{f}(1 / \lambda) \leq 1 / c(\lambda)$. Hence, for such λ and all $x \geq x_{2}(\lambda)=x_{2}>0$ we have $f(x / \lambda) \leq 2 f(x) /(1+c(\lambda))$.

Therefore, for such λ and $x \geq \max \left\{x_{1}, x_{2}\right\}$ we have $f(x / \lambda) \leq 2 f(x) /(1+$ $c(\lambda)) \leq 2 M g(x) /(1+c(\lambda))$.

Since next $2 M /(1+c(\lambda)) \leq 1$ for $\lambda \geq \lambda^{\prime \prime}$, we have that $f(x / \lambda) \leq g(x)$ for these λ and x. Therefore $f(x / \lambda) \leq g(x) \leq f(\lambda x)$ for $\lambda \geq \max \left\{\lambda^{\prime}, \lambda^{\prime \prime}\right\}$ and $x \geq$ $\max \left\{x_{0}, x_{1}, x_{2}\right\}$, which means that $f(x) \stackrel{*}{\asymp} g(x), x \rightarrow+\infty$.

PROPOSITION 10. Let $f, g:[a,+\infty) \mapsto(0,+\infty)(a>0)$ and let $f \in O R V$. If $f(x) \stackrel{*}{\asymp} g(x), x \rightarrow+\infty$, then $g \in\{f\}$.

Proof. From all assumptions of Proposition 10 we have that

$$
\frac{f(x / \lambda)}{f(x)} \leq \frac{g(x)}{f(x)} \leq \frac{f(\lambda x)}{f(x)}
$$

for every $\lambda>\lambda_{0} \geq 1$ and every $x \geq x_{0}=x_{0}(\lambda) \geq a>0$. Therefore, for $\lambda>\lambda_{0}$ we have

$$
0<\underline{k}_{f}\left(\frac{1}{\lambda}\right) \leq \lim _{x \rightarrow+\infty} \frac{g(x)}{f(x)} \leq \varlimsup_{x \rightarrow+\infty} \frac{g(x)}{f(x)} \leq \bar{k}_{f}(\lambda)<+\infty
$$

because of $f \in O R V$ which implies $f(x) \asymp g(x)$ for $x \rightarrow \infty$, i.e. $g \in\{f\}$.
COROLLARY 3. Let $f, g:[a,+\infty) \mapsto(0,+\infty)(a>0)$ and let $f \in O R V \cap$ $\alpha R V$. Then $g \in\{f\}$ if and only if $f(x) \stackrel{*}{\asymp} g(x)$ as $x \rightarrow+\infty$.

We remark that the class $O R V \cap \alpha R V$ contains all regularly varying functions whose index is positive as well as all functions from the class $E R V$ (for the definition see [7]) whose down Matuszewska index is positive (see [19]). More generaly, this class contains all functions from the class $I R V \cap A R V$ (see [15]). Also notice that the same class does not contain any slowly varying Karamata functions and any rapidly varying function in the sense of de Haan (see e.g. [16]).

Example 2. The function $f(x)=(2+\sin x) x, x \geq 1$, satisfies

$$
f \in(\alpha R V \cap O R V) \backslash(A R V \cap I R V)
$$

We end this paper with an open question.
Question. Is the class $O R V \cap \alpha R V$ the largest class for which the Corollary 3 remains true?

REFERENCES

[1] Aljančić S., Arandjelović D.: O-regularly varying functions, Publ. Inst. Math. (Beograd) 22 (36) (1977), 5-22.
[2] Avakumović V.G.: Sur une extension de la condition de convergence des théorems inverses de sommabilité, C. R. Acad. Sci. Paris 200 (1935), 1515-1517.
[3] Avakumović V.G.: Über einen O-inversionssatz, Bull. Int. Acad. Youg. Sci. 29-30 (1936), 107-117.
[4] Avakumović V. G.: Sur l'équation différentiale de Thomas-Fermi, I, Publ. Inst. Math (Beograd) 1 (15) (1947), 101-113.
[5] Avakumović, Karamata J.: Über einige Taubersche Satze, derer Asymptotik von Exponentialcharakter ist. l., Math. Zeit 41 (1936), 345-356.
[6] Balkema A. A., Geluk J. L., de Haan L.: An extension of Karamata's Tauberian theorem and its connection with complementary convex functions, Quart. J. Math. Oxford Ser. 30 (No. 2) (1979), 385-416.
[7] Bingham N. H., Goldie C. M., Teugels J. L.: "Regular variation", Cambridge Univ. Press, Cambridge, 1987.
[8] Buldygin V. V., Klesov O. I., and Steinebach J. G.: Properties of a subclass of Avakumović functions and their generalized inverses, Ukr. Math. Zh. 54 (No. 2) (2002), 179-206.
[9] Buldygin V. V., Klesov O. I., and Steinebach J. G.: Some properties of asymptotic quasiinverse function and their applications, I, Theor. Probability and Math. Statist. 70 (2005), 11-28.
[10] Buldygin V. V., Klesov O. I., and Steinebach J. G.: Some properties of asymptotic quasiinverse function and their applications, II, Theor. Probability and Math. Statist. 70 (2005), 37-52.
[11] Djurčić D., Kočinac D. R., Ž̌ižović M. R.: Some properties of rapidly varying sequences, Journal Math. Anal. Appl. 327 (2007), 1297-1306.
[12] Djurčić D., Torgašev A.: Strong asymptotic equivalence and inversion of functions in the class K_{c}, Journal Math. Anal. Appl. 255 (2001), 383-390.
[13] Djurčić D., Torgašev A.: Weak asymptotic equivalence and inverse functions in the class OR, Math. Moravica 7 (2003), 1-6.
[14] Djurčić D., Torgašev A.: Some asymptotic relations for the generalized inverse, J. Math. Anal. Appl. 325 (2007), 1397-1402.
[15] Djurčić D., Torgašev A., Ješić S.: The strong asymptotic equivalence and the generalized inverse, Siber. Math. J. 49 (No. 4) (2008), 786-795.
[16] de Haan L.: "On Regular variation and its applications to the weak convergence of sample extremes", Math. Centre tracts, vol. 32, CWI, Amsterdam, 1970.
[17] de Haan L., Statdtmüller U.: Dominated variation and related concepts and Tauberian theorems for Laplace transforms, Journal Math. Anal. Appl. 108 (1985), 344-365.
[18] Karamata J.: Sur un mode de croissance reguliere des functions, Mathematica (Cluj) 4 (1930), 38-53.
[19] Matuszewska W.: On a generalization of regularly increasing functions, Studia Math. 24 (1964), 271-279.
[20] Rehák P., Matucci S.: Regularly varying sequences and second order difference equations, Journal of difference equations and appl. 14 (No. 1) (2008), 17-30.
[21] Seneta E.: "Functions of Regular Variation", LNM vol. 506, Springer, New York, 1976.
Addresses:
Dragan Djurčić: University of Kragujevac, Technical Faculty, Svetog Save 65, 32000 Čačak, Serbia. E-mail: dragandj@tfc.kg.ac.rs

Rale Nikolić: University of Kragujevac, Technical Faculty, Svetog Save 65, 32000 Čac̆ak, Serbia. E-mail: rale@tfc.kg.ac.rs

Aleksandar Torgašev: University of Belgrade, Faculty of mathematics, Studentski trg 16a, 11000 Belgrade, Serbia. E-mail: torgasev@matf.bg.ac.rs

Fabruary 25, 2009.

[^0]: This paper is supported by the Ministry of Science of Republic of Serbia, Grant No. 144031.

