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Abstract. We discuss the relationship between the weak and strong asymptotic equivalence relations and the generalized
inverse in the class A of all nondecreasing unbounded positive functions on a half-axis [a,+∞) (a > 0). As a main
result, we prove a proper characterization of the functional class R∞ ∩ A, where R∞ is the class of all rapidly varying
functions. Also, we prove a characterization of the functional class PI ∗ ∩ A.
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1 INTRODUCTION

A function f : [a,+∞) �→ (0,+∞) (a > 0) is called O-regularly varying in the sense of Karamata if it is
measurable and

kf (λ) := lim sup
x→+∞

f(λx)

f(x)
< +∞ (λ > 0). (1.1)

Condition (1.1) is equivalent with the condition

kf (λ) := lim inf
x→+∞

f(λx)

f(x)
> 0 (λ > 0). (1.2)

ORV is the class of all O-regularly varying functions defined on some interval [a,+∞). The class ORV
is an important object in asymptotic analysis (see, e.g., [2] and [16]).

A function f ∈ ORV is called regularly varying in the sense of Karamata if kf (λ) = λρ for all λ > 0
and some ρ ∈ R, where ρ is the index of variability of f . The class of all regularly varying functions is
denoted by RV . This class is the main object of Karamata theory of regular variability (see, e.g., [15]) and its
applications (see also [1, 2] and [16]).
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A function f ∈ RV is called slowly varying in the sense of Karamata (see, e.g., [15]) if its index of
variability is ρ = 0. We denote by SV the class of all such functions (see [2] and [16]).

A measurable function f : [a,+∞) �→ (0,+∞) (a > 0) is said to belong to the class PI ∗ if there is λ0 � 1
such that

kf (λ) > 1 for all λ > λ0.

For λ0 = 1, we obtain the class ARV (see [14]).
A function f ∈ ARV is called rapidly varying (in the sense of de Haan) of index of variability +∞ (i.e.,

belongs to the class R∞) if kf (λ) = +∞ for all λ > 1 (see [2, 8] and [7]). The class PI ∗ contains, as a proper
subclass, the class of regularly varying functions of positive index of variability ρ, but it does not contain any
element from the class of slowly varying functions. More information about these classes can be found in
[5, 6, 9] and [10].

Let

A =
{
f : [a,+∞) �→ (0,+∞) (a > 0)

∣
∣ f is nondecreasing and unbounded

}
.

If f ∈ A, consider the set

{f} =
{
g ∈ A ∣

∣ f(x) � g(x), x → +∞}
,

where f(x) � g(x), x → +∞, is the weak asymptotic equivalence relation defined by

0 < lim inf
x→+∞

f(x)

g(x)
� lim sup

x→+∞
f(x)

g(x)
< +∞

(see, e.g., [2]).
For any function f ∈ A, define

[f ]∼ =
{
g ∈ A ∣

∣ f(x) ∼ g(x), x → +∞}
,

where f(x) ∼ g(x), x → +∞, is the strong asymptotic equivalence relation defined by

lim
x→+∞

f(x)

g(x)
= 1.

For any f ∈ A, the function

f←(x) = inf
{
y � a

∣
∣ f(y) > x

} (
x � f(a)

)

is its generalized inverse (see, e.g., [2]).
If f ∈ A is continuous and strictly increasing function, then f←(x) = f−1(x) for x � f(a). Besides,

f← ∈ A whenever f ∈ A. For any right continuous function g ∈ A, there is f ∈ A (f(x) = g←(x),
x � g(a)) such that g = f←.

The next theorem is a modified combination of some results from [1] (see also [2, p. 190, 14(ii), (iii)]).

Theorem A. Let f, g ∈ A and assume that f is a regularly varying function of index of variability ρ > 0. If
g ∈ [f ]∼, then g← ∈ [f←]∼.

Some extensions of Theorem A can be found in [11, 14] and [10]. Also, some modifications of this theorem
are given in [3] and [4], where another asymptotic relation is considered, in fact, the process (operator) of
inversion of functions.

An extension of Theorem A for the weak asymptotic equivalence relation for continuous and strictly in-
creasing functions from the class A is proved in [12].
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2 MAIN RESULTS

In the following proposition, (a) gives an extension of Theorem A by observing the weaker condition g ∈ {f}
instead of g ∈ [f ]∼, while (b) determines the maximal class R∞ ∩ A for which (a) holds.

Proposition 1. (a) Let f, g ∈ A and f ∈ R∞. If, additionally, g ∈ {f}, then g← ∈ [f←]∼.
(b) Let f, g ∈ A. If g← ∈ [f←]∼ for every g ∈ {f}, then f ∈ R∞ (g ∈ R∞).

Proof. (a) From the fact that f ∈ A ∩ R∞ and by [2], we have that f← ∈ SV . Since g ∈ {f}, there is
m > 0 such that g(x)m � f(x) for sufficiently large x. Furthermore, for the same m and x large enough,
g←(x) � f←(mx), and we have

lim inf
x→+∞

g←(x)

f←(x)
� lim

x→+∞
f←(mx)

f←(x)
= 1.

On the other hand, there is M > 0 such that f(x) � g(x)M for sufficiently large x. Then, for the same M
and sufficiently large x, we have g←(x) � f←(Mx) and, thus,

lim sup
x→+∞

g←(x)

f←(x)
� lim

x→+∞
f←(Mx)

f←(x)
= 1.

Hence, we obtain

lim
x→+∞

g←(x)

f←(x)
= lim inf

x→+∞
g←(x)

f←(x)
= lim sup

x→+∞
g←(x)

f←(x)
= 1,

so that g← ∈ [f←]∼.
(b) Let f ∈ A, and let g(x) = λf(x) for x � a, where λ is an arbitrary fixed positive number. Then, we

have g ∈ A and g ∈ {f}, so that g← ∈ [f←]∼. From this we obtain that g←(x) = f←( 1λx) for the same λ
and sufficiently large x. Now we get

lim
x→+∞

f←( 1λx)

f←(x)
= lim

x→+∞
g←(x)

f←(x)
= 1.

For every α > 0, we have kf←(α) = 1, because λ is an arbitrary fixed positive number. Hence, we have
f← ∈ SV and f← ∈ A. According to results from [13], we obtain that f ∈ R∞. Now, for an arbitrary
function g ∈ A such that g ∈ {f}, there are m > 0 and M > 0 such that f(x) = r(x)g(x) for x � a, where
the function r(x) is defined for x � a, and the condition m � r(x) � M is satisfied for sufficiently large x.
Therefore, we get

lim inf
x→+∞

g(λx)

g(x)
� m

M
lim inf
x→+∞

f(λx)

f(x)
= +∞

for every λ > 1, i.e., g ∈ R∞. 
�

In the next proposition, (a) yields an extension of Theorem A by considering the weaker condition
g←∈{f←} instead of g←∈ [f←]∼, while (b) shows that PI ∗ ∩ A is the maximal class for which (a) holds.

Proposition 2. (a) Let f, g ∈ A and f ∈ PI ∗. If, additionally, g ∈ [f ]∼, then g← ∈ {f←}.
(b) Let f, g ∈ A. If g← ∈ {f←} for every g ∈ [f ]∼, then f ∈ PI ∗ (g ∈ PI ∗).

Proof. (a) This statement is a direct corollary of Proposition 1 from [10]. We can obtain the proof of (a) by
applying a methodology analogous to the one used in the proof of Proposition 1(a).



The weak and strong asymptotic equivalence relations and the generalized inverse 475

(b) Let f ∈ A, and let g1(x) = (1− 1
x)f(x) for x � a (without loss of generality, we assume that a > 1).

Then, we obtain that g1 ∈ [f ]∼ and g1 is a strictly increasing function from A. This implies that g←1 ∈ {f←}
and g←1 is a continuous function from A. Hence, for every strictly increasing function g ∈ A for which
g ∈ [g1]∼, we obtain g← ∈ {g←1 }. Therefore, there is Mg ∈ (0,+∞), associated to g, such that

lim sup
x→+∞

g←1 (g(x))

g←1 (g1(x))
= lim sup

x→+∞
g←1 (g(x))

x
= lim sup

x→+∞
g←1 (g(x))

g←(g(x))
� lim sup

x→+∞
g←1 (x)

g←(x)
= Mg < +∞.

Let α(x) be a continuous function for x � a such that α(x) � 1 for x � a and α(x) → 1 as x → +∞.
Consider the function r(x) = maxa�t�x h(t) for x � a, where the function h(x) is defined by h(x) = xα(x)
for x � a. We see that r(x) is continuous, nondecreasing, and r(x) → +∞ as x → +∞. The inequality
r(x) � α(x)x for x � a is also satisfied. Now, we will prove that r(x) ∼ x. For this purpose, take ε > 0.
There is x1 = x1(ε) � a such that 1 � h(x)

x < 1+ ε for every x � x1, and there is x2 = x2(ε) � x1 such that
h(x) � maxa�u�x1

h(u) for every x � x2. Hence, for every x � x2, there is a function v(x) with values in
[x1, x] such that

1 � r(x)

x
=

1

x
max
a�u�x

h(u) =
1

x
max

x1�u�x
h(u) =

1

x
h
(
v(x)

)
� h(v(x))

v(x)
< 1 + ε,

which means that r(x) ∼ x. Define now the function r1(x) = 1 − 1
x + r(x) for x � a (without loss of

generality, we assume that a > 1). Then, r1 is a strictly increasing and continuous function from the class A
such that r1(x) ∼ x. From this we get

1 � lim inf
x→+∞

g←1 (α(x)x)

g←1 (x)
� lim sup

x→+∞
g←1 (α(x)x)

g←1 (x)
� lim sup

x→+∞
g←1 (r1(x))

g←1 (x)
.

From lim supx→+∞
g←1 (g(x))
g←1 (g1(x))

� Mg < +∞ (see above), for sufficiently large x, we obtain g←1 (r1(g1(x)))
g←1 (g1(x))

�
Mr1◦g1 < +∞, where Mr1◦g1 is a positive real number that corresponds to the composition r1 ◦ g1 in the same
way as Mg was associated to g. Using the previous facts, one can prove that g←1 (r1(x))

g←1 (x) � Mr1◦g1 < +∞ for
sufficiently large x. Finally, we get lim supx→+∞

g←1 (α(x)x)
g←1 (x) < +∞.

Now, we will assume for a moment that the next two sequences exist: (i) a sequence (λn) such that λn � 1
for every n ∈ N and λn → 1 as n → +∞, and (ii) an increasing sequence (xn) such that xn � a for every
n ∈ N and xn → +∞ for n → +∞ such that limn→+∞

g←1 (λnxn)
g←1 (xn)

= +∞. Consider a function α(x), x � a,
such that α(xn) = λn for n ∈ N, α(x) is linear and continuous for x ∈ [xn, xn+1], n ∈ N, and α(x) = λ1

for x ∈ [a, x1]. This function α : [a,+∞) → [1,+∞) is continuous, and limx→+∞ α(x) = 1. From the
definition of α it follows that

lim sup
n→+∞

g←1 (α(xn)xn)

g←1 (xn)
= lim

x→+∞
g←1 (λnxn)

g←1 (xn)
= +∞.

This contradicts the fact lim supx→+∞
g←1 (α(x)x)

g←1 (x) < +∞ shown above.

So, we obtain that lim supx→+∞, λ→1
g←1 (λx)
g←1 (x) = A for some A ∈ (0,+∞), i.e., for every ε > 0, there are

x0 � a and δ > 0 such that 1 � g←1 (λx)
g←1 (x) � A + ε for every x � x0 and every λ ∈ [1, 1 + δ]. Hence, for

every λ ∈ (0, 1 + δ], we have kg←1 (λ) � A + ε < +∞. On the other hand, from the fact that the function
g←1 belongs to the class A (and is nondecreasing), we have that kg←1 (λ) < +∞ for every λ > 0 (see [16]).
Finally, we obtain that g←1 ∈ ORV , and by a result from [10], it follows that g1 ∈ PI ∗. Furthermore, as
g1(x) = (1 − 1

x)f(x) for every x � a, we have kf (λ) � kg1(λ) lim infx→+∞
λx(x−1)
(λx−1)x = kg1(λ) for every

λ > 0, i.e., we obtain that f ∈ PI ∗.
Similarly, we can prove that g ∈ PI ∗ for every g ∈ A such that g ∈ [f ]∼. 
�
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