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A B S T R A C T   

Inability of safety managers to timely detect misuse of Personal protective equipment (PPE) causes a number of 
injuries and financial losses. Considering sizes of industry halls and number of workers, there is an increasing 
demand for computerized tools that could help companies to enhance the implementation of strictinging 
workplace safety standards. As a solution, we propose a procedure that: 1) reduces the problem of PPE 
compliance to the binary classification, and 2) enables compliance of arbitrary type and number of PPE that 
could be mounted on various body parts. To prove this hypothesis, we studied 18 different PPE types used across 
various industries for protecting 5 physiological body parts/functions. The HigherHRNet pose estimator was used 
for defining the PPE regions of interest, while six different image classification architectures were assessed for the 
compliance/classification of the considered regions. All classifiers were pretrained on the ImageNet data set and 
fine-tuned using the dedicated data set developed during this study. Top-performing models were MobileNetV2, 
Dense-Net, and ResNet, while the MobileNetV2 was recommended as the most optimal choice considering its 
lower computation demands. Compared to previous studies, the proposed approach demonstrated competing 
performances with unique ability to be easily adopted for performing compliance of various PPE by slight editing 
of the predefined lists of PPE types and corresponding body parts. Considering the present data/privacy/ 
computational constraints, the procedure is recommended as suited for the digitalization of PPE compliance in: 
1) self-check points, and 2) safety-critical workplaces.   

1. Introduction 

Considering the nature and environment of the manufacturing halls, 
the existence of hazards cannot be completely avoided. Instead, regu
latory bodies have enforced industry standards with obligations and 
recommendations on how to reduce employees’ exposure to various 
types of hazards (e.g. chemical, radiological, physical, electrical, me
chanical, cyber, etc.) (Occupational Safety and Health Administration 
(OSHA), U.S. Department of Labor, 2004). Occupational safety and 
health (OSH) is a sub-field of Safety science, that has emerged as an 
independent and multidisciplinary scientific field focused on improving 
the safety, health and well-being of people in the work environment 
(Bautista-Bernal et al., 2021). Over decades, goals and criteria of OSH 
have changed and increased – so that nowadays companies have the 
tendency to reduce the number of production injuries down to zero 
(Rajendran et al., 2021). In order to achieve the “zero-injuries” goal, 

companies tend to focus their attention and activities on the proactive 
identification of pre-accidents, which control and timely management 
should prevent the occurrence of accidents at work (Baldissone et al., 
2019). The subject of this study is the compliance of personal protective 
equipment (PPE) (Proctor, 1993), which purpose is to reduce employee 
exposure to hazards when engineering controls (e.g. isolating people 
from hazards) and administrative controls (e.g. change the way how 
people work) are not feasible or effective to reduce risks down to 
acceptable levels (The National Institute for Occupational Safety and 
Health (NIOSH), 2015). 

Despite efforts invested into the PPE standardization and use guid
ance, the practice has shown that misuse of PPE still represents a serious 
problem for companies that are facing consequences of occurred in
juries. Liabilities and irreverence from PPE recommendations cause a 
number of injuries and large loss to national economies (i.e. 360B dollars 
annually to the US alone) (Bureau of Labor Statistics (BLS) et al., 2015). 

* Corresponding author at: Sestre Janjic 6, 3400 Kragujevac, Serbia. 
E-mail addresses: arso_kg@yahoo.com (A.M. Vukicevic), djapan@kg.ac.rs (M. Djapan), velibor@kg.ac.rs (V. Isailovic).  

Contents lists available at ScienceDirect 

Safety Science 

journal homepage: www.elsevier.com/locate/safety 

https://doi.org/10.1016/j.ssci.2021.105646 
Received 30 June 2021; Received in revised form 16 November 2021; Accepted 21 December 2021   

mailto:arso_kg@yahoo.com
mailto:djapan@kg.ac.rs
mailto:velibor@kg.ac.rs
www.sciencedirect.com/science/journal/09257535
https://www.elsevier.com/locate/safety
https://doi.org/10.1016/j.ssci.2021.105646
https://doi.org/10.1016/j.ssci.2021.105646
https://doi.org/10.1016/j.ssci.2021.105646
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ssci.2021.105646&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Safety Science 148 (2022) 105646

2

The reports from 2017 indicated that there were over 2.8 million 
nonfatal injuries, of which a large portion could be prevented through 
the proper use of PPE (Bureau of Labor Statistics (BLS) Employer- 
reported workplace injuries and illnesses, 2017). In general, availabil
ity and affordability of PPE are not considered as OSH’s bottleneck 
nowadays (Boustras and Guldenmund, 2018). Instead, the bottleneck of 
OSH management is the assumption that a supervisor will notice PPE 
non-use, and timely warn employees – which is very difficult to be 
achieved manually, considering the size of halls and number of workers 
in industrial companies (Wong et al., 2020). 

1.1. Types of PPE and the challenges of PPE compliance in industry 
practice 

According to the degree of hazard that they aim to mitigate, PPEs are 
commonly stratified into four levels (A-D) (United States Environmental 
Protection Agency (USEPA), 2021). Briefly, A-level corresponds to the 
greatest potential for exposure to hazards, while D-level requests mini
mum protection of head, skin, respiratory, and eye protection. Following 
the OSHA recommendation (Occupational Safety and Health Adminis
tration (OSHA), U.S. Department of Labor, 2004), this study splits PPEs 
into the five groups with respect to the body parts and physiological 
functions that they aim to protect: 1) Head; 2) Body; 3) Hands; 4) Feet; 
and 5) Whole body. Typical examples of corresponding PPEs are safety 
glasses, high visibility vests (or yellow vests), gloves, hardhats/helmets, 
safety boots, face shields, sound reducing headphones and earmuffs, 
respirators, welding shields, etc. State of the art approaches for 
improving and ensuring the PPE compliance include: self-check of em
ployees (through education and increasing employees’ awareness about 
the importance of PPE); specially designed self-check points (where 
employees can use mirror to visually compare their PPEs with an image 
of proper use of PPE); internal inspection by supervisors and safety 
managers within the company; and external control by OSH represen
tatives. Regarding the above mentioned, challenges of PPE compliance 
may be related to: large number of employees that circulate in a work
space; differences in safety recommendations among various work
places; presence of visitors, interns and other persons that are not 
permanently employed in a company; movement of employees through 
different sectors of a company (which may have different safety rec
ommendations); needs for removing PPE during execution of specific 
tasks; frequent change and fluctuation of PPE suppliers and types of PPE 
on the market; limited period of use of specific PPEs (e.g. respiratory 
masks). Accordingly, there are large practical needs for technologies 
that could help practitioners to improve and/or ensure PPE compliance. 
Although there were attempts to employ electronic circuits into PPE 
(Buchweiller et al., 2003) – a technology that could enable visual and 
contactless compliance of safety rules appears to be more generic and 
practical considering sizes of industry environments (Ayhan and Tok
demir, 2019). Particularly, artificial intelligence algorithms have 
demonstrated high potential for reducing risks related to human activ
ities (Pustokhina et al., 2021). The detailed review on the topic of safety 
science showed that artificial neural networks are the most applied 
machine learning method to aid in engineering risk assessment – and the 
next step towards this direction is application of Deep learning (Hegde 
and Rokseth, 2020). 

1.2. Related studies on the topic of application of AI for improving PPE 
compliance 

In the study from 2016, Rubaiyat et al. developed Computer vision 
(CV) methods for automatically detecting misses of construction helmets 
from the workspace images, which assumed the feature engineering 
approach based on combining the Histogram of Oriented Gradient and 
Circle Hough Transform algorithms (Rubaiyat et al., 2016). Li et al. 
proposed a radiomics-based approach for helmet wearing detection, 
reporting ~90% accuracy of helmet detection (Li et al., 2017). 

Mneymneh et al. proposed a solution that first detects motion, then 
workers and finally it detects hardhat in the identified region of interest 
using an object detection tool coupled with a color-based image classi
fication (with ~93.1% accuracy in the best-case scenario) (Mneymneh 
et al., 2019). In a recent study, Wu et al. proposed convolutional neural 
networks for detecting hardhats of various colors worn by construction 
personnel (Wu et al., 2019). Moreover, the same authors made the 
developed models publicly available along with the dataset used1. Delhi 
et. al used transfer learning and YOLOv3 detector to develop a system 
that detects the presence of hardhat and safety jackets, and accordingly 
performs compliance by stratifying four categories such as NOT SAFE, 
SAFE, NoHardHat, and NoJacket (Delhi et al., 2020). Tran et al. also 
utilized the YOLOv3 detector for the compliance of hardhat, shirt, belt, 
gloves, pants, shoes with precision ranging from 0.95 to 0.98 (Tran et al., 
2019). Zhafran et al. proposed usage of the Fast R-CNN deep learning 
architecture for compliance of various PPEs, with accuracies varying 
from 89% for helmets to 78% for masks, 67% for vests and 58% for 
gloves at one-meter distance (accuracies drastically decreased at the 
distance of five meters) (Zhafran et al., 2019). In the recent study from 
2020, Nath et al. considered three various Deep learning - based ap
proaches for detecting hardhats and safety vests (Nath et al., 2020). In 
general, all three approaches assume classifying cropped employees on 
predefined classes in a Pictor-v32 data set - and resulted with ~73–84% 
mean average precision (mAP). Although it was recommended as a 
generic and applicable for intersecting other PPE as well, this possibility 
has not been studied yet. Balakreshnan et al. tested the proof of concept 
platform for PPE compliance detection using low-power AI enabled 
cameras (Balakreshnan et al., 2020). Particularly, the system was 
designed to detect if persons are wearing safety glasses or not. The 
precision obtained using the web-mined images was 37.5%, and 50% for 
images acquired from the testing environment. It was concluded that 
future work should be regarded towards distinguishing safety glasses 
and regular glasses (Jing et al., 2000). Finally, Nagrath et al. demon
strated application of combining Single shot detector and MobileNetV2 
classifier for real time Covid19 masks detection (Nagrath et al., 2021). 
Starting from the end of 2020, application of AI in OSH gained attention 
among industry as well. For example, Amazon proposed the Amazon 
Rekognition PPE detection system3 – which currently provides AWS for 
recognizing if body parts (such hand, face and hands) are covered with 
corresponding PPEs. 

As it may be noted, most of the previous studies were attracted by 
construction engineering needs - which is justified with facts that con
struction is still one of the least digitized industries, as well as that it 
records a largest number of fatal injuries and thus incurs safety im
provements. As the compliance of various PPEs has been studied inde
pendently, studies were mostly focused on compliance of particular PPE 
(commonly helmets, vests, masks) – while needs of other industries (e.g. 
automotive, textile, energy, metal, food industry etc.) has remained 
uncovered. Thus, existing approaches for inspecting PPE remain to be 
assessed in other industries before being widely accepted. For example, 
approaches based on using PPE detectors (e.g. YOLO, SSD, or Faster R- 
CNN) for detecting hardhats would be challenging to adapt for 
compliance of earmuffs (as they may be present on the head, but not 
properly used). Furthermore, usage of detectors increases the 
complexity of developing generic purpose PPE compliance – as it is not 
efficient to develop and run multiple detectors for head, hands, legs, etc. 
Finally, conventional detectors could not separate the left and right part 
of the body – which disables one to provide employees with safety 

1 https://github.com/wujixiu/helmet-detection/tree/master/hardhat- 
wearing-detection  

2 https://github.com/ciber-lab/pictor-ppe  
3 https://aws.amazon.com/blogs/machine-learning/automatically-detecting- 

personal-protective-equipment-on-persons-in-images-using-amazon- 
rekognition/ 

A.M. Vukicevic et al.                                                                                                                                                                                                                           

https://github.com/wujixiu/helmet-detection/tree/master/hardhat-wearing-detection
https://github.com/wujixiu/helmet-detection/tree/master/hardhat-wearing-detection
https://github.com/ciber-lab/pictor-ppe
https://aws.amazon.com/blogs/machine-learning/automatically-detecting-personal-protective-equipment-on-persons-in-images-using-amazon-rekognition/
https://aws.amazon.com/blogs/machine-learning/automatically-detecting-personal-protective-equipment-on-persons-in-images-using-amazon-rekognition/
https://aws.amazon.com/blogs/machine-learning/automatically-detecting-personal-protective-equipment-on-persons-in-images-using-amazon-rekognition/


Safety Science 148 (2022) 105646

3

guidance (OSHA, 2020). Having this in mind, the aim of this study was 
to propose a generic framework for the PPE compliance which should be 
modular and applicable for various PPEs and various body-parts on 
which they should be mounted - as described in the official OSHA 
guidelines (Occupational Safety and Health Administration (OSHA), U. 
S. Department of Labor, 2004). 

2. Methods 

2.1. Overview of the proposed approach 

This study considers the misuse of PPE as an unsafe act (UA), which 
needs to be detected, reported and managed efficiently within a com
pany. For these purposes, a company may use a dedicated web platform 
(Vukicevic et al., 2019) for real-time management of UA and unsafe 
conditions (UC) - in which PPE compliance module needs to be inte
grated. Following the graphical illustration in Fig. 1, we propose an 
intuitive four-step solution for the AI-based PPE compliance. The start
ing assumption is the fact that each PPE should be mounted on a cor
responding part of employee’ body. The first step is detection/ 
identification of an employee in the workspace (Fig. 2a). For these 
purposes, we used 2D pose estimation algorithms as they enabled us to 
simultaneously detect body landmark points (Fig. 2b). By using the body 
landmark points, we defined the region of interest (ROI) that should be 
the subject of PPE compliance (Fig. 2c). Particularly, we divide PPE into 
five groups (following Fig. 2d): 1) head-mounted PPE (e.g. hardhats, 
glasses, earmuffs); 2) upper body PPE (e.g. wets); 3) Hands (e.g. Gloves); 
4) Legs (e.g. boots, safety shoes); and 5) whole-body (i.e. work suit). It is 
assumed that the list of recommended PPE for each corresponding body 
part is defined with a company’s safety regulations and industry stan
dards4, so that the PPE list in Fig. 2d may vary for different companies. 
For each body ROI (Fig. 2e), we developed dedicated deep learning 
classifiers (see Section 2.3) that consider PPE compliance as the binary 
classification problem (Fig. 2f). In the following paragraphs, we provide 
details about algorithms used for solving problems illustrated in Fig. 2. 

2.2. Pose estimation and PPE ROI cropping 

The pose estimation was done using the HigherHRNet5 (Cheng, 
xxxx), which itself uses the HRNet (Sun et al., 2019) as the backbone to 
solve the problem of scale variation during the bottom-up pose esti
mation. The HigherHRNet outperforms state-of-the-art competitors on 
the COCO dataset (Lin et al., 2014) by outputting multi-resolution 
heatmaps and using the high resolution representation provided by 
the HRNet. In this study we used the HigherHRNet with the HRNet-W48 
(input size 640) to obtain body landmark points shown in Fig. 2b. Re
gions of interests were predefined by using the detected landmark 
points, which absent from the pose estimator aware one skip occluded 
body parts – or to inform users to stand upfront to the camera in order to 
complete the PPE check. In this study, we defined the five regions of 
interest (ROI) illustrated in Fig. 2e around five types of body parts (head, 
hands, upper body, legs, and whole body). 

2.3. Classification of PPE ROIs 

The PPE compliance was considered as a classification problem, 
where the classification inputs are previously cropped ROIs. In this study 
we considered the following deep learning classifiers: MobileNetV2 
(Sandler et al., 2018), VGG19 (Simonyan and Zisserman, 2014), Dense- 
Net (Huang et al., 2017), Squeeze-Net (Iandola et al., 2016), Incep
tion_v3 (Szegedy et al., 2015), and ResNet (He et al., 2015). 

Chronologically, the VGG19 was introduced as the winning architecture 
at the 2014 ImageNet challenge – demonstrating the superiority of 
increasing an architecture depth with very small (3 × 3) convolution 
filters (Simonyan and Zisserman, 2014). Due to the efficiency of the VGG 
starting layers, they have been frequently adopted to serve as the 
encoder part of many top-performing deep learning architectures for 
solving various computer vision tasks such are FCN (Long et al., 2015), 
and U-Net (Ronneberger et al., 2015) architectures for semantic seg
mentation. While winning the 2015 COCO and ImageNet challenges, the 
ResNet introduced residual layers as learning residual functions with 
reference to the layer inputs (He et al., 2015) – which reduced the 
vanishing gradient problem while enabling efficient training of deeper 
networks (up to 152 layers, or 8x deeper than the VGG). The Incep
tion_v3 was the first runner up at the 2015 ImageNet challenge. It is the 
most efficient variant of the inception family of architectures (the v1, 
named GoogLeNet, introduced the inception module (Szegedy et al., 
2014), while the v2 introduced the batch normalization (Ioffe and 
Szegedy, 2015), which proposed the idea of factoring convolutions to 
reduce the number of trainable parameters. The Squeeze-Net was pro
posed in 2016 as a lightweight replacement for the AlexNet (Krizhevsky 
et al., 2017) (50x less trainable parameters) – which was achieved by 
proposing the usage of squeeze and expand layers, along with the 
decrease of filters size down to 1x1, decrease the number of input 
channels down to 3x3 filters and downsample late in the network 
(Iandola et al., 2016). The Dense-Net connects each layer to every other 
layer in a feed-forward fashion, which is (compared to the ResNet) a 
simplific connectivity pattern that reduces the vanishing of gradients 
during the training of very deep networks (Iandola et al., 2016). The 
MobileNetV2 was introduced in 2018 by Google, as an architecture that 
will enable usage of Deep learning techniques on mobile devices 
(Balakreshnan et al., 2020). It is based on an inverted residual structure, 
where the input and output of the residual block are thin bottleneck 
layers, while the intermediate expansion layer uses lightweight depth
wise convolutions to filter features as a source of non-linearity (Sandler 
et al., 2018). 

2.4. Transfer learning 

All classification models were pretrained on the ImageNet data set 
(Russakovsky et al., 2015) and loaded into the PyTorch framework 
(Paszke et al., 2017) for the transfer learning. The impairment of already 
learned low-level features was prevented by frizzing the base layers of 
considered deep learning models. Then, new trainable layers were 
added and trained on the collected datasets to classify PPEs. During the 
training, we performed an online augmentation (with a probability of 
20%), which means that various augmentation techniques were applied 
each iteration while the batches were passed into the training loop 
(instead of the traditional preprocessing approach). The considered 
augmentation techniques were: random rotation (±30◦), random flip, 
random crop, and Gaussian noise. For the training, each dataset was 
randomly split into training (70%), validation (15%), and test (15%) 
datasets. The learning of the considered architectures was performed 
using the Adam optimization algorithm (Kingma and Ba, 2014), with the 
cross-entropy loss function. The initial learning rate of the Adam was set 
to 1e-4, and it was decreased by a factor of 0.1 every 7 epochs. The 
training of the models on the developed data sets were automatized 
using the Python script, which varies number of epochs (5, 10, 15, 20, 
30, 50, and 100) and batch sizes (1, 2, 4, 8, 16, 32, 40, and 50) – so that 
we afterwards could load and select the top-performing models. 

2.5. Experiments and results 

All the implementation was done by using the Python 3.7.4 pro
gramming language; along with the PyTorch 1.6.0 and torcvision 0.7.0 
libraries with the cuda 10.2 GPU drivers. All the computations were 
done on the workstation with the AMD Threadripper 3970X (32 cores, 

4 Standard: OHSAS 18001, Occupational Health and Safety Assessment 
Series.  

5 https://github.com/leoxiaobin/deep-high-resolution-net.pytorch 
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3.79 GHz processor), 128 GB RAM and two Titan RTX (24 GB) + NVLink 
GPUs. 

Data set used in this study was developed by combining web-mined 
images and public PPE datasets (5200 images from the Roboflow 
hardhat train data set6 , and 400 images from the Pictor PPE data set7). 
Because a portion of images contained multiple persons, we were able to 
crop a total 15,728 images of people (without and with various types of 
PPE) from the collected 12,893 images. The ROI cropping was per
formed following Fig. 2, and it was done by using in-house Python 
scripts and the LabelMe annotation tool (Wada, 2016). After cropping 
PPE-related ROIs, we developed datasets described in Table 1. As it may 
be noted, this study covers nine different PPE compliance topics: a) 
Protection of respiratory system (face mask, and respiratory mask); b) 
Noise removal and hearing protection (earmuffs); c) Face protection 
(face shield, and welding shields); d) Eyes protection (various types of 
glasses/goggles); e) Head protection (various types of caps, hardhat, and 
head covers); f) Visibility (safety vests, and suits with reflective tracks); 
g) Hands protection (Covid19 and industry gloves); h) Feet protection 
(various shoes, and feet covers); and i) Coveralls and protective cloths. 

Because datasets were imbalanced, we developed dedicated data 
loaders that for each epoch load the same amount of images from each 
class. Particularly, the per-class number of images is determined with 

the target class, while other classes are randomly loaded for each epoch. 
In this way, we ensured that the data is balanced while keeping benefits 
of increased variability of over-sampled classes. 

The metrics selected for the evaluation and comparison of developed 
models included: Accuracy =

Tp+Tn
(Tp+Fp+Fn+Tn), Precision =

Tp
(Tp+Fp), Recal =

Tp
(Tp+Fn) and f1 score = 2 Recal*Precision

(Recal+Precision), - where Tp are true positive, Tn are 
true negative, Fp are false positive, Fn are false negative classifications. 
The obtained results are given in Table 2. 

3. Discussion 

The obtained performances in Table 2 indicate that MobileNetV2, 
Dense-Net, and ResNet are top-performing classificators. As all three 
models achieved comparable performances – we recommend the use of 
MobileNetV2 as it is least computationally expensive. We also empha
size that during the transfer learning of the pretrained models we have 
experimented with freezing various numbers of initial layers (as there is 
no recommendation on how many layers to fine-tune) – which may 
affect ranking of the considered models. As there are 18 developed PPE 
classificators, for the purpose of consistency, we will discuss them with 
respect to corresponding body parts. Moreover, we report that we 
preferred to exclude noisy or extremely low-quality images in our data 
set – which may be a distinction and one of reason why we outperformed 
some studies discussed in the rest of this section (some of which may 
include e.g. images with poor lighting conditions, or extremely low 

Fig. 1. The concept of AI-driven PPE compliance.  

Fig. 2. Workflow of the proposed pose-aware PPE compliance.  

6 https://public.roboflow.ai/object-detection/hard-hat-workers  
7 https://github.com/ciber-lab/pictor-ppe 
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resolution images). For these reasons, we will base our discussion on 
comparing both performances and approaches with alternatives in 
literature. 

For the head-mounted PPE, MobileNetV2 and ResNet classificators 
showed superior performances, with average 95% accuracy over eight 
considered PPE types. So far, there have been a series of studies focused 
on developing AI for detecting face masks and hardhats. In the recent 
study, Nagrath et al. proposed the usage of SSDMNV2 (SSD and Mobi
leNetV2) for the real-time face masks compliance – reaching 92% ac
curacy on their data set. Compared to the proposed study, limitation of 
the SSDMNV2 is the fact that such approach is not sufficiently generic to 
be applied for e.g. compliance of hands-mounded or legs-mounted PPEs. 
The similar approach is also proposed by Loey et al. (2021), which 
combined YOLO-v2 object detector and ResNet-50 classifier. Both 
mentioned studies would most likely need additional training of the 
SSD/YOLO-v2 part to accurately detect various types of PPEs that cover 
other body parts. More importantly, object-detection approaches suffer 
to distinguish wearing PPE from holding it (e.g. gloves at Fig. 3). Only a 
recent study by Chen and Demachi studied the possibility of combining 
object and individual detection for PPE compliance (Chen and Demachi, 
2021). Particularly, they proposed a hierarchical scene graph structure 
that enables the conditional reasoning for automated hazards identifi
cation to address different requirements in each zone of construction 
sites. AI-based compliance of hardhats has also been the subject of 
studies in the domain of construction engineering (Rubaiyat et al., 2016; 
Li et al., 2017; Mneymneh et al., 2019; Wu et al., 2019; Nath et al., 2020) 
– which are all based on using object detection principle and achieved 
lower performances compared to the proposed approach. To the best of 
our knowledge, Balakreshnan et al. are only those who considered safety 
glasses – reporting lower performances compared to ours (with the note 
that their assessment was focused on analyzing the performance drop 
with variations in distance and image quality) (Balakreshnan et al., 

2020). Therefore, compared to previous studies, our study is more 
comprehensive as we covered eight most frequently used head-mounted 
PPEs. 

Regarding the visibility vests and tracks that are mounted on the 
upper body, there is a significant difference in obtained performances 
because we considered suits with reflective tracks as separate class – 
which additionally was underestimated class (1248 samples, compared 
to the vests 3500, and no protection samples 8460). Compared to pre
vious study that achieved lower (~84%) accuracy in vests compliance 
on the Pictor-v3 dataset, we emphasize that our performances were 
assessed on the cropped images – while authors of the mentioned study 
used object detection approach (YOLO-v3) and analyzed whole images. 
This indicates that the proposed approach of combining pose estimation, 
ROI cropping and ROI classification increases the overall PPE compli
ance accuracy. 

Regarding the AI-based compliance of hands, legs and whole-body 
PPE, we found that our study is the first who considered this problem. 
We report that improving compliance of this type of PPE is very 
important for e.g. healthcare (feet covers) or chemical industry (which 
has some specific requirements, such as preventing entry of people with 
footwear that does not cover feet - e.g. sandals). In terms of accuracy, we 
report that legs-related PPE was the most challenging task, as we 
reached 0.92, 0.84, 0.92, and 0.95 accuracy for compliance of sandals, 
industry shoes, boots, and feet covers, respectively. Similarly, there is a 
practical need to timely detect and protect people who do not wear 
gloves for protecting hands - especially in the lumber industry (which 
records a large number of finger injuries due to the misuse of PPE), along 
with the recent recommendations to wear exam gloves during the 
Covid19 pandemic. 

To summarize, in terms of accuracy, the proposed study showed 
increased performances compared to approaches based on using object 
detectors and combining object detectors with classifiers. More 

Table 1 
Considered PPE compliance problems and class-distribution in our data set.  

Body part or physiological function PPE classes 

Respiratory system No protection (5231) Face mask (4107) Respiratory mask (608)   

Hearing system No protection (6280) Earmuffs (3664)    
Face protection No protection (3375) Face shields (1386) Welding mask (826)   
Eyes protection No protection (4673) Glasses (1058) Sunglasses (483) Safety glasses (2799) Face shields (1386) 
Head protection No protection (3506) Winter cap (384) Hardhat (3640) Cap (572) Head cover (602) 
Visibility No protection (8460) Yellow vests (3500) Suits with reflective tracks (1248)   
Hands protection No protection (5602) Exam gloves (2410) Industry gloves (4309)   
Feet protection No protection (2300) Sandals (1200) Industry shoes (1700) Boots (935) Shoe covers (520) 
Skin protection No protection (4800) Overalls (2500) Protective cloth (970)    

Table 2 
Performances of the developed deep learning models for PPE compliance.   

MobileNetV2 VGG19 Dense-Net Squeeze-Net ResNet Inception_v3 

Face mask 0.97, 0.97, 0.96, 0.96 0.92, 0.92, 0.93, 0.92 0.96, 0.95, 0.96, 0.96 0.91, 0.91, 0.9, 0.90 0.95, 0.94, 0.96, 0.95 0.93, 0.93, 0.92, 0.93 
Respirator 0.95, 0.95, 0.94, 0.94 0.93, 0.91, 0.93, 0.94 0.94, 0.94, 0.96, 0.95 0.93, 0.92, 0.94, 0.93 0.96, 0.97, 0.96, 0.96 0.88, 0.89, 0.87, 0.88 
Earmuffs 0.93, 0.94, 0.92, 0.93 0.90, 0.89, 0.91, 0.90 0.93, 0.95, 0.92, 0.93 0.86, 0.87, 0.85, 0.86 0.94, 0.95, 0.93, 0.94 0.92, 0.93, 0.91, 0.92 
Welding mask 0.96, 0.97, 0.95, 0.96 0.93, 0.95, 0.92, 0.93 0.92, 0.93, 0.92, 0.92 0.85, 0.86, 0.84, 0.85 0.96, 0.95, 0.97, 0.96 0.91, 0.91, 0.92, 0.91 
Face shields 0.95, 0.94, 0.96, 0.95 0.91, 0.89, 0.93, 0.91 0.93, 0.91, 0.96, 0.93 0.90, 0.87, 0.94, 0.91 0.95, 0.94, 0.96, 0.95 0.91, 0.90, 0.92, 0.91 
Safety glasses 0.93, 0.92, 0.94, 0.93 0.90, 0.88, 0.92, 0.90 0.89, 0.88, 0.90, 0.89 0.87, 0.87, 0.86, 0.86 0.94, 0.92, 0.96, 0.94 0.91, 0.88, 0.93, 0.91 
Hardhat 0.97, 0.96, 0.98, 0.97 0.93, 0.91, 0.94, 0.93 0.96, 0.96, 0.96, 0.96 0.94, 0.93, 0.95, 0.94 0.94, 0.94, 0.95, 0.94 0.95, 0.95, 0.94, 0.94 
Head cover 0.95, 0.93, 0.96, 0.95 0.91, 0.90, 0.93, 0.92 0.94, 0.92, 0.95, 0.93 0.90, 0.91, 0.90, 0.90 0.93, 0.92, 0.93, 0.93 0.94, 0.93, 0.95, 0.94 
Yellow vests 0.98, 0.98, 0.97, 0.98 0.94, 0.93, 0.94, 0.94 0.96, 0.97, 0.96, 0.96 0.93, 0.92, 0.95, 0.93 0.96, 0.96, 0.97, 0.96 0.95, 0.95, 0.94, 0.94 
Visibility tracks 0.90, 0.90, 0.89, 0.90 0.87, 0.87, 0.86, 0.86 0.91, 0.92, 0.90, 0.91 0.80, 0.79, 0.81, 0.80 0.86, 0.85, 0.87, 0.86 0.87, 0.87, 0.85, 0.86 
Exam gloves 0.92, 0.91, 0.93, 0.92 0.89, 0.89, 0.88, 0.88 0.94, 0.95, 0.92, 0.93 0.84, 0.82, 0.86, 0.84 0.91, 0.90, 0.92, 0.91 0.86, 0.86, 0.87, 0.87 
Industry gloves 0.92, 0.91, 0.93, 0.92 0.86, 0.87, 0.84, 0.85 0.95, 0.95, 0.94, 0.94 0.87, 0.87, 0.86, 0.86 0.92, 0.90, 0.94, 0.92 0.89, 0.88, 0.88, 0.86 
Sandals 0.92, 0.91, 0.94, 0.92 0.87, 0.86, 0.87, 0.86 0.87, 0.89, 0.85, 0.86 0.81, 0.83, 0.79, 0.81 0.90, 0.91, 0.89, 0.90 0.91, 0.90, 0.91, 0.90 
Industry shoes 0.84, 0.84, 0.83, 0.84 0.83, 0.83, 0.81, 0.82 0.84, 0.85, 0.82, 0.83 0.80, 0.81, 0.78, 0.79 0.84, 0.85, 0.84, 0.84 0.82, 0.80, 0.84, 0.82 
Boots 0.92, 0.90, 0.94, 0.92 0.89, 0.86, 0.92, 0.89 0.92, 0.89, 0.95, 0.92 0.90, 0.88, 0.92, 0.90 0.92, 0.91, 0.93, 0.92 0.84, 0.86, 0.81, 0.83 
Feet covers 0.95, 0.93, 0.97, 0.95 0.93, 0.91, 0.95, 0.93 0.95, 0.94, 0.96, 0.95 0.87, 0.86, 0.87, 0.87 0.94, 0.92, 0.96, 0.93 0.84, 0.82, 0.86, 0.84 
Overall 0.95, 0.94, 0.96, 0.95 0.93, 0.92, 0.94, 0.93 0.95, 0.95, 0.94, 0.94 0.87, 0.86, 0.88 0.87 0.95, 0.95, 0.94, 0.94 0.92. 0.91, 0.93, 0.92 
Protective cloth 0.98, 0.98, 0.97, 0.97 0.95, 0.95, 0.94, 0.94 0.98, 0.96, 1.00, 0.98 0.91, 0.90, 0.91, 0.91 0.97, 0.96, 0.98, 0.97 0.96, 0.94, 0.98, 0.96 

Values in cells are: Accuracy / Precision / Recall / F1 score. 
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importantly, in terms of methodological novelty, we demonstrated that 
the proposed approach is generic and applicable for inspecting all types 
of PPEs that may be used in various industries and mounted on various 
body parts. To prove this statement, we considered eighteen different 
PPEs that are proposed to protect various body parts. Technological 
advantage of the proposed approach is flexibility and extensibility of the 
PPE classifiers list – as we considered compliance of a particular PPE 
type as the binary classification problem. This means that if one wants to 
remove or add a new PPE class, this will not affect performance of the 
rest of PPE compliance classifiers. This is important distinction from the 
previous approaches, which developed multi-class detectors and classi
ficators – e.g. for simultaneous inspecting use of hardhats and masks, 
which means that if one considers to fine-tune such model for another 
type of masks - the transfer learning may negatively affect the hardhat 
compliance. 

3.1. Barriers of using AI for PPE compliance 

So far, Computer vision has shown promising great potential to 
replace or assist human experts’ in making decisions that rely on 
analyzing visual data; ranging from biomedical (Vukicevic et al., 2021), 

industrial engineering (Vukicevic et al., 2019) to workplace safety (Min 
et al., 2019; Boustras et al., 2020; Vukicevic et al., 2021). Although 
previous studies demonstrated applicability of AI-driven PPE compli
ance in construction engineering, the usage of surveillance technology 
to cover larger areas and multiple workers at once makes it challenging 
for such technologies to find place in the industry practice. Furthermore, 
the current privacy regulations (Ring, 2016; Patil et al., 2014; Sullivan, 
2017) and costs/complexity of using AI for 24/7 surveillance of whole 
industry halls are also barriers for approaches that recommended real- 
time tracking of employees. Instead, we recommend the proposed 
approach as suited for the use in controlled conditions, such are: 1) self- 
check points (when users are asked to confirm their identity by using e.g. 
RFID card, while AI is used solely for the PPE compliance but not for the 
purpose of identification and tracking), and on 2) monitoring of 
particular workplaces/machines with high risk from injuries (so that AI 
could ensure timely detection and mitigation of occurred risks). We 
report that one-shoot (single-frame) PPE compliance AI solutions will 
most likely suffer from effects illustrated in Fig. 3 - bottom row (white 
arrows). Thus, the reliability could be significantly increased if a 
sequence of frames is analyzed before making the decision. This issue is 
less relevant for the compliance of e.g. yellow vests, hardhats, covid 

Fig. 3. Sample results of using the developed procedure.  
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masks, protective cloths, or hair cover - as there is no big variability 
among their design and colors. However, there is a significant number of 
less studied PPE types (e.g. industry gloves, industry masks, industry 
shoes, overalls, safety glasses, face shields etc.) whose appearance and 
design may be very different across different companies/industries - 
which make it a challenge for the community to develop AI solutions 
that will generalize well in practice. 

4. Conclusion 

The ongoing technological progress and strictinging of industrial 
safety standards have initiated the trend of developing computerized 
systems for improving workplace safety through automation of PPE 
compliance. Although the previous studies proved the potential of AI to 
solve the considered problem, their applicability in the industry practice 
remains limited. Identified barriers of using AI-based PPE compliance 
systems are: large computational costs needed to monitor whole 
manufacturing halls in real-time, privacy issues and regulations related 
to restricted usage of surveillance technology in workplaces, the lack of 
generic procedure that could be applied across various industries (e.g. 
construction, manufacturing, healthcare, chemical industry etc.). 

In this study, we proposed a four-step procedure that reduces the 
problem of PPE compliance to the binary classification problem, while 
ensuring its genericity and ability to perform compliance of arbitrary 
types/number of PPE that protect various body parts. In the first step, 
the HigherHRNet pose estimator simultaneously detects body landmark 
points - which were used for defining the PPE regions of interest. The 
obtained performances indicated that MobileNetV2, Dense-Net, and 
ResNet are top-performing classificators, while the MobileNetV2 was 
recommended as the most optimal considering its lower computation
ally complexity. In comparison to previous studies (based on using 
multi-class object detectors, or combining object detectors with classi
ficators), the proposed approach demonstrated improved performances 
while ensuring the ability for compliance of PPE mounted on various 
body parts (head, hands, feet, upper body, or whole body). To prove this 
hypothesis, the procedure was extensively assessed on the 18 different 
types of PPEs. Another contribution of this study is the demonstrated 
user-friendly adaptability, which is achieved by linking the lists of 
considered PPE (classifiers) and corresponding body parts. By editing 
these lists, one could easily adapt and use the proposed procedure for an 
arbitrary type of PPE or industry (including manufacturing, healthcare, 
military/security, food, lumber, construction engineering, etc.). 

Considering the constraints present in the nowadays industry prac
tice, we recommend the proposed approach as suited for the following 
use-cases: 1) self-check points (when users are asked to confirm its 
identity while AI is used solely for the PPE compliance), and on 2) 
monitoring of particular workplaces/machines with high risk from in
juries (so that AI could ensure timely detection and mitigation of 
occurred risks under reasonable costs). 
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