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Resume
The presented work discusses a methodology for analysis of noise emissions 
from a diesel engine. A numerical model of the piston motion, analyzing 
its lateral, reciprocating and rotation motion, has been presented in order 
to investigate the lateral motion of the piston skirt assembly and resulting 
vibrations induced as a result of these motions in the engine block. Various 
parameters of modal analysis were obtained using the mobility analysis. The 
presented methodology was validated by data obtained from a diesel engine 
test set up. The predicted results matched well with those of measured data, 
hence validating the presented scheme.

Article info
Received 17 March 2021
Accepted 2 June 2021
Online 30 September 2021

Keywords: 
acoustics, 
vibrations, 
noise, 
piston motion

Available online: https://doi.org/10.26552/com.C.2022.1.B9-B19
ISSN 1335-4205 (print version)
ISSN 2585-7878 (online version)

piston motion has been considered, which includes 
location of a center of gravity [17], profile of a skirt [18-
19], effects of inertial forces [20-21], frictional forces 
[22] and lubricating oil [23]. Mounted accelerometers 
on the block surface were used to simulate the piston’s 
secondary motion [5].

2 Piston assembly model

The secondary motion of a skirt for the case of 
a 240 cc engine was modeled as depicted in Figure 1. 
The piston was considered as a point mass of 0.363 kg 
(mp) and inertia (IP) of 7.8540X10−9 kg-m2 having two 
degree of freedom in motion (Xp ,θ). The cylinder block 
was considered as a lumped mass of 48.5 kg (mb) with 
a single degree of freedom Xb, as shown in equation (1). 

The nominal clearance of 0.5 mm allows the piston 
assembly to move in the lateral direction, as well as to 
rotate about the piston pin. The clearance between the 
skirt and a liner Xc was modeled as a mechanical stop 
in lateral direction.

For condition of no impact, (Xp -Xb=Xc) the motion 
was governed by Equation (1).

1 Introduction 

In combustion engines a lateral space is present 
between the skirt and a cylinder liner that gives 
a motion freedom in lateral direction during the engine 
operation [1]. The existence of this gap puts a limit on 
magnitude of piston motion [2]. The piston assembly 
contributes to about 30-40 % of mechanical losses and 
hence its design is a major concern for automotive 
engineers [3-4]. The piston thrusts liner to other side 
due to changing in direction of side thrust force due to 
motion of a connecting rod [5-6]. 

A dynamic model of the crank slider mechanism 
has been presented by Flores et al. [2]. The existence of 
lateral gap makes the system nonlinear and chaotic in 
nature. The reaction force between the liner and a skirt 
also plays an important role in dynamics of motion. 
As the coefficient of restitution decreases, the motion 
transforms from bouncing to a periodic one [7-8]. 

McFadden and Turnbul analyzed effects of 
combustion gas pressure on primary motion of a piston 
[9]. A two degree of freedom system has been analyzed 
showing a correlation between the piston slap and 
resulting vibrations [10-16]. Various parameters affecting 
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and a liner can be obtained from the product of elastic 
tension and the coefficient of frictional force. As the 
speed of engine increases, the coefficient of friction 
decreases gradually until reaching the minimum at 
the mid stroke. The frictional forces between the liner 
and a skirt (Ff) and piston rings and liner (Ffr) may be 
expressed in terms of the sliding velocity of a piston 
(V), nominal clearance (h), lubricating oil viscosity(μ), 
number of piston rings (n) and the shear area of 
a contact (As) as [27-57]:

Ff   = μVAs1/h, (3)

Ffr   = nμVAs2/h, (4)

where As1 is the shear contact area between the liner 
and a skirt and As2 is the shear contact area between the 
liner and rings.

5 Mobility parameter determination

The mobility may be defined as the ratio of velocity 
response V(Jω) of a structure to exciting force F(Jω) 
acting on a structure [5]:

M(Jω) = V(Jω)/F(Jω), (5)

M(Jω) = -Jω((K-Mω2)+JCω)/Mω2(K+JCω), (6)

In the frequency range below the first anti resonance 
frequency value (ωa = K/m), the point mobility equation 
can be approximated as [5, 31-32]:

M(Jω) = -J/mωa. (7)
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3 Piston side thrust force

The major issue, affecting this lateral motion of 
a skirt, is the side thrust force (Fx) imparted to skirt by 
a connecting rod, as shown in Figure 2.

The frictional forces act between the piston skirt 
and a cylinder liner (Ff) as well as between the rings and 
a liner (Ffr). The force exerted by the connecting rod on 
piston pin was resolved along X (FrodX), as well as Y axis 
(FrodY). The side thrust force (Fx) takes into consideration 
both inertial forces as well as gas forces (Fg) [21-24]. 

Fx= [Fg  - mp rω2[cos(θ)+Kcos(2θ)]]λ, (2)

where: mp - mass of piston,
θ - crank angle,
ω - angular speed,
r -crank radius,
K - crank radius-connecting rod length ratio,
λ = K cos(θ)/√(1+sin(θ)]2).

4 Piston frictional force

Various friction forces play a predominant role in 
the total mechanical loss of an engine [25-26]. According 
to Zweiri et al. [27], frictional force between the rings 

Figure 1 Numerical model of the piston motion
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per minute)-(2000 rpm and 3000 rpm) and load values 
(80 % and 100 %) were chosen with an aim to cover 
complete engine operational conditions. The data 
recorded during each test was under steady state 
conditions as seen in Table 4.

Figure 3 shows the general layout of the test rig 
with placement of various sensors.

7 Results and discussions

Figures 4 and 5 depict variations of the piston side 
thrust force. This force changes its direction five times in 
a complete engine cycle indicating five possible instances 
of lateral contact of the skirt with a liner.

COMSOL 7 multi physics software was used to 

Above the anti resonance frequency, the point 
mobility can be written as :

M(Jω) = -Jωa/K. (8)

6 Experimental setup

Tests were done on a single cylinder HARTZ engine 
having specifications as presented in Table 1.

The in-cylinder pressure was monitored by an 
AVL transducer, having specifications shown in Table 
2. Block vibrations were measured by means of an 
Endveco7240C type Mono axial accelerometer, having 
features accelerometer are presented in Table 3.

Various engine testing speeds in rpm (Revolutions 

Figure 2 Force diagram of the piston skirt assembly

Table 1 Engine specifications

Type Diesel Engine

Make HARTZ

Number of cylinders 1

Bore 69 mm

Stroke 65 mm

Displacement 0.243 liter

Compression 22:1

Maximum power 3.5kW @ 4400 rpm

Maximum torque 10N-m @ 2000 rpm

Table 2 Pressure transducer specifications

Range 0-250 Bar

Sensitivity 20 pC/Bar

Resonance Frequency 160 kHz

Table 3 Accelerometer specifications

Range 1000 g

Sensitivity 3 pC/g

Resonance Frequency 90 kHz

Table 4 Testing specifications

Case rpm Load Pinjection (Bar)

1 2000 80 % 716

2 2000 100 % 692

3 3000 80 % 814

4 3000 100 % 612

5 3000 - 512

mailto:3.5kW@4400
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Figure 3 Experimental setup

Figure 4 Variations of the piston side thrust force  
(2000 rpm)

Figure 5 Variations of the piston side thrust force  
(3000 rpm)

Figure 6 Variations of the piston velocity (2000 rpm)

Figure 7 Variations of the piston velocity (3000 rpm)

Figure 8 Variations of the piston mobility (2000 rpm)

Figure 9 Variations of the piston mobility (3000 rpm)
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changes its direction at both dead centers. In order 
to visualize the pistons secondary motion during the 
reciprocating motion, the piston secondary motion is 
represented in a graphical form and the piston lateral 
motion and rotating motion are normalized to the piston 
stroke position, based on the reciprocating motion of 
a piston, as shown in Figure 13.

It is evident from the plot that the piston remains 
at the lower boundary cylinder liner for a longer time, 
as compared to the upper boundary of a cylinder wall. 
In addition, the piston is predicted to slide for a crank 
angle of 100 º before the TDC along the cylinder liner 
(Figure 13).

Figure 14 shows the measured vibratory response 
of the cylinder block in the vibration amplitudes, as 
captured by accelerometer. The vibration of the cylinder 
decays after the first impact of the piston on the upper 
boundary of a liner. The vibration is induced once 

simulate the piston velocity for given testing conditions, 
as shown in Figures 6 and 7.

Using Equation (6), the mobility was computed, e as 
seen in Figures 8 and 9.

Similarly, the Mobility of a r cylinder block was 
computed using integration of accelerometer data as 
shown in Figures 10 and ,11.

Using the concept of anti-resonant frequency(ωa), 
as discussed in previous section, various dynamic 
parameters of the liner-piston were computed for the 
given test conditions (Table 4), as seen in Table 5.

During the motion simulation, the bottom dead 
center positions (BDC) was taken as a reference point. 
The initial location of a piston is set at 0 mm as the 
bottom boundary of liner and the upper boundary of 
the cylinder liner is set at 0.5 mm, which is a clearance 
between the skirt and a liner.

As seen from Figure 12, the piston tilting angle 

Figure 10 Variations of the piston mobility (2000 rpm)

Figure 11 Variations of the piston mobility (3000 rpm)

Table 5 Dynamic features of a system

Test case Piston parameter Liner parameter

1

ωa 100 Hz
Cp 109330 (kg/s)

Kp 174 (kg/s2)
mp 174 (kg)

ωa 39 Hz
Cb 42884 (kg/s)
Kb 175 (kg/s2)
mb 175 (kg)

2

ωa 100 Hz
Cp 109330 (kg/s)

Kp 174 (kg/s2)
mp 174 (kg)

ωa 39 Hz
Cb 109330 (kg/s)

Kb 174 (kg/s2)
mb 174 (kg)

3

ωa 158 Hz
Cp 172750 (kg/s)

Kp 174 (kg/s2)
mp 174 (kg)

ωa 63 Hz
Cb 69669 (kg/s)
Kb 175 (kg/s2)
mb 176 (kg)

4

ωa 158 Hz
Cp 109330 (kg/s)

Kp 174 (kg/s2)
mp 174 (kg)

ωa 63 Hz
Cb 109330 (kg/s)

Kb 174 (kg/s2)
mb 174 (kg)

5

ωa 158 Hz
Cp 172750 (kg/s)

Kp 174 (kg/s2)
mp 174 (kg)

ωa 63 Hz
Cb 69669 (kg/s)
Kb 175 (kg/s2)
mb 176 (kg)

Figure 12 Variations of the rotation motion of a skirt (Case 1)
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Figure13 The piston’s secondary motion (Case 1)
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Figure14 Vibration response of the engine block (Case 1)
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Figure 15 Effects of variations of the engine speed on engine block vibrations (2000 rpm)
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force, acting on the piston, results in the piston bouncing 
off the cylinder liner more frequently at higher speeds, 
as seen from Figures 15 and 16.

The induced vibrations of a block also increase 
with engine speed. The sliding duration also falls with 

again when the piston impacts lower cylinder liner. 
The induced vibrations had an amplitude of order of 7 
× 10-3 m. As the engine operating speed increases, the 
piston side thrust force, which is a function of the engine 
rotating speed, increases. An increase in the side thrust 
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Figure 16 Effects of variations of the engine speed on block vibrations (3000 rpm)
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Figure 17 Effects of variations of the engine speed on the secondary motion of a skirt (2000 rpm)
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Figure 18 Effects of variations of the engine speed on the secondary motion of a skirt (3000 rpm)
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Values of the first resonance frequencies of both the 
skirt and a liner were found to be in 100 Hz-160 Hz 
range and it remains unaffected by variations in the 
engine operational conditions. Several peaks were 
found in the simulated block vibrations, which were 
related to impacts of a skirt with liner. The COMSOL-7 
software was then used to analyze the tilting motion 
of a piston, which showed a good match with that 
simulated by solving dynamic equations of motion. 
Effects of load and speed on lateral motion of piston 
skirt were also investigated. The piston skirt was also 
found to slide along a liner a few crank angle degrees 
before the TDC position. This sliding motion was less 
dominant during the power stroke as the bouncing 
motion dominates the dynamic motion of a skirt. The 
duration of sliding motion of a piston along the liner 
was observed to decrease with increase in load and 
speed conditions, which is in agreement with previous 
available literature.

an increase in velocity as shown in Figures 17 and 18. 
This is due to the higher impact force and acceleration 
generated during the piston slap and the reaction 
impact force from a liner acting on the skirt increases. 
At the lower engine speeds, the vibration response of the 
cylinder block induced by the first slap of a piston has 
a longer duration to decay before the second slap occurs. 
However, with the speed increase, the vibration response 
of a block has the shorter duration of decay and response 
from the second slap is combined with the first one.

8  Conclusions

A lumped system model was discussed in the 
present paper. Various dynamic parameters of a system 
were calculated, using the concept of mobility, which 
were later used to simulate the lateral motion of 
a piston, as well as the resulting engine block vibrations. 
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