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The release of metal particles and ions due to wear and corrosion is one of the main
underlying reasons for the long-term complications of implantable metallic implants. The
rather short-term focus of the established in-vitro biocompatibility tests cannot take into
account such effects. Corrosion behavior of metallic implants mostly investigated in in-vitro
body-like environments for long time periods and their coupling with long-term in-vitro
experiments are not practical. Mathematical modeling and modeling the corrosion
mechanisms of metals and alloys is receiving a considerable attention to make
predictions in particular for long term applications by decreasing the required
experimental duration. By using such in-silico approaches, the corrosion conditions for
later stages can be mimicked immediately in in-vitro experiments. For this end, we have
developed a mathematical model for multi-pit corrosion based on Cellular Automata (CA).
The model consists of two sub-models, corrosion initialization and corrosion progression,
each driven by a set of rules. The model takes into account several environmental factors
(pH, temperature, potential difference, etc.), as well as stochastic component, present in
phenomena such as corrosion. The selection of NiTi was based on the risk of Ni release
from the implant surface as it leads to immune reactions. We have also performed
experiments with Nickel Titanium (NiTi) shape memory alloys. The images both from
simulation and experiments can be analyzed using a set of statistical methods, also
investigated in this paper (mean corrosion, standard deviation, entropy etc.). For more
widespread implementation, both simulation model, as well as analysis of output images
are implemented as a web tool. Described methodology could be applied to any metal
provided that the parameters for the model are available. Such tool can help biomedical
researchers to test their new metallic implant systems at different time points with respect
to ion release and corrosion and couple the obtained information directly with in-vitro tests.
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INTRODUCTION

Main metallic biomaterials such as stainless steels, cobalt-
chromium based alloys, medical grade titanium, Ti6Al4V and
nickel-titanium shape memory alloys are well established
biomaterials due to their strength, superior corrosion
resistance and biocompatibility. However, immune reaction to
such metals, particularly in long-term, after nanoparticle
presence due to wear and also corrosion in the highly abrasive
environment of body fluids can create chronic inflammation
related complications. Nickel Titanium shape memory alloys
with their shape memory effect and super elasticity are well
positioned for applications where actuation or shape retention
are critical; however, the presence of Nickel in the alloy raises
concerns about allergic and immunological reactions. This makes
NiTi a good testing bed for corrosion related studies. Controlling
the corrosion mechanisms of NiTi alloys is crucial step for their
wider use in medical field as the risk of uncontrolled Ni ion
leaching from the implant surfaces is an ongoing concern.
Aksakal et al. have analyzed the influence of released ions
from common implant materials in order to characterize their
potential effect on the human body that summarized in Table 1
(Aksakal et al., 2004).

Corrosion resistance is one of the first and foremost required
properties for all implantable materials and the corrosion have
been seen as a problem for thousands of years, long before any
effective preventive methods were discovered. Researchers focus
on controlling the possible reactions between living tissues and
implant material surfaces in order to prevent harmful effects for
enhancing the life span of the implants, reducing the possibility of
revision surgeries due to medical complications (aseptic
loosening, infection, mechanical failure). It is known that all
implantable metal-based materials face an aggressive, corrosive
environment due to the highly corrosive nature of blood and
other constituents of the body fluids that may trigger the
corrosion mechanisms of metal-based implant materials
(Manivasagam et al., 2010).

Corrosion stands for a long-term, natural process caused by
chemical and/or electrochemical reaction of metals with the
environment. Gas or liquid in contact with metal will initiate
oxidation, due to the metal’s tendency to reach chemically more
stable state. Resistance to corrosion differs from metal to metal.
Some metals have high resistance to corrosion, like gold and
platinum, which can be found at their pure state in nature (Eliaz
2019). Some of the metals, like zinc, can be considered as highly
resistant to corrosion due to slow kinetics of the process, meaning
that corrosion happens but very slowly. Aluminum, stainless

steel, and titanium are widely used due to high corrosion
resistance (Ahmad 2006), which comes from passivation.
Passivation refers to spontaneous formation of a very thin
layer at the metal surface, consisting of corrosion products,
that serves as a barrier and protects the metal from further
corrosion. In the context of implantable materials, the
consequences are generally more substantial as the loss of
function of the implant due to corrosion will require an
additional surgery and the release of corrosion products will
have biological effects both in the vicinity of the implant and at
systemic level.

The corrosion process itself is a very complex process which
includes several phenomena and is influenced by many factors. In
general, the corrosion damage should include not only
physicochemical and environmental parameters, but also
different parameters of a stochastic nature (Pidaparti et al., 2008).

In order to be safe for usage and to have a good
biocompatibility, various tests need to be performed on
biomaterials before any clinical trial and application. Although
some expected situations can be used to set up experiments, it is
hard to experimentally predict complete behavior of the
biomaterial, in terms of corrosion process due to its stochastic
nature. This is particularly relevant for the testing of the effects of
the corrosion products on cells in-vitro; as the in-vitro cell culture
timescales are not in line with the corrosion timescales. The
second problem with corrosion experiments is that they last long
and collecting experimental data is time consuming. These are the
reasons why computational modelling is required and desirable
for analysis of corrosion behavior. Computational/in-silico
models reduce greatly time of collecting data and allow us to
include different parameters in calculation. Therefore, in-silico
modelling of corrosion should integrate various influencing
parameters from solid mechanics, surface- and
electrochemistry, materials science, probability and statistics,
and fracture mechanics (Wei and Harlow 2003). Corrosion
quantification should also include not only loss of thickness,
but also morphology of the corroded area. The results obtained in
literature indicate that classification of corrosion pits is possible
with image analysis and may be used for correlating service/
failure conditions based on corrosion morphology (Choi and
Kim, 2005).

Computational modelling of corrosion process can be
conducted at different levels–from macro to micro level. At
the macroscopic scale, modelling of corrosion is focused on
solving differential equations with numerical methods such as
finite element method (FEM), FDM (finite difference methods),
BEM (boundary element methods) etc. (Gunasegaram et al.,

TABLE 1 | Potential adverse reactions caused by releasing of metal ions [for more information on immune reactions, please see (Kämmerling, et al., 2021)].

Materials (ionic and/or inorganic states) Effect of leaching to human body

Nickel Affect skin, pneumonia, chronic sinusitis
Cobalt Anemia B
Chromium Ulcers and central nervous system disturbances
Aluminum Epileptic effects and Alzheimer’s disease
Vanadium Toxicity via induction of excessive reactive oxygen species production
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2014; Macdonald 2011; Thébault, et al., 2012), although these are
basically deterministic (Féron and Macdonald 2006). The
mathematical models of electrochemical reactions in corrosion
are usually regulated using the reaction-diffusion equations. This
kind of model has been widely discussed in a number of
publications (Fonna et al., 2013; Fonna et al., 2016). BEM is a
common choice in the field of numerical methods used for
modelling of corrosion; however, it can only be used to
measure the corrosion at the surface. Since corrosion is
primarily a surface process, this approach saves a lot of
computational time. Previous studies on pitting corrosion with
stochastic method are available, including the probabilistic
models (Yuan et al., 2009), the Markov-based model (Valor,
et al., 2013) and the Monte Carlo approach (Caleyo et al., 2009).
These methods do not include the electrochemical basis of
corrosion, which has been introduced with the stochastic
model called Cellular Automata (CA). CA is a tool commonly
used for modeling non-linear mechanisms such as diffusion of
reactions (Schiff 2011), bio-morphogenesis (Ermentrout and
Edelstein-Keshet 1993), inflammatory response of immune
cells (Ibrahim and Pidaparti 2017). On a smaller scale, these
phenomena usually display stochastic impressions, but as the
scale grows, they tend to show clear trends. CA is commonly used
to model these processes, because of its practicality in execution.
Besides them, there are also some CA versions available for
modelling aircraft pitting corrosion.

The original CA model suggested by Von Neumann is a two-
dimensional square bar, in which each square is called a cell. At
any given moment, each of these cells may be in a different state.
The evolution of each cell and the modification of their internal
states proceed synchronously and are regulated by a series of laws.
Thus, generated cellular space is a complete discrete dynamic
structure. Earlier studies show that CA as a discrete dynamic
system displays many of the features of a continuous dynamic
system, but in return CA offers a simplified structure. This
particular feature of CA makes it the ideal computational
approach to corrosion model development (Aparti et al.,
2005). Pidaparti et al. developed a CA that modeled the rate
of pit spread once initiated, with later addition of interaction
between pits in multi-pit growth (Pidaparti, M; Fang, L and
Palakal, J 2008). Another model by the same group of authors
referred to pitting corrosion as a mixed system that included
coupled deterministic-probabilistic simulations of pit growth
(Ibrahim et al., 2018). These models were mostly two-
dimensional, and did not include the growth in depth (third
dimension). Li et al. (Li, et al., 2009) and Di Caprio et al. (Di
Caprio, et al., 2011) proposed two-and three-dimensional pit
cavity growth models. Their models were based on full CA
stochastics laws. Sometimes, described models are coupled
with artificial intelligence methods to further predict
corrosion. Specifically, CA based simulation of corrosion pit
initiation and growth, wavelet-based imaging methods for
corrosion risk estimation, and artificial neural networks
(ANNs) for material failure and residual strength predictions
were described in (Pidaparti 2007). While ANNs do not include
any empiric, deterministic or physical features of the localized
corrosion mechanism, they can be used to forecast future

progress as a function of different parameters (Pidaparti et al.,
2005).

In order to characterize corrosion damage growth qualitatively
and quantitatively, image analysis had to be performed. Some
papers discussed the concept of creating textural/color features
that are resilient to corrosion images, using a low-tech method
that uses a commercial color scanner (Pidaparti, Hinderliter and
Maskey 2013; Medeiros, et al., 2010). An investigation of the
textural characteristics of wavelet transformations and color
features was performed to define the corrosion damage
metrics during corrosion growth under three different
electrolyte solutions (Pidaparti et al., 2013). In order to
explain corrosion development in time (Pidaparti et al., 2013),
the strategy by Pidaparti et al. was to combine functionality
mitigation properties due to material compromise (textural
features) with local aspects (color values). Kapsalas et al.
(Kapsalas et al., 2007) suggested a system for detecting
corrosion size and topology in stonework surfaces by checking
and analyzing image segmentation schemes. They also
demonstrated that their analyses were in strong alignment
with assessments focused on chemical analyzes carried out on
the same surfaces. Choi et al. (Choi and Kim 2005) analyzed
surface corrosion damage using optical image processing
techniques. Model interpretation was based on co-occurrence
matrix, and multidimensional scaling method, used to define
images by three types of color, texture, and form elements. Wang
et al. (Wang and Song 2004) used wavelet packet decomposition
energy of images in various wavelet sub-bands as a feature to
analyze the atmospheric corrosion activity of zinc samples. They
also acquired a relationship between the chosen image features
and the corrosion weight loss. Tao et al. (Tao, et al., 2008)
analyzed atmospheric corrosion of field exposure to high
strength aluminum alloys. They used wavelet-packed
decomposition energies with various sub-bands to measure the
corrosion loss of five types of aluminum alloys. On the basis of
wavelet transforms and fractals, the corrosion morphology of
nickel-aluminum-bronze metal was analyzed under various
corrosion and stress conditions by Pidaparti (Pidaparti, et al.,
2010). Another work by the same author, suggested the usage of
histogram features including mean, standard deviation, skew,
energy, and entropy for the analysis of corrosion images (R.
Pidaparti 2007). In the context of biomaterials, particularly the
use of metals, the image acquisition method of choice is Light and
Scanning Electron Microscopy. This is primarily due to the fact
that the microscopic features of the implant surfaces, even the
nanoscale features such as nanotubes, have a direct effect on the
functionality of the implant. Thus, an in-silicomodel of corrosion
in the biomaterial context should be able to use such images.

In addition to numerous deterministic and empiric
approaches that can be found the literature, there is still a
need to develop numerical models that can predict the
corrosion growth morphology, as well as influence of variety
of environmental parameters. The literature review showed us
that there is no simulation of the corrosion that includes all of the
phenomena. We consider that it is important to put a focus on an
important correlation between microscopic and macroscopic
approaches, which can be achieved using CA. A significant
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contribution of this type of method represents the integration of
chemical and electrochemical aspects in the evolution of
morphological aspects (Zenkri, et al., 2017). This will also
enable to predict the outcome of the corrosion process and
link it with in-vitro tests. This paper first introduces the
experimental procedure for corrosion tracking, then
implements the in-silico simulations of corrosion initialization
and progress, followed by the investigation of the influence of
different environmental parameters, using experimental results
from a NiTi alloy as an example.

MATERIALS AND METHODS

Experiments
Over the past decade, many aspects of corrosion mechanism have
been studied and remained controversial in order to offer detailed
understanding on in vivo and in vitro studies. Generally, the
corrosion behavior of metallic materials has been investigated in
body-like mediums including phosphate buffer solution (PBS),
simulated body solutions, Hank’s solution, NaCl solution, Ringer
solution and artificial saliva at specific pH values in order to
mimic the human body condition.

The potentiodynamic tests were utilized in order to test the
corrosion resistance of NiTi shape memory alloys at different
parameters. Prior to testing, the cleaning process of NiTi samples
was carried out using the ultrasonic bath with acetone, ethanol and
deionized water, respectively. Electrochemical measurements were
obtained utilizing a Gamry Potentiostat/Galvanostat (model 1,000
Interface) to determine the corrosion resistance of the samples in a
simulated body fluid (SBF) to simulate the body environment.
During the experiment, NiTi samples were placed in a Teflon
sample holder and exposed to the electrolyte solution. A
conventional three-electrode electrochemical cell was used. NiTi
wires were used as the working electrode while a platinum wire was
used as the counter electrode and a saturated calomel electrode was
used as the reference electrode. Simulated Body Fluid was utilized as
the electrolyte with pH 7.4 at body temperature. Potentiodynamic
scans were performed with scan range from −0.6 to 0.3 V with a
scanning speed of 10mV/s. SBF solution was prepared according to
a procedure described by Kakubo (Kokubo and Takadama, 2006).
All reagents were dissolved one by one as given inTable 2 in order to
prepare 1 L solution.

Electrochemical corrosion measurements were carried out at
body temperature, 37°C. First test was to measure the open

corrosion potential for 10 min, followed by a potentiodynamic
experiment. During the experiments, a conventional three-
electrode electrochemical cell was used. NiTi samples were
placed in a Teflon sample holder on which a 10 × 10 mm area
was exposed to the electrolyte solution. SBF was used as the
electrolyte in 100 ml solution volume. In order to take the steps
towards the validation of the corrosion modelling studies,
different parameters were obtained in corrosion experiments.
One set of tests were utilized with pH at 7.4 and 9 and the other
sets were obtained at room temperature and body temperature. A
number of publications proposing different types of
environments can be found in the literature while a couple of
studies have been published by Figueira et al. (2009) that relies on
the effect of pH. In their study, the range of selected pH values
were between pH 3 to 10 to simulate the condition that could be
resulted in possible inflammatory and allergenic reaction in the
human body since pH is one of the most important parameters
that alter the corrosion mechanisms. In the present study, we aim
to investigate the corrosion behavior of NiTi materials by using
potentiodynamic polarization method for different
environmental conditions. All experimental efforts were
conducted in simulated body fluid (SBF) with pH 7.4 and 9
while other modeling parameters were selected in order to have
comprehensive investigation. The range between pH 7 to 10 was
utilized to simulate the case of prolonging duration of stay under
the harsh conditions in particular for long term implantation
since this case may be resulting in the ion release from the implant
surface.

Optical microscope analyses were utilized for providing the
observational image-based understanding for developing
simulation model. A microscope attached to the camera was
employed at different magnifications of 20x and 50x for all
samples.

In-Silico Modelling of the Corrosion
In-silico corrosion model was developed on the basis of the
Cellular Automata. The evolution of each cell in CA happens
through a sequence of synchronous updates of all cells, which are
regulated by a set of functions (rules). The computational
modelling of multi-pit corrosion in medical implants based on
cellular automata is divided into two sub-models–corrosion
initialization and corrosion progress models. The state of each
cell has been represented by a predefined interval in the range of
0–255, where uncorroded cell has the value of 0 and totally
corroded cell the value of 255. This means that the corrosion
result is represented with an image of the material surface, where
certain rules were prescribed to follow the cells where the
corrosion has been initialized and will progress in time
(Figure 1). The image used to model the corrosion of the
material was 200 × 200 pixels, while the user can change the
number of time steps (number of time steps is the input
parameter of the simulation).

As mentioned above, we represent a material of interest as
two-dimensional square lattice in which each square is called a
cell. In our case each cell would be a pixel in image. Each of these
cells can be in a different state (different pixel value) at any given
time. The evolution of each cell and the updating of the internal

TABLE 2 | Reagents for SBF.

Reagent Amount/l

NaCl 7.996 g
NaHCO3 0.350 g
KCl 0.224 g
K2HPO4.3H2O 0.228 g
MgCl2.6H2O 0.305 g
1M HCl 40 ml
CaCl2 0.278 g
Na2SO4 0.071 g
(CH2OH)3CNH2 6.057 g
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states of each cell occur synchronously and governed by a defined
set of equations. At the beginning of the simulation (t � 0), we
assume there is no corrosion of the material, meaning the first
step is the black image, meaning all the states of the pixels are 0.
After that, corrosion initialization has been started, each cell x is
associated with an initial potential state I(u, t):

I(u, t) � I(u, t − 1) + α (1)

where α is an increment of the pixel value (state potential). For
each uncorroded cell u, we set initialization potential state
according to the Von Neumann neighborhood algorithm in
the form I(u, t) + ∑ I(u + δi, t), i � 1, 2, 3, 4. The parameter
δi represents the Von Neumann neighborhood (up, down, left,
right). If that sum divided by 3 becomes larger than a certain
threshold, then a corrosion has been initialized at cell u and the
corrosion state S(u, t) (pixel value) of that cell is set to a small
positive number. For the following time steps, corrosion
initialization sub-model is applied on all the other uncorroded
cells again, and at the same time corrosion progress sub-model is
applied on the cells where corrosion has been initialized using the
equation:

S(t + 1, x) � S(t, x) + k1 f [S(t, x)] + k2 ∑
i

f [S(t, x + ci)]

+ k3 ∑
j

[S(t, x + dj)] + k4Δ (2)

where ci � (0,−1), (1, 0), (0, 1), (−1, 0), dj � (1,1),(1,−1),(−1,−1),
(−1,1) for i� 1,2,3,4 and j� 1,2,3,4. This means that we
implemented the Moore neighborhood to describe the
influence of the surrounding cells to the cell of interest
(Figure 2). In this case ci represent the cells down, up, right,
and left from the cell of interest, while dj represents the cells

diagonally up-right, up-left, down-left, and down-right from the
cell of interest (Figure 2).

Function f is in the form f (x) � 1282 − (x − 128)2 or after
rearrangement f (x) � −x2 + 256 · x. This shows that the
effectiveness functions are not uniform, but should be the
same for symmetric neighbors. The shape of function f (x) is a
parabola, due to the fact that the cell changes from uncorroded to
partially corroded and finally to fully corroded (0–255), while the
activity of the chemical reaction increases from zero up to some
point then falls back down to zero. In order to account for
stochastic effects in corrosion, Δ factor is added as a standard
random variable with mean 0 and variance 1.

Based on the review of the literature (Macdonald and Urquidi-
Macdonald 1992; Pidaparti et al., 2008), coefficients k can be
expressed in terms of the chemical parameters that affect the
corrosion growth. We adopt the parameters influencing
corrosion suggested by (Pidaparti et al., 2004) and derived
based on experiments from (Macdonald and Urquidi-
Macdonald 1992). Coefficient k1 is described as part of the
continuous mathematical model used to find out which
parameters affect the pitting process and how they affect the
growth rate:

k1 � λ · (pH − 7)2 · step(4, 8.5) · eφM−φS · (1/T) · C · D · z (3)

where λ is a discount factor that ranges from 1 to 3; pH is the pH
value of the solution; step (4, 8.5) is a function with value 0 in the
range of 4 and 8.5, and 1 otherwise; φM and φS are the potentials
of the metal and solution, respectively; T is the absolute
temperature; C is the concentration of the reaction species; D
is the diffusivity of the reaction species; z is the charge of the
reaction species. The form of parameters k2, k3, and k4 is similar
to the k1, differencing only in a discount factor. Discount factor

FIGURE 1 | Flowchart of the corrosion modelling.
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has the meaning of the influence of the neighboring cells - the
farther the cells are from the cell of interest, the less effective role
the neighbors take in the corrosion of that cell and therefore
discount factor is smaller.

Pseudocode for the program is as following:

In-silicomodel is implemented inMatlab 2017a, due to the fact
that matrices and arrays are the fundamental representation of
information and data inMatlab. Although the proposed model by
definition uses sequential updating of the rules for each cell
(pixel), Cellular Automata models are suitable to be effectively
and naturally implemented on parallel computers achieving high
performance. The model was developed and tested on a computer
with processing hardware of 8GB of RAM, a GPU Nvidia
GeForce GTX960M, and an Intel (R) Core (TM) i7-6700HQ
CPU at 2.60 GHz. At this point, running our model and obtaining

the results on such computer lasts for less than 1 min, therefore
parallelization is not necessary at the moment, but can be
achieved in the future.

As can be seen we take into account different environmental
factors in order to describe their effect on the corrosion. We will
further analyze the influence of different environmental factors
on corrosion. These factors, which represent the inputs to the
simulation of the corrosion with corresponding ranges are given
in Table 3.

It should be noted that proposed ranges ensure the stability of
the model and are derived based on review of the literature. The
series of values used in these papers are derived from
experimental data obtained from Center for Materials
Diagnostics at the University of Dayton Research Institute
(Pidaparti et al., 2005). However, these ranges are only
proposed for the platform integration and model itself is not
limited to testing with only these ranges.

In order to relate physical time versus time step, a methodology
presented in (Di Caprio et al., 2016) will be employed. That means
that space and time equivalence for our pixel size and simulation
time step need to be defined in terms of real dimensions. In this
study, surface of 0.2 × 0.2 mm relates to 200 × 200 pixels image,
while the time scale for the investigated experimental corrosionwas
4 days, upon which the whole area was corroded, meaning that the
corrosion rate determined in experiment was approximately
20 mm/year. Taking into account neutral environment
conditions, pH � 7 at room temperature case for NiTi, the
corrosion rate is 774 mil/year (1 mils � 0.0254mm). If we
consider that 200 × 200 pixels image stands for 0.2 × 0.2 mm
experimental sample, the length of one pixel is 0.001 mm � 1 µm
(physical area size of one pixel is 1 µm x 1 µm). The corrosion in
experiment is complete in 4 days and with simulation in 100 time
steps (in the figures time � 20 time steps) so in that case one time
step is 57.6 min. Taking into account obtained value of one time
step, the values presented in the figures–time � 1, 2, 3, 4, and 5
corresponds to 19.2, 38.4, 57.6, 76.8, and 96 h, respectively. The
same methodology can be applied for any type of surface and
material in order to establish the connection between the physical
time and time step, which simplifies further discussion.

Image Analysis of the Corrosion Process
Output of the simulation of the corrosion model are given in the
form of images for every time step. In order to quantitatively
describe the outputs, the second part of the proposed
methodology includes the analysis of in-silico obtained
corrosion images. Besides that, the user can upload
experimentally obtained corrosion images to our web
platform, described in Supplementary Materials. After this,
the calculation software can be used to compare the results
obtained experimentally and from simulations.

Upon finishing the simulation, we use resulting images to
quantitatively estimate the corrosion progression over time by
calculating the following statistical measures (Table 4). These
measures are calculated using image processing techniques and
are all based on pixel intensities and image histogram
probabilities. More detailed explanation of how each measure
is calculated in image processing is given in Table 4.

FIGURE 2 | Area of image denoting Moore’s neighborhood.
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The importance of these measures lies in the fact that image
analysis has been used to characterize corrosion morphology in
materials subjected to a variety of environmental conditions (Choi
and Kim 2005). For this purpose, we have used several image
analysis methods for characterizing the corrosion surface
morphology–primarily wavelet transformation and then energy,
entropy calculations. In order to bring the research closer to the
end-users, a user-friendly web platform that follows the workflow
of two main sections (corrosion model and corrosion experiment)
was added to this study. This is given in SupplementaryMaterials.
Sequence diagrams (Supplementary Figure S1), as well as User
interface for in silico simulations (Supplementary Figure S2) and
analysis of Experimental images (Supplementary Figure S3) are
given. Related to discussion of results, Supplementary Figure S4,
S5 discuss the format of obtained results for the user.

RESULTS AND DISCUSSION

Simulation Results
The results of the corrosion simulation are displayed in the form
of images and analysis of the resulted images (described statistical
measures) that describe the corrosion in time. Figure 3 shows
the corrosion states at six different time steps. Black pixels
indicate uncorroded cells and white indicate fully corroded
cells. Adopted values for parameters used in this simulation

are pH � 7.4; φM � 0.23V , φS � 0.2V , T � 310.15K , C � 0.2,
C � 0.2M/dm3, D � 0.3m2/s, z � 0.2 Faraday.

In Table 5, we present the example of numerical results from
corrosion simulation model. Zero state is always the starting
point (no corrosion has been initialized; therefore, all the values
are initialized–zero, NaN or 1). In each time step, values for all
statistical metrics are calculated. It should be emphasized that
platform displays images and calculates statistical measures for
every t � 20pn time steps to ensure the corrosion progress is
visible.

In such a way, several metrics can be tracked and results from
simulation and experiments can be compared. Besides that, the
influence of each parameter in the simulation can be investigated
in order to optimize the conditions and extend the time for
corrosion (prolong the process of corrosion).

In that sense we have performed a thorough investigation of
the influence of all the environmental factors included in the
model. Here we present mainly the results related to mean
corrosion parameter and entropy when variations of different
environmental factors–pH, potential difference, temperature,
concentration of the reaction species, diffusivity of the reaction
species and charge of the reaction species. Of the various features
considered, in literature it was found that entropy showed
significance with various parameters in the corrosion damage
process (Pidaparti et al., 2005). It was shown that entropy can be
used as an indicator of the corrosion material loss. Pidaparti et al.

TABLE 3 | Inputs for the corrosion model.

Name of
the parameter

Label Explanation Unit Range Default
value

pH value pH pH value of the solution — 7–10 7.4
Potential of the metal φM change in a corrosion system of the metal V 0.1–1 0.23
Potential of the solution φS change in a corrosion system of the solution V 0.1–1 0.2
Absolute temperature T Absolute temperature of the environment K 297.15–313.15

(24–40°C)
310.15

Concentration of the reaction
species

C Concentration of one of the species participating in a corrosion reaction M/dm3 0.1–0.5 0.2

Diffusivity of the reaction
species

D The rate of diffusion-controlled corrosion of reaction species dm2/s 0.1–0.5 0.3

Charge of the reaction species z Charge resulting from the reaction of species Faraday 0.1–0.5 0.2
Time of simulation t Number of time steps to run the simulation (number must be divisible by 20, as

every 20 steps are plotted)
— 1,000 100

TABLE 4 | Investigated statistical measure for estimation of corrosion progress.

Name of the measure Explanation

Mean corrosion average grey value of the grayscale’s image histogram probability
Standard deviation describes the spread of the data set and is related to image contrast
Skew asymmetry about the mean value in the distribution
Percentage of corroded material sum of the corroded pixels (all non-zero values) divided by number of pixels and multiplied by 100
Kurtosis determines whether the data are peaked or flat relative to a normal distribution
Energy indicates how the pixel intensities are distributed in the region under consideration. In the case of corrosion image, this

feature indicates the degree of corrosion at the pit level
Entropy indicates the number of bits we need to code the image data
Power indicates the texture property in an image and in this case, the level of corrosion itself. The higher the power value, the texture

change will be higher as well
Contrast difference between maximum and minimum pixel intensity in an image
Wavelet features calculated through the processes of singular values decomposition (SVD); only the first two eigenvalues are reported
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claim that the energy and entropy features correlate well with
experimental data as compared to other statistical features
(Pidaparti et al., 2005). From the definitions of entropy, it can
be concluded that the wavelet entropy is minimum when the
image represents an ordered activity characterized by a narrow
frequency distribution, whereas the entropy is high when an
image contains a broad spectrum of frequency distribution.

Firstly, we have investigated the influence of pH value which is
varied in the range of 7.4–10, with an increment of 0.2. From all
the calculatedmetrics we have foundmean corrosion and entropy
to be the most illustrative to discuss. Figure 4 shows these metrics
for the variation of pH.

The results show that the increase in pH value in the range of
7–10, increases the slope of faster corrosion, and for example for
the step 5, high mean corrosion has already been achieved with
pH � 7.6. The greater the pH value, the greater the mean
corrosion is, also confirmed by experiments in this study
presented in Experimental Results (Table 6). As expected, the
greater corrosion is achieved at later steps. The results for entropy
are very interesting, since after certain threshold, the entropy
reduces and converges after the value of pH � 8.8–9, which also
corresponds to the fixed value of mean corrosion. The results are
also in accordance with (Capoşi et al., 2011) that showed that with
the increase of pH value, the corrosion increases, after which in
becomes stable.

Secondly, we have investigated the influence of potential
difference φM − φs which was varied in the range of 0.1–1 V,
with a step of 0.1 V. It was not necessary to investigate a separate
influence of each parameter, as only the potential difference φM −
φs is present in the governing equations for corrosion. Mean
corrosion and entropy for the variation of this parameter is
presented in Figure 5.

The results show that with the increase in difference φM − φs
in the range of 0.1–1, we can notice slow increases of the
mean corrosion, which is in accordance with (Trépanier and
Pelton 2006) and (Ahmad 2006). The explanation for such
trend change is that higher potential difference increases both
the chemical reaction rate and the mass transport rate, which
in turn increases the corrosion rate. The slopes are less steep
than during the variation of pH value. The results for entropy
show the same conclusion, as the values for entropy are
tending to be constant, indicating that this range difference
φM − φs does not have as much influence on the corrosion as
pH value does.

Thirdly, we have investigated the influence of temperature T,
which is varied in the range of 297.15–313.15 K, with a step of
2 K. Mean corrosion and entropy for the variation of this
parameter is presented in Figure 6.

FIGURE 3 | Corrosion state S(u, t) at time steps t � 0,1, 2, 3, 4,5. Taking
into account the experimental work in this paper, the time steps 1,2,3,4 and 5
correspond to 19.2, 38.4, 57.6, 76.8 and 96 h, respectively.

TABLE 5 | Example of results based on analysis of images.

Steps

0 n = 1 n = 2 n = 3 n = 4 n = 5

Mean 0 0 2.397425 3.473625 5.044675 6.902025
Standard deviation 0 0 2.379,689 2.968312 3.784652 5.154516
Skew NaN NaN 0.071398 −0.21147 −0.45735 −0.47701
Corroded area (%) 0 0 51.4875 59.2 65.48 65.48
Kurtosis NaN NaN 1.173598 1.2381 1.454129 1.468136
Energy 1 1 0.339813 0.274002 0.222435 0.202722
Entropy 0 0 1.772208 2.099116 2.420434 2.635617
Power 0 0 1.83E+10 3.34E+10 6.36E+10 1.19E+11
Contrast 0 0 0 0 0 0
wavelet features (S1,S2) 0 0 1.899763 2.755,384 4.005375 5.483206

0 0 0.394938 0.501356 0.622364 0.802802
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The results are evenmore interesting for temperature, as it was
shown that the investigated range of 297.15–313.15 K, which is
equivalent of 24–40°C do not influence the corrosion almost at all.
As the temperature increases, for each step, there is even also a
slight decrease in highest value of mean corrosion. Investigation

FIGURE 4 | Results for mean corrosion (left) and entropy (right) when pH value is varied.

TABLE 6 | Potentiodynamic polarization results of samples for pH conditions.

pH value Corrosion rate (mpy) Error

7.4 774.2 0.4
9.0 947.8 0.2

FIGURE 5 | Results for mean corrosion (left) and entropy (right) when φM − φs is varied.

FIGURE 6 | Results for mean corrosion (left) and entropy (right) when temperature T is varied.
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of the entropy leads to the same conclusion. These results are in
line with the experimental studies from literature, such as
(Ahmad 2006). Their studies have shown that the effect of
temperature on corrosion rate is minimal at low temperatures
i.e. body to room temperature. Itn literature it was also shown
that there is no major effect on corrosion in the investigated
ranges (Trépanier and Pelton 2006). The same conclusions are
met in the 3.2. experimental section of this study.

Fourth, we have investigated the influence of concentration of
the reaction species C, which is varied in the range of 0.1–0.5, with
a step of 0.1. Mean corrosion and entropy for the variation of this
parameter is presented in Figure 7.

The influence of concentration of the reaction species C are
similar to the results performed during investigation of the
influence of pH value, but with a higher impact than pH had.
As an example, consider that the mean corrosion converges
towards maximal value of 160 M/dm−3 even for the smaller
ranges (0.1–0.5) of this parameter, compared to same range
change of pH value (7–7.5) when maximal mean corrosion
achieves value of only 80. Similar can be concluded when
analyzing entropy. A decrease in entropy is achieved faster
with variation of C, than with pH, considering the same
ranges of change of their units. Again, the same conclusion is
met in (Trépanier and Pelton 2006), since with the increase in
concentration species, both the mass transport rate and the
chemical reaction rate are going to be influenced.

Fifth, we have investigated the influence of diffusivity of the
reaction species D, which is varied in the range of 0.1–0.5, with a
step of 0.1. Mean corrosion and entropy for the variation of this
parameter is presented in Figure 8.

The diffusivity of the reaction species D tends to have the effect
similar as the reaction species C, however with a smaller impact,
as slopes are not steep and maximal values are less during
variation of this parameter. The trend is similar compared to
the variation of the reaction species C, but the effects on level of
corrosion are smaller.

Sixth, we have investigated the influence of charge of the
reaction species z, which is varied in the range of 0.1–0.5, with a
step of 0.1. Mean corrosion and entropy for the variation of this
parameter are presented in Figure 9.

The charge of the reaction species z has almost the same effect
on the mean corrosion as the reaction species C, indicating high
level of influence, e.g. very high level of corrosion is achieved with
small increase of parameter reaction species z.

Experimental Results
Corrosion experiments were performed in SBF solution with
different temperature and pH parameters. The first test was
performed with two different pH value as explained in Table 6.
The corrosion current density (Icorr), the corrosion potential (Ecorr)
and corrosion rates were found by using the Tafel fit method
(Mansfeld 1976). All corrosion measurements were performed in

FIGURE 7 | Results for mean corrosion (left) and entropy (right) when concentration of the reaction species C is varied.

FIGURE 8 | Results for mean corrosion (left) and entropy (right) when diffusivity of the reaction species D is varied.
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duplicates. The results showed that the corrosion resistance
performance degraded with the increased pH value of the
solution (Figure 10). On the other hand, Table 7 shows the test
results that obtained at room temperature and body temperature
for constant pH value, 7.4. It was found that there is no significant
difference found for different temperatures, which is in accordance
with the simulation results as well, thus these measurements agreed
with the simulation results that were given in the previous sections
(Figure 11).

Comparison Between the Simulation and
Experimental Results
Numerical simulation results in terms of corrosion investigation
are difficult to confirm experimentally since it requires the use of
specialized equipment. The potential difference, concentration of
the reaction species, diffusivity of the reaction species, charge of
the reaction species changes throughout the corrosion process
were not monitored due to the nature of the electro-chemical
process. Also, large number of experiments regarding variations
of pH and temperature are time consuming to perform. In such
circumstances, our simulation findings should be useful in better
understanding the spatial influence of various factors on the
material surface.

To validate simulation model with the experimental data, to
the certain extent possible, we extracted same features from both
the corrosion simulation images and experimental images, and
then performed a feature analysis to compare the results. We have
investigated the analysis of several metrics, used to assess the
corrosion in numerical simulations, also for experimentally
available images. To illustrate the calculation for the same
metrics for the images coming from experiments, we are
presenting here the results for 12 images only as shown in
Figure 12. All images were taken by optical microscope. Mean

corrosion and entropy for experimental images are presented are
Figure 11. Results for all the rest images were similar, meaning
the same conclusions can be drawn.

The investigation results of a mean corrosion and entropy for
one set of experimental images show that the images taken at
different positions of the same corroded wire do not change
much. Although the data look linear, the attention should be
paid to the value of slope coefficient, as it is close to 0, showing
that actually the data are more of a constant, which in return
means that the methodology for calculating mean corrosion
and entropy is adequate in the analysis of images. Theoretically,
the data for one experiment should show uniform values around
constant line, however, due to the variations of surfaces, conditions,
angle of imaging etc., there is some scatter (Pidaparti et al.,
2005).

As the values for environmental factors (pH, potential
difference, temperature, concentration of the reaction species,
diffusivity of the reaction species and charge of the reaction
species) in the experiment were not all available, it was not
possible to completely compare the experiment and
simulations. However, the values for mean corrosion and
entropy show the same order of magnitude is achieved in
simulations and experiments, indicating that the methodology
used in simulations is adequate.

Moreover, review of the literature regarding comparison of the
numerical results with other experiments in the literature showed
good comparison of proposed methodology with both numerical
simulation of other authors, as well as their experimental work.
Pidaparti et al. (Pidaparti et al., 2010) showed that the material loss
curve has the same trend as mean corrosion in our paper.
Additionally, (Pidaparti et al., 2005), showed that in both
corrosion simulations and experiments entropy feature follows the
trend of increase up to a certain number of simulations and then
decreases after that. This finding is the same as in our paper, with the
same order of magnitude and maximal value of approximately 7. In
contrast, they also showed that extent of corrosion has the trend of
sigmoidal function with steepness coefficient larger than 1, meaning
that it increases up to certain number of cycles, by which time the
whole surface is completely corroded. The same trend and curve
shape is observed in our research.

Additional review of the literature has shown that pH change
over time in experiments has the influence on corrosion in such a

FIGURE 9 | Results for mean corrosion (left) and entropy (right) when charge of the reaction species z is varied.

TABLE 7 | Potentiodynamic polarization results of samples at different
temperature (pH: 7.4).

Temperature (°C) Corrosion rate (mpy) Error

Room temperature 774.2 0.4
Body temperature 784.9 0.1
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way that higher pH value affects faster corrosion in time. This is
also shown by our experiments visible in Table 6. Factor of pH is
important in the corrosion resistance of material because
hydrogen ions can interact with a material and modify the
surface which can affect it’s corrosion resistance (Trépanier
and Pelton 2006). The influence of pH in simulations is
discussed regarding Figure 4 showing that the greater
corrosion is achieved over time. The results for entropy show
that after certain threshold, the entropy reduces and converges
after the value of pH � 8.8–9, which also corresponds to the fixed
value of mean corrosion. This is in correspondence with the
findings from (Capoşi et al., 2011) showing that the corrosion rate
is higher for the first hours of immersion and after several days
the values become stationary. Temperature effects on corrosion
have shown both in literature and simulations that there is no
major effect on corrosion in the investigated ranges (Trépanier
and Pelton 2006).

Since not many papers use the metrics such as entropy and
energy, we have compared the results from our simulation with
results from (Pidaparti et al., 2005). The comparison is shown in
Figure 13. It can be seen that for the given values of environmental
factors pH, potential, temperature and concentration of reaction
species, there is a good match between the literature experimental
findings and simulation from our study. Some small differences
can be explained by the fact that not all environmental parameters
were given in the referenced paper.

CONCLUSION

Proper prediction of the corrosion process is very important
when it comes to metallic implants. The body environment is
aggressive to metallic biomaterials and can cause corrosion by
several different mechanisms. Corroded implants can release into

FIGURE 11 | Results for mean corrosion (left) and entropy (right) for experimental images.

FIGURE 10 | Potentiodynamic polarization measurements of NiTi samples.
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the body species that are allergenic, inflammation inducing, toxic
or carcinogenic. Also, developed corrosion process can lead to the
mechanical implant failure. The corrosion of the implant affects
biocompatibility of the used material. Thus, from the
biocompatibility aspect it is desirable to avoid corrosion
process as much as possible. Because of these reasons testing
of the implants for corrosion process is required.

Even though experimental testing on the biomaterials for
corrosion are performed, it is hard to experimentally predict
all the situations that can occur in the body. The reasons for
incomplete experimental testing are stochastic nature of

corrosion process, the need for long-term data collection and
different responses of different patients to the same biomaterials.

A great easing of experimental burden in definition of
corrosion process can be achieved by computational
modelling. There are several advantages of creating
computational models. Usage of computers and numerical
methods to simulate the process of corrosion will yield to
much faster response and collecting of the data in comparison
to the corresponding experiments. The computational/in-silico
models can be easily modified to include more input parameters
including disturbance parameters. Finally, in-silico models for

FIGURE 13 | Comparison of simulation results with experimental results from literature.

FIGURE 12 | Sets of optical microscope images with 50x magnification.
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predicting corrosion process of biomaterials can be beneficial in
terms of safety, since number of experiments can be reduced and
replaced with numerical simulations (virtual experiments). Even
though number of experiments can be greatly reduced with usage
of computational models, certain number of experiments has to
be performed in order to validate developed computational
models.

In this paper the problem of corrosion initialization and
progress has been investigated from an in-silico point of view
using cellular automata model. A discrete dynamic model is
implemented to simulate the mechanism of corrosion
initialization and its further progress, using the rules that
involve electrochemical reactions. Besides, a thorough
investigation has been performed to determine which
parameters influence the corrosion progress mechanism. The
major conclusions of presented in-silicomodel are–1) increase of
pH leads to increase of corrosion, 2) higher potential difference
increases both the chemical reaction rate and the mass transport
rate, which in turn increases the corrosion rate, 3) ambient
temperature range around 24–40°C does not influence the
corrosion almost at all, and 4) very high level of corrosion is
achieved with small increase of parameter reaction species.

Preliminary results from in-silico models show that the
developed model accurately captures the corrosion progress
development in response to changes of different
environmental parameters.

The main limitation of the study is that it was not possible to
completely validate the in-silico model, due to large number of
factors influencing the corrosion and experimental investigations
are extremely difficult to perform since it requires the use of
specialized equipment. Additionally, there is the scatter in the
experimental data due to various parameters affecting the
corrosion damage process and it was not possible to determine
all the values of parameters in experiments. However, preliminary
steps taken towards complete validation include comparison of
features extracted from the simulation images with images from
experiments and comparison with literature. Results from
simulations have shown a good match with the features from
experiments and literature, and therefore after additional
validation, this model can support the prediction of long-term
corrosion.

In order to ease all future investigations of the influence of
different parameters, as well as to compare experiments with

simulations, a platform with the online model was created.
That platform already proved itself to be a very useful online
tool for model testing in a sense of easiness of environment
factors optimization with a goal to postpone the material
corrosion.
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