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For a long time, animal models were used to mimic human biology and diseases.
However, animal models are not an ideal solution due to numerous interspecies
differences between humans and animals. New technologies, such as human-induced
pluripotent stem cells and three-dimensional (3D) cultures such as organoids, represent
promising solutions for replacing, refining, and reducing animal models. The capacity
of organoids to differentiate, self-organize, and form specific, complex, biologically
suitable structures makes them excellent in vitro models of development and disease
pathogenesis, as well as drug-screening platforms. Despite significant potential health
advantages, further studies and considerable nuances are necessary before their clinical
use. This article summarizes the definition of embryoids, gastruloids, and organoids
and clarifies their appliance as models for early development, diseases, environmental
pollution, drug screening, and bioinformatics.
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BIOINFORMATICS

Various bioinformatics and computational biology analyses are used to evaluate disease model
accuracy (Bock et al., 2020; Gendoo, 2020). Different omic profiling technologies are used
to discover molecular and functional alterations in organoids (Figure 1). Transcriptomics
copy number and structural variation changes (whole-genome sequencing—WGS, whole-exome
sequencing—WES), proteomics (protein expression changes), epigenomics, (toxico) genomics, and
metabolomics (enrichment of biological pathways) are applied to comprehend or to predict toxicity
(Stojkovic et al., 2021b). However, bioinformatics tools are used to analyze omics data (Wu et al.,
2018; Mincarelli et al., 2018; Brazovskaja et al., 2019; Bock et al., 2020; Gendoo, 2020; Zink et al.,
2020; Figure 1). To elucidate the exact mechanism and understand how various types of pollution
particles influence gene changes and signaling pathways in organoids, a reliable method to estimate
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the activity within pathways is necessary. By estimating the
level of activity of stimulus-response sub-pathways (signaling
circuits) within signaling pathways, which ultimately trigger
cell responses, we can investigate interactions between various
environmental and intracellular pollutions to explore the
mechanism and origination of human disease, but also prediction
of clinical outcomes (Hidalgo et al., 2017; Peña-Chilet et al., 2019;
Bojic et al., 2020; Zeng et al., 2021; Wu et al., 2018). A platform
like HiPathia (Bojic et al., 2020), with vast computational data,
enables insight into modeling of various diseases (Figure 1).
Results obtained in such a manner may serve as a competent tool
for further clinical trials (Hidalgo et al., 2017; Bojic et al., 2020;
Falco et al., 2020). HiPathia enabled an examination of the effect
of carboxyl-modified fluorescent nanosized plastic (polystyrene)
items on gene alterations and signaling pathways as reported by
Bojic et al. (2020). Moreover, HiPathia pointed to several altered
circuits, such as the peroxisome proliferator-activated receptor
pathway that has a crucial role in lipid metabolism, but also
prediction of the clinical outcome which included the APOC3
circuit, which induces hyperalphalipoproteinemia, thus raising
the risk of ischemic cardiovascular disease (Bojic et al., 2020).

Abbreviations: ACE-2, angiotensin-converting enzyme 2; AEC, alveolar
epithelial cell; AgNps, silver nanoparticles; AgO, silver oxide; AO, alveolar
organoid; APOC3, apolipoprotein C3; ASCs, adult stem cells; AST, aspartate
aminotransferase; AT2, alveolar type 2 progenitor cells; ATF4, activating
transcription factor 4; BMP, bone morphogenetic protein; BRN2/POU3F2, POU
class 3 homeobox 2; CASP3, caspase 3; CAT, catalase; CdTe, cadmium telluride;
CeO2, cerium oxide; CF, cystic fibrosis; CLDN1, claudin 1; COPD, chronic
obstructive pulmonary disease; COX1, cyclo-oxygenase 1; CRC, colorectal cancer;
CTIP2/BCL11B, BAF chromatin remodeling complex subunit BCL11B; CuO,
copper oxide; DAT, dopamine active transporter; DNAH5, dynein axonemal heavy
chain 5; dPM2.5, diesel particulate matter 2.5; EAAC1, excitatory amino-acid
carrier 1; EBs, embryoid bodies; ECM, extracellular matrix; ENps, engineered
nanoparticles; ESCs, embryonic stem cells; Fbw7, F-box and WD repeat domain-
containing 7; FGF, fibroblast growth factor; GABA receptor, gamma-aminobutyric
acid receptor; GFAP, glial fibrillary acidic protein; GI, gastrointestinal;
GLAST/SLC1A3, solute carrier family 1 member 3; GSH, glutathione; GSTA1 and
GPX1, glutathione detox-related genes; hCG, human chorionic gonadotropin;
HER, human epidermal growth factor receptor; hEROs, human embryonic
stem cell derived retinal organoids; iHIOs, induced human intestinal organoids;
iPSCs, induced pluripotent stem cells; ITER, international thermonuclear
experimental reactor; Krt19, CK19 cytokeratin 19 protein; KRT5, keratin 5; LGR5,
leucine-rich repeat-containing G-protein coupled receptor 5; LUHMES, Lund
human mesencephalic cells; MLF1IP, centromere protein U; MPFs, microplastic
fibers; MPs, microplastics; MT, microtissue; MWCNT, multiwalled carbon
nanotubes; NADP, nicotinamide adenine dinucleotide phosphate; ND1, NADH
dehydrogenase 1; NEF2L2, nuclear factor erythroid-derived 2-like 2); Ngn3,
neurogenin 3; NKX2.1, NK2 homeobox 1; NM, nanomaterial; NOX2, NADPH
oxidase-2; NPHP1, nephrocystin 1; NPs, nanoplastics; Nps, nanoparticles;
OrgGloms, organoid-derived glomeruli; PAHs, polycyclic aromatic hydrocarbons;
PDGFRA, platelet-derived growth factor receptor alpha; PM2.5, particulate matter
2.5; PSCs, pluripotent stem cells; PSNPs, polystyrene nanoplastics; qRT-PCR,
quantitative reverse transcription–polymerase chain reaction; RELN, reelin;
RNA-seq, RNA sequencing; ROS, reactive oxygen species; SARS-CoV-2, severe
acute respiratory syndrome coronavirus clade 2; SCGB1A1, secretoglobin family
1A member 1; SFTPA1, surfactant protein A1; SFTPC, surfactant protein C; SHH,
Sonic hedgehog pathway; SOD1 and SOD2, superoxide dismutase family genes;
TEER, transepithelial electrical resistance; TiO2, titanium dioxide; TMRPSS2,
cofactor transmembrane protease serine 2; TSCs, trophoblast stem cells; TYMS,
thymidylate synthetase; VEGF, vascular endothelial growth factor; VGAT,
vesicular GABA transporter; VGLUT2, vesicular glutamate transporters; WES,
whole-exome sequencing; WGS, whole-genome sequencing; W-Nps, tungsten
nanoparticles; WNT, wingless-related integration site; ZnO, zinc oxide.

RNA massive sequencing (RNA-seq) is the most used
technique for gene expression profiling in a single assay (Garrido-
Rodriguez et al., 2021). Although it is possible to compare
relative gene expression, RNA-seq cannot warrant function at
the protein level (Li et al., 2021). Even though throughput is
restricted, single-cell RNA-seq identifies infrequent populations
of cells with functional significance (Li et al., 2021; Yan et al.,
2013). On the other hand, the transcriptome is more significant
because it provides information about the specific biological
function or gene expression, compared to separate analyses
of the genome, the epigenome, and the proteome (Bar and
Benvenisty, 2019; Song et al., 2019; Zeng et al., 2021). In the
study by Zeng et al. (2021), transcriptome analysis was used
to estimate the effect of particulate matter 2.5 (PM2.5) on
human embryonic stem cell derived retinal organoids (hEROs)
and showed that mitogen-activated protein kinase (MAPK) and
phosphoinositide 3-kinase (PI3K)/AKT pathways were involved
significantly, while fibroblast growth factors (FGFs), especially
FGF8 and FGF10, were decreased, thereby inducing abnormal
human retinal development.

In the previously described study (van Dijk et al., 2021; the
contribution is a preprint), the RNA-seq analysis has been used
to confirm that nylon fibers were less inhibitory for the growth
of alveolar organoids (AO) than treatment with component
leaching of the polymer or lower numbers of nylon fibers. The
Notch1 and Notch2 signaling pathways were downregulated, as
well as their ligands Jag1 and Jag2, which are responsible for
the development of airway epithelial cells, and club cells (van
Dijk et al., 2021; the contribution is a preprint). Winkler and
coworkers used human lung organoids to examine the effect
of microplastic fibers (MPFs) on organoid growth and their
inflammatory effects on the established lung organoids (Winkler
et al., 2021; the contribution is a preprint). Quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) was used for
gene expression analysis of oxidative stress-related genes, lung-
specific genes, and inflammatory cytokines (Winkler et al., 2021;
the contribution is a preprint). No significant differences in the
gene expression of cytokines or oxidative stress-related genes
such as superoxide dismutase family genes (SOD1 and SOD2),
glutathione detox-related genes [glutathione detox-related genes
(GSTA1 and GPX1)], catalase (CAT), and ROS-controlling genes
[(NADPH oxidase-2 (NOX2), cyclo-oxygenase 1 (COX1), NADH
dehydrogenase 1 (ND1)] were noticed in human lung organoids
after exposure to MPFs (Winkler et al., 2021; the contribution is
a preprint). The authors also confirmed no significant difference
in gene expression responsible for epithelial lung markers such
as NK2 homeobox 1 (NKX2.1) and Claudin 1 (CLDN1) as
well as the specific airway lung markers surfactant protein A1
(SFTPA1) and surfactant protein C (SFTPC) in alveolar-type 2
progenitor cells (AT2 cells), secretoglobin family 1A member
1 (SCGB1A1) (club cells), nephrocystin 1 (NPHP1), dynein
axonemal heavy chain 5 (DNAH5) (ciliated cells), and keratin 5
(KRT5) (basal cells) in human lung organoids exposed to MPFs
and the control group (Winkler et al., 2021; the contribution
is a preprint). Schwartz et al. (2015) studied developmental
neurotoxicity by using reproducible 3D neural constructs
containing vascular and microglial components on synthetic
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FIGURE 1 | Human 3D organoid systems: a promising platform to study the effect of environmental pollution. Plastic waste, air pollution, pesticides, and various
nanomaterials have a negative impact on human health, which is mimicked by organoid systems that serve as a proper model for early development, drug testing,
and disease models. As a result of organoids’ exposure to these pollutants, molecular and functional alterations in organoids are noted, so different omic profiling
technologies are used to discover these alterations, such as transcriptomic, RNA sequencing, and proteomics. Hence, different bioinformatics tools are used for
analyzing omics such as HiPathia. MPFs—microplastic fibers; MPs—microplastics; PSNPs—polystyrene nanoplastics; PM 2.5—particulate matter 2.5;
PSCs—pluripotent stem cells; W-Nps—tungsten nanoparticles; NMs—nanomaterials; ENps—engineered nanoparticles; Nps—nanoparticles; AgO—silver oxide;
TiO2—titanium dioxide; ZnO—zinc oxide; CuO—copper oxide.

hydrogels after exposure to toxic or nontoxic chemicals. In this
study, 3D neural constructs were exposed to a set of 31 control
compounds and 39 toxins through day 16 or day 21 and then
collected for RNA-seq (Schwartz et al., 2015). RNA-Seq identified
differentially expressed genes that included neurogenesis such
as GABAergic neurons [e.g., gamma-aminobutyric acid receptor
(GABA receptors)], glutamatergic neurons [(e.g., vesicular
GABA transporter (VGAT) and vesicular glutamate transporters
(VGLUT2)], cortical neurons [(POU class 3 homeobox 2
(BRN2/POU3F2), reelin (RELN), BAF chromatin remodeling
complex subunit BCL11B (CTIP2/BCL11B)], synaptic markers
(e.g., synapsins and synaptic vesicle components), and glial
cells [solute carrier family 1 member 3 (GLAST/SLC1A3), glial
fibrillary acidic protein (GFAP), platelet-derived growth factor
receptor alpha (PDGFRA)] in neural constructs in relation to
undifferentiated hESCs (Schwartz et al., 2015).

Proteomics is determined as wide-ranging protein analysis
enabling recognition, quantification, and posttranslational
modification between other related facts in terms of proteins
in a cell, tissue, or biofluid (Lindoso et al., 2019). Among other
“omics” analysis, proteomics is one of the widely employed
methods in bioinformatics and liquid chromatography linked
with mass spectrometry and mainly applied in the examination
of induced pluripotent stem cells (iPSCs; Walther and Mann,
2010; Lindoso et al., 2019), hiPSC-derived organoids (Hale et al.,
2018), or hESC-derived organoids (Nascimento et al., 2019).
Using proteomics analysis, Hale et al. (2018) compared organoid-
derived glomeruli (OrgGloms) with conditionally immortalized
human podocyte cell lines. They elucidated that OrgGloms
displayed higher-level matrix extracellular components and an
α5(IV) chain of type IV collagen network, while α3 and α4(IV)
chains were less expressed. These outcomes emphasize the
importance of OrgGloms as a proper 3D model of the human
glomerulus in physiological and pathological conditions (Hale
et al., 2018). By using shotgun proteomics to examine human
cerebral organoids, Nascimento et al. (2019) identified 3,073
proteins associated with various brain developmental stages,
especially with neurogenesis, axon guidance, synaptogenesis,

and cortical brain development. If there is a need for analyzing
alterations in metabolites at the system level, this type of omics
is termed metabolomics (Wishart, 2019; Neef et al., 2020;
Garrido-Rodriguez et al., 2021).

INTRODUCTION TO BLASTOIDS,
EMBRYOIDS, GASTRULOIDS, AND
ORGANOIDS—THE DEFINITIONS

Valuable events of early mammalian development and self-
organization are demonstrated in various studies on early mouse
and human embryos that could be cultured ex vivo in the absence
of maternal tissues (Deglincerti et al., 2016; Shahbazi et al., 2016).
However, early human embryos, including the blastocyst stage,
are difficult to obtain, have a small number of cells (<100), and
are not easy to physically and genetically manipulate. Therefore,
many genetically similar structures should be generated, thus
opening possibilities for different analyses, including high-
throughput screens and biochemistry-based assays. One of
the well-known structures is the blastoid—the first version of
a preimplantation blastocyst model made by promotion of
the self-organization of mouse embryonic stem cells (ESCs)
and trophoblast stem cells (TSCs) (Rivron et al., 2018). The
trophoblast and embryonic compartments of blastoids can be
physically and genetically modified independently from another
blastoid, offering enormous technical advantages compared to
blastocysts. Recent studies focused on human blastoids to
study and comprehend early human development and prevent
pregnancy defects and birth loss (Liu et al., 2021; Yu et al., 2021;
Zheng and Fu, 2021). Human blastoids can be generated in a
two-step culture process—isolation from human blastocysts or by
reprogramming adult human cells (Yu et al., 2021), or in a one-
step culture process—by reprogramming skin fibroblasts (Liu
et al., 2021). Regardless of the in vitro method used for generating
human blastoids (one-step or two-step culture), in both cases,
it was shown that human blastoids had almost identical size,
number of cells, and shape similar to natural blastocysts (Liu
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et al., 2021; Yu et al., 2021; Zheng and Fu, 2021). In the study
of Zheng and Fu (2021), genome-wide expression analysis was
used to clearly define molecular similarities of the blastoids
with preimplantation human blastocyst. They showed that there
are molecular similarities between generated human blastoids
and preimplantation human blastocyst. Also, they proved that
blastoid cells have crucial characteristics of blastocyst lineages
in terms of the ability to generate various stem cell types which
are isolated from the blastoids, offering new insights to study
early preimplantation and early postimplantation blastocyst
development (Zheng and Fu, 2021). However, there are some
limitations that need to be reconsidered. For instance, the
development of the blastoids is not effective and differs among
cell lines from different donors, and between experimental
clusters. Also, it was noted that the three lineages in single
blastoids developed at different velocities, and their growth in
the same dish was not synchronized together with unspecified
cell populations with no equivalent in natural human blastocysts
(Zheng and Fu, 2021). The other obstacle includes ethical
controversies such as the fact that the development of human
blastoid in vitro is limited in postimplantation stages until 14
days in vivo (Zheng and Fu, 2021). The findings of Xiang et al.
(2020) might help to improve the ability to culture blastoids up to
this limit, by 3D systems for culturing human blastocysts, which
effectively promote postimplantation development, although
bioethical issues need to be addressed.

Embryoid bodies (EBs) are defined as 3D aggregates of
pluripotent stem cells (PSCs) or differentiated cells used as a
layout of early development and comprising the three embryonic
germ layers (Evans, 2011; Simunovic and Brivanlou, 2017).
Additionally, EBs go through the initial development phase
similarly to pregastrulating embryos and resemble early teratoma
(de Jaime-Soguero et al., 2018). In vivo and in vitro, cell
differentiation depends on morphogen gradients and signals
that supply instructive and positional signs (ten Berge et al.,
2008; Simunovic and Brivanlou, 2017). For instance, EBs can be
used as a model for teratogen-testing platforms, which includes
evaluation of chemically induced effects on EB morphology,
effects on the differentiation of particular cell types of interest,
estimation of the transcriptome or proteome, effects on specific
signaling and developmental pathways, and at last, effects upon
cellular physiology (Lee S. et al., 2020).

Unlike embryos, which go through defined stages with typical
morphologies, such as blastula, gastrula, and neurula stages,
embryoid is an artificial construct made from cultured cells
that try to imitate all or part of an embryo, or its specific
stage (Simunovic and Brivanlou, 2017). The embryoid can be
defined as a more organized EB that develops as a result of cell
polarization caused by (i) the extracellular matrix (ECM) in the
adjacent medium or (ii) the accurate topology of multiple types of
cells that represent an embryo at a specified time of development
(Simunovic and Brivanlou, 2017).

Unlike embryoids, gastruloids can be defined as an in vitro
multicellular model of a gastrulating embryo, either in 2D (Etoc
et al., 2016) or in a 3D culture system (Turner et al., 2016).
Gastruloids are also defined as complex 3D structures with the
ability to self-organize in vitro and look like developing tissue

in vivo (Munsie et al., 2017). They are distinct from organoids
because they do not essentially recapitulate an organ but rather
a developmental process, offering the possibility to create post-
implantation models (Munsie et al., 2017) and models to study
(Simunovic and Brivanlou, 2017).

For the purposes of this review, we focus primarily on
the opportunities and challenges concerning human organoids,
and their ability to serve as a model to study the effects of
environmental pollution on human health.

INTRODUCTION TO HUMAN
ORGANOIDS

The term “organoids” appeared in the 1950s (Vendrely, 1950)
and finally was delineated and systemically elaborated by Eiraku
and Sasai (2012). A typical depiction of organoid is explained
as a structure in which pluripotent or progenitor stem cells are
differentiated into multiple cell populations that self-organize
into tissue similar to an organ (Eiraku and Sasai, 2012; Kicheva
and Briscoe, 2015; Clevers, 2016) and have the capacity of stable
long-term culture and passage (Eiraku and Sasai, 2012). The
stem cell sources of the existing cultured organoids are for the
most part PSCs—iPSCs, ESCs, and adult stem cells (ASCs).
These sources are used to induce various types of organ tissues
such as gut (Spence et al., 2011), kidney (Takasato et al., 2015),
pancreas (Greggio et al., 2013), brain (Lancaster et al., 2013),
retina (Nakano et al., 2012), inner ear (Koehler et al., 2017), lung
(Wong et al., 2012), and liver (Takebe et al., 2013). However,
the establishment of human AdSC-derived organoids is limited
by accessibility to the tissue and prior knowledge of the culture
conditions, while an iPSC line, once established from a patient
(Brouwer et al., 2016), can be used to repeatedly generate different
tissue models without any time limit [that is, beyond the patient’s
lifespan (Kim J. et al., 2020; Narsinh et al., 2011)]. Although
ASCs can be stimulated to form organoids (Yin et al., 2016),
the focus of our review will discuss organoids derived from
human iPSCs and ESCs.

DIFFERENCES BETWEEN 2D AND 3D
MODELS

The usage of 2D models is limited compared to superior 3D
organoid technology (Ho et al., 2018). The major limitation
of 2D culture is cells arranged as a monolayer, providing
atypical growth kinetics and cell attachments, therefore not
completely presenting the natural microenvironment of the
cells (Nicolas et al., 2020). To emulate tissue homeostasis
and complex interactions, 3D structures, better known as
organoids, are preferably used compared to 2D cultures that
are unable to sustain intercell communication (Clevers, 2016).
Additionally, 3D systems are rather utilized due to improved
cellular membrane integrity, and niche manipulation (Ferraz
et al., 2016; McCauley and Wells, 2017; Ho et al., 2018; Chen et al.,
2019; Stojkovic et al., 2021b). Also, 3D organoids go through
multi-lineage differentiation, creating heterogeneous groups
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of cells that self-assemble into complex tissue-like structures
mimicking physiologically more pertinent microenvironment
(Cugola et al., 2016). Many studies show that hESCs and
hiPSCs are used for generating 2D and 3D organoids allowing
the study of differentiation mechanisms (Pamies et al., 2017;
Rosca et al., 2020), the processes involved in embryonic
development (Lancaster and Knoblich, 2014; Pamies et al.,
2017; Rosca et al., 2020), and the mechanisms involved in
various diseases (Lancaster and Knoblich, 2014; Pamies et al.,
2017; Rosca et al., 2020; Stojkovic et al., 2021a), drug testing
(Lancaster and Knoblich, 2014), and toxicity connected with
environmental pollutants (Truskey, 2018; Rosca et al., 2020;
Stojkovic et al., 2021b). However, it is well known that organoids
have tremendous potential in drug screening and personalized
medicine (Kondo and Inoue, 2019; Kim J. et al., 2020). By
discovering organoids, their use made the drug development
faster, more effective, and ethically more justified than using
animal models for the same purpose (Aboulkheyr Es et al.,
2018). Different new medical treatments that were developed
for the human disease often manifest many limitations (e.g.,
problems with predictions of outcomes, time-consuming drug
testing, or differences relating to the patient as an individual)
(Eglen and Randle, 2015; Dedhia et al., 2016). Therefore,
organoid culture based on a particular individual or disease
will advance into the potential instrument for adequate therapy
(Lehmann et al., 2019).

Regarding the use of organoids as a suitable 3D model, certain
obstacles need to be overcome. (1) There is lack of adequate
cellular microenvironment, such as endothelial or immune cells
(Koike et al., 2019); this problem can be solved by coculturing
additional missing cells with organoids. (2) Prices for organoid
establishment are relatively high compared to traditional cell
lines (although organoids cost less than mouse or fish models).
(3) 3D models mirror only specific organ tissue, not the
whole organism, and therefore lack interorgan communication.
However, progressive endeavors to solve this problem emerge.
For instance, a few organoids have been joined with the aim
to examine communication between the liver, pancreas, and
gastrointestinal tract (Adhya et al., 2018), or to study the
interplay between the brain and hormone-producing organs
(Xiang et al., 2020). (4) There are no widely accepted protocols
standardized for organoid establishment. (5) Heterogeneity in
terms of variation between individuals and protocols results
in different outcomes (Truskey, 2018; Kim J. et al., 2020). To
overcome this obstacle, single-cell profiling technologies for
transcriptome and epigenome analysis might be crucial regarding
highly correct assays appropriate for this purpose (Kim J. et al.,
2020). It should be emphasized that the advantages of using
organoids are much greater compared to their disadvantages—of
course, both should be taken into account.

ORGANOIDS AS MODELS OF EARLY
DEVELOPMENT

Besides the improved research of signaling pathways in cell
specification and organogenesis, organoids illustrate the physical
basis of tissue and organ forming (Lancaster and Knoblich,

2014). Primary sources of organoids are ESCs, iPSCs, and
fetal tissues (Spence et al., 2011; Nakano et al., 2012; Wong
et al., 2012; Greggio et al., 2013; Lancaster et al., 2013;
Takebe et al., 2013; Takasato et al., 2015). The development
of tissues such as the stomach, brain, and pancreas has been
studied through gradual differentiation of iPSCs and ESCs to
organoids by adjusting signaling pathways such as Wingless-
related integration site (WNT), bone morphogenetic protein
(BMP), and FGF (Greggio et al., 2013; Lancaster et al.,
2013; McCracken et al., 2011). Fetal pulmonary organoids are
being utilized to demonstrate the signaling interaction between
exogenous FGFs (essential for endothelial network assembly)
and the vascular endothelial growth factor A (VEGF-A) pathway
known to suppress the forming of the endothelial network and
the cross talk with the Sonic hedgehog (SHH) pathway that
promotes epithelial and endothelial morphogenesis (Mondrinos
et al., 2014). When it comes to pancreas development, the
loss of F-box and WD repeat domain-containing 7 (Fbw7)
in CK19 cytokeratin 19 (Krt19)+ adult pancreatic ductal cells
in vivo led to stabilization of the transcription factor Neurog3
(Ngn3), resulting in reprogramming of ductal cells to insulin-
secreting beta cells (Sancho et al., 2014). Intestinal organoids–
enteroids resulted in structures having leucine-rich repeat-
containing G-protein-coupled receptor 5 (Lgr5+) intestinal SCs
and other differentiated cells localized equally to the in vivo
organization (Cao et al., 2015). The forebrain cerebral cortex
was also developed using novel protocols for 3D brain-like tissue
development (Lancaster and Knoblich, 2014; Shahbazi et al.,
2016), therefore confirming the vast potential of brain organoid
research. In 2017, Koehler et al. (2017) reported the derivation
of inner ear organoids using human PSCs and modulating FGF,
BMP, TGF-β, and WNT signaling, generating organoids with
sensory epithelia that are innervated by sensory neurons. This
method significantly promoted further studies of human inner
ear development and research on regenerative or drug therapies
for hearing loss.

ORGANOIDS IN DRUG SCREENING

Many studies showed how healthy organoids can be used in the
assessment of drug toxicity such as cardiotoxicity (Eder et al.,
2016), nephrotoxicity (Takasato et al., 2015), and hepatotoxicity
(Kostadinova et al., 2013; Katsuda et al., 2017). On the other
hand, organoids are used to study the effect of some drugs on
preexisting diseases, such as primary tumors (Jabs et al., 2017;
Abbasi, 2018; Vlachogiannis et al., 2018), rare genetic diseases
including cystic fibrosis (Fleischer et al., 2020), neurological
diseases (Lee S. E. et al., 2020; Costamagna et al., 2021),
and infectious diseases (Zhou et al., 2017; Heo et al., 2018).
Other studies reported the use of cancer organoid lines, for
example colorectal cancer (CRC) organoid lines to screen 83
drugs (van de Wetering et al., 2015), breast cancer organoid
lines for testing inhibitors human epidermal growth factor
receptor (HER) signaling pathway (Reid et al., 2018), or bladder
cancer organoid lines for testing 26 drugs (Lee et al., 2018).
Also, organoid technology aims to supply functional biological
structures that can be transplanted into patients in the near
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future, although precise characterization and validation of
organoids as accurate models of human biology are required
(Bock et al., 2020). AOs and proximal airway air–liquid interface
cell culture systems are advantageous for the examination of
antiviral compounds against severe acute respiratory syndrome
coronavirus clade 2 (SARS-CoV-2). The next drug for the
treatment of COVID-19 has been examined heretofore: IFN
type I, IFN type III, remdesivir, camostat mesylate [a cofactor
transmembrane protease serine 2 (TMPRSS2) inhibitor], E-64d
(an inhibitor of the endosomal cysteine proteases cathepsin B
and L), and a library of FDA-approved drugs (the Prestwick
collection) (Han et al., 2021; Huang et al., 2020; Lamers
et al., 2021). Both remdesivir and camostat mesylate showed
antiviral capacity and decreased SARS-CoV-2 N levels (Huang
et al., 2020). Imatinib, mycophenolic acid, and quinacrine
dihydrochloride diminished SARS-CoV-2 infection of hPSC-
derived lung organoids (Han et al., 2021). Pretreatment with
IFN-λ1 abolished viral replication in bronchioalveolar organoids.
Angiotensin-converting enzyme 2 (ACE2) expression is regulated
by androgen signaling and represents an important risk factor of
adverse COVID-19 outcome in male adults. This is confirmed by
antiandrogenic drugs, which diminished ACE2 expression and
prevented SARS-CoV-2 infection of human hESC-derived lung
organoids (Samuel et al., 2020).

EMBRYOS, THEIR “SURROGATES” AND
ORGANOIDS AS A MODEL FOR
ENVIRONMENTAL POLLUTION

The systematic assessment of the global effects of environmental
pollution on human health has become increasingly quantitative
in the last decades. Humans and animals are constantly exposed
to many environmental pollutants and stressors—at least those
associated with air pollutants, modern chemicals in the home,
food, and beverages/water (Briggs, 2003; Manisalidis et al., 2020).
Despite the properly planned high-throughput screening that
tried to illuminate the model of action of pollutants (Kavlock
et al., 2012), further examinations are necessary to completely
understand the exact mechanism by which pollutants cause
pathology (Kavlock et al., 2012). There is a wide range of
environmental pollutants (Table 1). Due to their omnipotent
presence and extensive usage in every aspect of the industry,
plastics have become one of the most severe environmental
pollutants (Bouwmeester et al., 2015). Plastics in the environment
have two forms depending on the size, microplastics (MPs,
diameter <1 mm), and nanoplastics (NPs, diameter <100 nm),
and can be found in water, ground, food, and various objects
and materials (Bouwmeester et al., 2015; Prata, 2018; Toussaint
et al., 2019). Hence, polystyrene, as one of the most utilized sorts
of plastic, especially in packing food and drinks, construction,
computer printers, and other industries, requires further research
(Gu et al., 2019; Li-Juan et al., 2019). A detailed study on the
possible effects of polystyrene NPs (PSNPs) on the transcription
profile of preimplantation human embryos and hiPSCs has
recently been, for the first time, conducted by our group (Bojic
et al., 2020). Applying the gene set enrichment analysis and

HiPathia, this study showed that PSNPs led to downregulation
of LEFTY1 and LEFTY2, pluripotency genes, and upregulation of
CA4 and OCLM, genes related to eye development. Also, there
was a significant impact of PSNPs on genes responsible for the
development of atrioventricular valve and cellular components.
The RNA-seq analysis showed that PSNP intracellular pollution
might cause different clinical outcomes, including abnormal early
development and several detrimental diseases (Bojic et al., 2020).
MPs are omnipresent in the environment (Prata et al., 2020)
and are continuously released into the atmosphere. Most MPs
consist of MPFs coming from synthetic clothing, fabric, and
upholstery (Henry et al., 2019), but mostly from polyester (Dris
et al., 2017). One study examined the effect of MPFs on lung
organoids derived from tissue-resident ASCs of healthy donors.
The organoids were exposed to various MPF concentrations
(1, 10, and 50 mg L-1) and analyzed by optical microscopy,
scanning electron microscopy (SEM), and confocal microscopy.
Gene expression assessment of lung-specific genes, inflammatory
cytokines, and oxidative stress-related genes was performed by
qRT-PCR and showed no significant differences when compared
to the control group (Winkler et al., 2021; the contribution is
a preprint). Even though MPFs did not have an adverse effect
on lung organoids, there was the polarization of the cell growth
along the fibers, similarly to organoid-covered plastic fibers with a
cellular layer in the study of van Dijk et al. (2021; the contribution
is a preprint). Such outcomes implied possible negative effects of
MPFs. Hence, a recent study by van Dijk et al. (2021) showed that
the growth of murine and human lung organoids was inhibited
14 days after exposure to nylon microfibers. This was confirmed
by light and fluorescence microscopy. However, the effect of
polyester on human organoid growth was less profound. In the
same study, it has been proved that nylon microplastics did
not affect fully develop 14-day organoids, suggesting that nylon
microplastics have a huge impact on developing organoids (van
Dijk et al., 2021; the contribution is a preprint). This is explained
by the negative impact of nylon microplastics on the top five
enriched pathways for downregulated and upregulated genes
crucial for epithelial development and function. Even though van
Dijk et al. (2021) supposed that bisphenol A is the main reason for
lung organoid growth inhibition, incubation of lung organoids
with bisphenol-A did not affect organoid growth. Eventually,
this study suggested that nylon microplastics can negatively
affect children and people with chronic or seasonal respiratory
diseases. However, very few studies show the detrimental effect
of plastic waste on an individual’s development and metabolism.
Bisphenol A, also known as the most examined endocrine
disruptor (Corrales et al., 2015), is a widely used chemical that
can be found almost everywhere—soft plastic bottles, the lining of
aluminum food cans—and can harm metabolic and reproductive
function (Choi et al., 2016). Choi et al. (2016) examined the
effect of acute exposures to bisphenol A on bovine embryo
development in vitro at environmentally proper concentrations
(1 and 10 ng mL-1) at 3.5–7.5 days post-fertilization. They showed
that blastocyst development was impaired, embryo quality was
decreased, and glucose utilization was increased, although cell
number was not altered after exposure to 10 ng mL-1 bisphenol
A (Choi et al., 2016). Some studies displayed the effect of
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TABLE 1 | Various environmental pollutants and their employment.

Name of pollutant Employment

Plastics

PSNPs Packing food and drinks, construction, computer industry, etc.

MPFs Synthetic clothing, fabric, and upholstery

Nylon microfibers Tires, synthetic clothing, tennis balls, laundry and dishwasher, pods/tablets,
cigarette, butts, glitter, wet wipes, tea bags

Bisphenol A Soft plastic bottles, the lining of aluminum, food cans

Silica Nps Industry of glass, foundries, construction, ceramics and chemical, plastics, rubber,
water filtration, and agriculture

PM2.5 Emitted during the combustion of solid and liquid fuels, such as for power
generation, domestic heating and in vehicle engines

W-Nps Nanotechnology, metallurgy and fusion technology,

Rotenone Pesticide, used in lakes and reservoirs to kill fish

Pharmaceutical drugs, pesticides, flame retardants, PAHs, lead, mercury,
acrylamide, bisphenol, deltamethrin, triphenyl phosphate, methyl mercuric(II)
chloride, saccharin, methyl mercury, berberine chloride, saccharin, D-glucitol,
acetaminophen, acetylsalicylic acid, and L-ascorbic acid

Wide industrial and pharmaceutical usage

Lead, mercury, glyphosate, thallium Drinking water, food, or the earth

NMs

AgO, ZnO, TiO2, MWCNT High-strength composites, energy storage and energy conversion devices, sensors,
field emission displays and radiation sources, hydrogen storage media and
heterogeneous catalysis, photocatalytic wastewater treatment and hydrogen
production, solar cells and gas sensing

TiO2, ZnO, CeO2 crystalline silica DQ12 Wastewater treatment and hydrogen production, solar cells and gas sensing

CuO, Cu2O- (PVP) Nps Industrial processes (e.g., catalyst), in commercial products (e.g. sunscreen), as
anti-microbial agents

AgNps Medical, food, health care, consumer, industrial purposes

CdTe, CuO Nps Solar cells, IR detectors, radiation detectors, electrooptic modulators, industrial
processes

Polystyrene nanoplastics NPs, PSNPs; microplastic fibers, MPFs; cadmium telluride, CdTe; particulate matter 2.5, PM2.5; tungsten nanoparticles, W-Nps; polycyclic
aromatic hydrocarbons, PAHs; nanomaterials, NMs; nanoparticles, Nps; silver oxide, AgO; zinc oxide, ZnO; titanium dioxide, TiO2; multiwalled carbon nanotubes, MWCNT.

low-dose bisphenol A on the early differentiation of hESCs
into mammary epithelial cells in 3D conditions (Yang et al.,
2013). Another study showed that a low dose of bisphenol A
negatively affected hESCs’ differentiation into prostate organoids
(Calderon-Gierszal and Prins, 2015). These two studies addressed
the toxic effects of bisphenol A on the reproductive systems
using hESCs differentiated into mammary epithelial cells and
human prostate organoids in 3D conditions (Yang et al., 2013;
Calderon-Gierszal and Prins, 2015).

Besides the plastics, there are numerous environmental
pollutants whose effect was examined on organoids (Table 2).
The respiratory tract is the first target of numerous professional
noxas, such as silica, especially present in industries of glass,
foundries, construction, ceramics, chemical, plastics, rubber,
water filtration, and agriculture. Di Cristo et al. (2020) confirmed
the suitability of the 3D airway model regarding the simulation
of working conditions of people exposed to silica nanoparticles
(SiO2 Nps). A 3D mucociliary tissue model of the primary
human bronchial epithelium was exposed to SiO2 Nps for 12
weeks; the viability of the 3D airway model was assessed by
AlamarBlue (resazurin) assay, whereas the integrity of the tissue
was measured by transepithelial electrical resistance (TEER) and
assessment of the membrane proteins’ expression was performed

by Western blot analysis. Interestingly, no adverse effect of
SiO2 Np exposition in vitro was confirmed, suggesting the
effectiveness of the 3D airway model regarding mucociliary
system clearance and respiratory defense mechanisms after
SiO2 Np exposition (Di Cristo et al., 2020). When it comes
to inhalation pollutants, besides silica, particulate matter 2.5
(PM2.5), an air pollutant of very small size (≤2.5 µm), is
present mostly in car gas emission and is related to numerous
lung pathologies, such as asthma, COPD, or lung cancer (Li
et al., 2018). For that reason, one study examined whether
organic PM2.5 extract caused the same cytotoxic effect in in vitro
and in vivo conditions (Ferraz et al., 2016). Results displayed
that PM2.5 had a cytotoxic effect on A549 cells cultured in
a monolayer or 3D, by reducing mitochondrial dehydrogenase
activity and cell membrane integrity, respectively (Ferraz et al.,
2016). However, the exact mechanism by which PM2.5 influences
lung development and leads to various lung pathologies remains
unclear. Thereupon, a study was conducted in order to decipher
the developmental toxicity of fine diesel PM (dPM2.5) exposure
during hPSC-derived alveolar epithelial cell (AEC) differentiation
and 3D multicellular AO development (Kim J. H. et al., 2020).
Results showed that dPM2.5 harmed the AEC differentiation and
led to upregulation of NADP oxidases and inflammation. Also,
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TABLE 2 | Toxicological effects of environmental pollutants on various organoids.

Name of pollutant Cell type Toxicological effect References

PSNPs Preimplantation human embryos and
hiPSCs

-Downregulation of LEFTY1 and LEFTY2
-Upregulation of CA4 and OCLM
-Impact on genes responsible for
development of atrioventricular valve and
cellular components

Bojic et al., 2020

MPFs Lung organoids -Polarization of the cell growth along the
fibers

Winkler et al., 2021

Nylon microfibers Murine and human lung organoids -Upregulation and downregulation of more
than 500 genes crucial for epithelial
development and function
-Developing organoid growth inhibition

van Dijk et al., 2021

Bisphenol A hESC-derived mammary epithelial cells -Inhibition of differentiation of hESC into
mammary epithelial cells

Yang et al., 2013

hESC-derived prostate organoids -Inhibition of differentiation of hESC into
prostate organoids

Calderon-Gierszal and Prins, 2015

Silica Np 3D mucociliary tissue model of primary
human bronchial epithelium

-No adverse effect Di Cristo et al., 2020

PM2.5 A549 cells cultured in a monolayer or 3D -Mitochondrial dehydrogenase activity
reduction
-Cell membrane integrity reduction

Ferraz et al., 2016

hPSC-derived AEC and 3D multicellular AO -Impairment of the AEC differentiation
-Upregulation of NADP oxidases
-Upregulation of pro-inflammatory IL-6
-Epithelial-to-mesenchymal transition
during AEC and AO development
-Upregulation of ACE-2 and TMRPSS2

Kim J. H. et al., 2020

hESC-derived retinal organoids (hEROs) -Reduction of cell proliferation
-Cell apoptosis promotion

Zeng et al., 2021

W-Nps MucilAirTM-3D in vitro model of the human
airway epithelium

-Slight decrease in barrier integrity
-Transient increase in IL-8 secretion

George et al., 2019

Rotenone Immortalized cell Lund human
mesencephalic (LUHMES) cells -Downregulation of NEF2L2, ATF4, EAAC1,

TYMS, and MLF1IP genes

Harris et al., 2018

Pharmaceutical drugs, pesticides, flame
retardants, PAHs, lead, mercury,
acrylamide, bisphenol, deltamethrin,
triphenyl phosphate, methyl mercuric(II)
chloride, saccharin, methyl mercury,
berberine chloride, saccharin, D-glucitol,
acetaminophen, acetylsalicylic acid and
L-ascorbic acid

hiPSC-based 3D neural cultures -Calcium oscillations Sirenko et al., 2019

Lead, mercury, glyphosate, thallium Liver and cardiac organoids -Integrity and viability reduction
-Decrease in ATP activity
-Depressive effects on heart beat activity

Forsythe et al., 2018

AgO, ZnO, TiO2, MWCNT 3D human liver MT -Concentration-dependent decrease in cell
membrane integrity
Concentration-dependent increase in IL8
and IL10,
-Higher levels of TBARS
-Increase in DNA strand breaks

Kermanizadeh et al., 2014

(Continued)
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TABLE 2 | Continued

Name of pollutant Cell type Toxicological effect References

TiO2, ZnO, CeO2 crystalline silica DQ12 3D human liver MT -Reduction of albumin production
-Alterations in cytokine production levels
(TNF-α, IL-6, IL-8, and IL-10)
-NM penetration deep into the MT

Kermanizadeh et al., 2019

CuO, Cu2O (PVP) Nps (IEC-6)-rat small intestine epithelial cells,
EpiIntestinalTM (SMI-100)-3D model of the
human small intestine

-Decrease in cell viability
-Decrease in cellular GSH
-Increase in H2O2

-Mitochondrial membrane depolarization

Henson et al., 2019

AgO, CuO, ZnO, TiO2, SWCNT Nps EpiIntestinal tissues -3D model of the
human small intestine

-Dose-dependent reduction of the tissue
barrier and viability
-Dose-dependent release of IL-8 for CuO
and ZnO
-Dose-dependent release of 8-isoprostane
for CuO

Markus et al., 2021

AgNps 3D epidermal model-EpiKutis -No adverse effects Chen et al., 2019

2D keratinocytes -Increased levels of ROS, MDA, IL-1α, IL-6,
IL-8
-Cell viability and membrane permeability
decrease

CdTe, CuO Nps 3D coculture microtissue (MT) model of a
human placenta

-Decrease in MT viability
-Reduction of hCG release

Muoth et al., 2016

Nanomaterials, NMs; nanoparticles, Nps; polystyrene NPs, PSNPs; human-induced pluripotent stem cells, hiPSCs; microplastic fibers, MPFs; human embryonic stem
cells, hESCs; particulate matter 2.5, PM2.5; alveolar epithelial cell, AEC; alveolar organoid, AO; nicotinamide adenine dinucleotide phosphate, NADP; hESC-derived
retinal organoids, hEROs; tungsten nanoparticles, W-Nps; angiotensin-converting enzyme 2, ACE-2; cofactor transmembrane protease serine 2, TMRPSS2; polycyclic
aromatic hydrocarbons, PAHs; silver oxide, AgO; zinc oxide, ZnO; titanium dioxide, TiO2; multiwalled carbon nanotubes, MWCNT; thiobarbituric acid reactive substances,
TBARS; reactive oxygen species, ROS; glutathione, GSH; hydrogen peroxide, H2O2; malondialdehyde, MDA, Cupric (II) oxide, CuO; Cu2O-polyvinylpyrrolidone, PVP; rat
small intestine epithelial cells, IEC-6; 3D model of the human small intestine, SMI-100; cadmium telluride, CdTe; copper oxide, CuO; microtissue, MT; human chorionic
gonadotropin, hCG.

exposition to PM2.5 caused epithelial-to-mesenchymal transition
during AEC and AO development. Remarkably, for the first
time, there was an upregulation of two important molecules—
ACE-2 and TMRPSS2—in both hPSC-AECs and AOs treated
with dPM2.5 (Kim J. H. et al., 2020). Importantly, ACE-2 is
a protein that enables the entry point for the coronavirus to
invade and infect a wide range of human cells and causes
the SARS-CoV-2 (Hoffmann et al., 2020). This study displayed
the alveolar development toxicity and the rise of SARS-CoV-
2 permissiveness of PM2.5 exposed cells, making this hPSC-
based 2D and 3D alveolar induction model beneficial in terms
of environmental toxicity and SARS-CoV-2 virus examination
(Hoffmann et al., 2020). Not just lung organoids, but also retina,
turned out as suitable for PM2.5 toxicity research, which was
confirmed by Zeng et al. (2021). They examined the effect of
PM2.5 on the development of the human retina by using hEROs.
In this study, it was shown that the development of hEROs
was influenced by PM2.5 exposure in a dose-dependent manner
(25, 50, and 100 µg/mL), by reducing cell proliferation and
supporting cell apoptosis, which resulted in abnormal human
retinal development (Zeng et al., 2021). Finally, to encircle a
wide range of lung organoid employment, it should be noted
that the effect of tungsten nanoparticles (W-NPs), utilized in
nanotechnology, metallurgy, and fusion technology, can be
also successfully examined on organoids. The International

Thermonuclear Experimental Reactor (ITER) is a project that
examined potential effects of W-Nps that could be emitted in
air and environment and subsequently affect the respiratory tract
by inhalation (George et al., 2019). The latest study examined
the acute toxicity of W-Nps on MucilAirTM, a 3D in vitro
model of the human airway epithelium. W-Nps had a restricted
influence in terms of toxic effects, cellular absorption, and W
transfer over the lung epithelium leading to a decrease in barrier
integrity, whereas there was no effect on metabolic activity
or cell viability, except a transient increase in IL-8 secretion
(George et al., 2019). This research might offer initial data about
biokinetic lung models for ITER-like tritiated W-Nps. All of
these outcomes can be utilized to settle novel safety policies and
radiation protection modes. Besides lungs, certain toxicants may
affect the neurological system. For instance, rotenone, a well-
deciphered, widely utilized pesticide to control fish populations,
is proved to be neurotoxic and leads to Parkinson’s disease
(Richardson et al., 2019). To examine that in more detail, the
immortalized cell und human mesencephalic (LUHMES) cells
were used to study cellular toxicity, resurgence, and adaptability
subsequently to rotenone exposition (Harris et al., 2018). 3D
LUHMES was exposed to rotenone (100 nM, 24 h) which led
to a decrease in complex I activity, ATP, mitochondrial diameter,
neurite outgrowth, and transcriptomic changes. Subsequently to
compound removal, all of these adverse effects were overcome,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 September 2021 | Volume 9 | Article 709183

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-709183 September 2, 2021 Time: 11:32 # 10

Miloradovic et al. Stem Cells, Organoids, Environmental Pollution

due to cells’ adaptation to short-term rotenone exposure. In
order to test resilience, cells were reexposed to rotenone after
the washout and recovery period. There were transcriptomic
alterations in genes, such as nuclear factor erythroid-derived
2-like 2 (NEF2L2) which regulates the response to oxidative
stress, activating transcription factor 4 (ATF4) branch of the
unfolded protein response activated in response to endoplasmic
reticulum (ER) disturbances or proteotoxicity, and excitatory
amino-acid carrier 1 (EAAC1), a high-affinity Na+-dependent
L-glutamate/D,L-aspartate cell-membrane transport protein that
were downregulated on day 14 but unaltered in pre-exposed
aggregates. Dopamine active transporter (DAT) and Caspase
3 (CASP3) were only changed after reexposure to rotenone,
while thymidylate synthetase (TYMS) and centromere protein U
(MLF1IP) were downregulated in both single-exposed and pre-
exposed aggregates. This study enables insight into the effect of
rotenone in neurodegenerative diseases and displayed 3D systems
as an excellent tool for neurotoxicity research. Another detailed
study examined the neurotoxic profile of 87 compounds (Table 1)
widely utilized in various industrial sectors (Sirenko et al., 2019).
All of the compounds were tested using hiPSC-based 3D neural
cultures. Calcium oscillations—which are related to necrosis
or disease progression—are detected in 57% of the analyzed
compounds (Sirenko et al., 2019). Characterization of oscillation
profiles in 3D neural cultures was performed through multi-
parametric analysis while cellular and mitochondrial toxicity
was estimated by high-content imaging. This model turned out
as beneficial and illuminating toward the exact neurological
effect of such a huge complex of compounds. Besides brain
and lung organoids, various compounds (Table 1) have been
examined on other types of 3D systems—liver, heart, intestine,
skin, placenta, and retina (Table 2). The liver, as the metabolic
center, represents a perfect target for toxicology research. A study
by Forsythe et al. (2018) examined the dose-response toxicity
of lead, mercury, glyphosate, and thallium on the liver and
cardiac organoids within 48 h. The effects of all compounds
were estimated by cytotoxicity and viability staining, ATP activity
evaluation, IC50 value, and cardiac beat activity. Likewise, it
turned out that all tested compounds have a toxic effect on
both liver and cardiac organoids, especially thallium (Forsythe
et al., 2018). Not just heavy metals, but also nanomaterials
(NMs), due to ubiquitous employment and constant public
exposure rose concerns regarding the exact impact of NMs
on human health. Therefore, one study examined effects on
the liver organoids of single and numerous exposures of NMs
[silver oxide (AgO), zinc oxide (ZnO), titanium dioxide (TiO2),
and multi-walled carbon nanotubes (MWCNT)] (Kermanizadeh
et al., 2014). Results showed that numerous exposures were
significantly more harmful, specifically AgO and ZnO. The
cytotoxic effect was analyzed by the level of cytotoxicity, cytokine
secretion, lipid peroxidation, and genotoxicity. Later on, the
same group (Kermanizadeh et al., 2019) examined a 3D human
liver microtissue (MT) repeatedly exposed to minimal NM
concentrations, including TiO2, ZnO, CeO2, and crystalline
silica DQ12. NM cell toxicity effect was observed by analysis
of cell membrane integrity and aspartate aminotransferase
(AST) activity, pro/anti-inflammatory response, and hepatic

function. NM-treated MT displayed a concentration-dependent
penetration of NMs profoundly within the tissue, while AST
assessment turned out to be unsuitable in this experiment,
whereas the cytokine analysis (IL6, IL8, IL10, and TNF-α)
proved useful in highlighting recovery periods. Overall, this study
emphasized the great advantage of liver MT in nanotoxicology
research and highlighted the nanotoxicological assessment on
liver MT beyond 2 weeks as unsuitable, due to the aging effect
on cells. Since ingestion is a possible route of environmental
toxin intake, the gastrointestinal (GI) tract is inevitable for
environmental pollution research. Even though toxicological
studies on engineered nanoparticles’ (ENps) influence on the GI
tract are minimal (McCauley and Wells, 2017), still, there are
promising outcomes that could reveal the impact of nanoparticles
on the gut. Henson et al. (2019) examined the cytotoxicity of
cupric (II) oxide (CuO) and Cu2O-polyvinylpyrrolidone (PVP)-
coated Nps and copper ions on rat intestine epithelial cells (IEC-
6) and human intestinal cells, 2D and 3D models. The mechanism
by which copper nanoparticles cause toxicological properties
includes reactive oxygen species (ROS) forming, reduction of
cellular glutathione, mitochondrial membrane depolarization
(Thit et al., 2015; Wang et al., 2021), mitochondrial membrane
damage (Wang Y et al., 2012; Wang Z et al., 2012), and the release
of toxic Cu ions (Fröhlich, 2013). In line with these outcomes,
Henson et al. (2019) estimated cell viability by MTT assay, H2O2,
and glutathione (GSH) detection, and mitochondrial membrane
potential. The CuO Nps were more cytotoxic to the rat 2D
intestinal model than the human 3D model, probably due to
differences between 2D and 3D cultures themselves, and/or
differences between species origins (rats vs. humans). Finally,
CuO Nps were cytotoxic to rat and human intestinal cells in
a dose- and time-dependent manner, proposing therefore that
Cu2O-PVP Nps are toxic due to their dissolution to Cu ions,
while CuO Nps have innate cytotoxicity, without dissolving to
form Cu ions. Another detailed research observed the impact
of AgO, CuO, ZnO, and TiO2 Nps on the EpiIntestinal tissues
(Markus et al., 2021). Outcomes again displayed a decline in
viability and tissue barrier debilitation after exposition to CuO,
ZnO, and SWCNT Nps. Additionally, in culture supernatants
24 h after incubation, there was the dosage-dependent release of
IL-8 (inflammatory response) for CuO and ZnO, together with
8-isoprostane release (oxidative stress) for CuO. However, Ag
Nps had no side effects on the intestinal microtissues in vitro,
as it was displayed earlier (Burduşel et al., 2018). Also, AgNp
toxicity effect was examined on a 3D epidermal model and a
2D keratinocyte model (Chen et al., 2019; Crosera et al., 2009).
In vitro examination displayed that a similar dosage of AgNps
emerged in considerable oxidative damage and inflammation-
related cytotoxicity. However, only 2D keratinocyte cultures
were affected by Ag Np toxicity (Chen et al., 2019), which can
be explained by the abovementioned drawbacks of monolayer
culture when compared to 3D systems. This distinction regarding
the different toxicological effects on 2D and 3D cultures was
also confirmed in placental toxicity research. Accordingly, a
recent study utilized scaffold-free hanging drop technology and
a 3D coculture MT model similar to in vivo placental tissue
(Muoth et al., 2016). Outcomes from this study displayed that
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secretion levels of human chorionic gonadotropin (hCG) were
notably more elevated in 3D when compared to 2D cell cultures
(Muoth et al., 2016). Also, it was displayed that cadmium telluride
(CdTe) and CuO Nps negatively affected MT viability and hCG
secretion (Muoth et al., 2016).

ORGANOIDS AS DISEASE MODELS

There have been numerous studies utilizing organoid cultures to
research congenital and acquired human diseases (McGuigan and
Sefton, 2006; Spence et al., 2011; Dekkers et al., 2013; Lancaster
et al., 2013; Schwank et al., 2013; Zhou et al., 2017; Praharaj
et al., 2018). Here, the focus will be only on infectious disease,
coronavirus precisely, since the current pandemic situation in
regard to SARS-CoV-2 infection requires rapid and thorough
observations. In such a manner, the accent of this section will be
focused on lung organoids in the model of SARS-CoV-2 infection
highlighting, again, a wide range of employment of organoids
in research of almost every known pathology. Respectively, the
susceptibility to SARS-CoV-2 and its impact on the human lung
AECs were examined in different in vitro models. In these studies
AOs were derived from various cell types: primary small airway
basal cells (Lamers et al., 2020), single adult human alveolar
epithelial type II or KRT5+ basal cells (Katsura et al., 2020;
Salahudeen et al., 2020), multipotent SOX2+SOX9+ lung bud
tip progenitor cells, and either HESCs or iPSCs (Huang et al.,
2020). In all of these studies, alveolar epithelial type II-like cells
were cultured in 3D as monolayered epithelial spheres or as
2D air–liquid interface cultures, distinguished by apical–basal
polarization and barrier integrity (Huang et al., 2020; Katsura
et al., 2020; Lamers et al., 2021; Han et al., 2021), or as organoids
in long-term feeder-free, chemically defined culture systems
(Salahudeen et al., 2020). The expression of ACE2 and TMPRSS2
was equal to the adult stage, with more extensive expression of
TMPRSS2 (Huang et al., 2020; Katsura et al., 2020; Salahudeen
et al., 2020; Lamers et al., 2021; Han et al., 2021). Experiments
showed that SARS-CoV-2 could infect and replicate in alveolar
epithelial type II cells grown as either 3D organoids, 3D spheres,
or 2D air–liquid interface cultures (Huang et al., 2020; Katsura
et al., 2020; Salahudeen et al., 2020; Lamers et al., 2021; Han
et al., 2021). All of these cell cultures managed to mirror
viral infection and release of infectious virus predominantly
from the apical side, following the expression of ACE2 protein.
Furthermore, SARS-CoV-2 infection was examined in distal-lung
basal cell-derived organoids (Salahudeen et al., 2020; Lamers
et al., 2021). The SARS-CoV-2 infection led to pathological
and apoptotic effects and a vigorous induction of host antiviral
response genes, such as IFN type I and type III, IFN receptors
and other interferon-stimulated genes (ISGs) referred to as type I
and type III IFN responses, and NF-kB-mediated inflammatory
signaling and chemokine signaling pathway (Han et al., 2021;
Huang et al., 2020; Katsura et al., 2020; Lamers et al., 2021).
There was an upregulation of apoptosis-related genes, while
in infected cells certain functions of alveolar epithelial type
II cells, such as surfactant gene expression, including DNA
replication and cell cycle genes, were downregulated (Katsura

et al., 2020). Even though primary cell cultures displayed potent
IFN response (Lamers et al., 2020, 2021), alveolar epithelial
type II cell organoids and PSC-derived 2D air–liquid interface
cultures had a mild response (Han et al., 2021; Huang et al.,
2020). Since cigarette smoke is displayed to enhance chances of
a severe form of SARS-CoV-2 infection (Adams et al., 2020),
the lungs were therefore examined in terms of androgens and
cigarette consumption models (Purkayastha et al., 2020; Samuel
et al., 2020). In a study of the primary human nonsmoker airway
basal stem cell-derived air–liquid interface cultures, exposure to
cigarette smoke prior to SARS-CoV-2 infection induced a 2-
to 3-fold rise in viral load, increased the number of infected
and apoptotic cells, hindered the normal airway basal stem cell
repair response, and attenuated IFN response (Purkayastha et al.,
2020). Besides lung organoids, intestinal organoids can serve
as models for various infections such as coronavirus (which
can be propagated in vitro so that the small intestine is an
alternate infection route) (Zhou et al., 2017). To understand
the tissue tropism of SARS-CoV-2, multiple research groups
(Ardestani and Maedler, 2020; Yang et al., 2020; Han et al., 2021)
resorted to organoid approaches. Previously, Monteil et al. (2020)
demonstrated that SARS-CoV-2 could directly infect capillary
organoids and kidney organoids, both derived from hiPSCs
(Monteil et al., 2020). These observations may explain the spread
of the virus through body and kidney function loss in severely ill
individuals (Clevers, 2020).

CONCLUSION

Rapid improvement of technology and growing urbanization
require constant exposure to a plethora of various compounds,
many of which are toxic. In such a manner, revealing
the exact impact of pollutants on humans is imperative.
Even though some studies elaborated precise mechanisms
of pollutants via organoids including cytotoxic effects and
decrease of cell viability, membrane integrity disruption,
upregulation and downregulation of genes involved in cell
growth differentiation and homeostasis, and increased levels of
ROS, calcium oscillations, etc. (Yang et al., 2013; Kermanizadeh
et al., 2014; Ferraz et al., 2016; Forsythe et al., 2018; Harris et al.,
2018; Chen et al., 2019; Henson et al., 2019; Kim J. H. et al.,
2020; Zeng et al., 2021; van Dijk et al., 2021, the contribution is
a preprint; Winkler et al., 2021, the contribution is a preprint),
other studies showed no adverse effects, or minimal cellular
alterations (George et al., 2019; Di Cristo et al., 2020). Of great
importance is consideration of specific features when it comes
to organoids—lack of vasculature and immune system cells, cell-
to-cell communication, ECM, and natural cell niche, even few,
but are detrimental regarding the narrow portrayal of organoids’
reaction to pollutants. Also, the process of humans’ pollutant
intake and exposure, even though mimicked to some extent,
on the other hand, is not ideal. Despite of all these limitations,
organoids will be a breakthrough in pollution research due to
closer mirroring of human physiology, dodging of animal killing,
comfortable manipulation with various compounds and dosage,
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excellent possibility to examine even the slightest changes in
signal pathways, gene expression, and toxical effects of pollutants
by different bioinformatics tools for analyzing omics such as
HiPathia or others. Also, a wide range of applications regarding
early development research, disease modeling (especially current
SARS-CoV-2 virus infection), and testing of the vast majority of
drug and toxicants overcome these limitations. In the aftermath,
future directions should be aimed at overcoming limitations of
2D and 3D cell cultures, spreading and deepening the research
with a much larger group of pollutants and cell types.
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