
 1 

Huxley Muscle Model Surrogates for High-speed Multi-scale 

Simulations of Cardiac Contraction 

Bogdan Milićević1,2, Miloš Ivanović2,3, Boban Stojanović2,3, Miljan Milošević2,4,5, Miloš 

Kojić2,6,7 and Nenad Filipović1,2,* 

1 Faculty of Engineering, University of Kragujevac, Kragujevac 34000, Serbia. 
2 Bioengineering Research and Development Center (BioIRC), Kragujevac 34000, Serbia. 
3 Faculty of Science, University of Kragujevac, Kragujevac 34000, Serbia. 
4 Institute for Information Technologies, University of Kragujevac, Kragujevac 34000, 

Serbia. 
5 Belgrade Metropolitan University, Belgrade 11000, Serbia. 
6 Serbian Academy of Sciences and Arts, Belgrade 11000, Serbia. 
7 Houston Methodist Research Institute, Houston TX 77030, USA. 

*Correspondence should be addressed to Nenad Filipović; fica@kg.ac.rs 

Abstract 

The computational requirements of the Huxley-type muscle models are substantially higher 

than those of Hill-type models, making large-scale simulations impractical or even 

impossible to use. We constructed a data-driven surrogate model that operates similarly to the 

original Huxley muscle model but consumes less computational time and memory to enable 

efficient usage in multiscale simulations of the cardiac cycle. The data was collected from 

numerical simulations to train deep neural networks so that the neural networks’ behavior 

resembles that of the Huxley model. Since the Huxley muscle model is history-dependent, 

time series analysis is required to take the previous states of the muscle model into account. 

Recurrent and temporal convolutional neural networks are typically used for time series 

analysis. These networks were trained to produce stress and instantaneous stiffness. Once the 

networks have been trained, we compared the similarity of the produced stresses and 

achieved speed-up to the original Huxley model, which indicates the potential of the 

surrogate model to replace the model efficiently. We presented the creation procedure of the 

surrogate model and integration of the surrogate model into the finite element solver. Based 

on similarities between the surrogate model and the original model in several types of 

numerical experiments, and also achieved speed-up of an order of magnitude, it can be 

concluded that the surrogate model has the potential to replace the original model within 

multiscale simulations. Finally, we used our surrogate model to simulate a full cardiac cycle 

in order to demonstrate the application of the surrogate model in larger-scale problems. 

Keywords: surrogate modeling, recurrent neural networks, Huxley’s muscle model, finite 

element analysis, multi-scale modeling 

Introduction 

Clinicians can use simulations of cardiac muscle behavior to evaluate various real and 

fictional events. Present understanding of the molecular processes behind muscle contraction 

inspired biophysical muscle models. Biophysical muscle models, often called the Huxley-

type models, are based on the underlying physiology of muscles, making them suitable for 

modeling non-uniform and unsteady contractions. Furthermore, biophysical muscle models 
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can be used to investigate the influence of the genetic properties on the behavior of muscles. 

Genetic mutations can lead to modulated cross-bridge kinetics and contractile characteristics 

of muscle cells. These mutations account for a significant percentage of cardiomyopathies.  

Multiscale finite element simulation with the Huxley muscle model at a microlevel was 

presented by Stojanovic et al. [1,2]. To analyze muscle behavior via in silico analysis, they 

modeled biophysical processes on multiple spatial and temporal scales. They performed a 

multi-scale simulation in which continuum muscle mechanics was modeled using the finite 

element method, while the material characteristics of muscle at the microscopic scale were 

defined by Huxley’s muscle contraction model [1,2]. During transient finite element 

simulation, they employed Huxley’s model to calculate stress and instantaneous stiffness, 

given the muscle activation, stretch, and other material parameters and properties [1]. These 

finite element simulations can be quite computationally intensive. The microscale 

calculations are the most time-consuming component of these simulations. Single-time step 

simulations with hundreds of finite elements take up to several thousand seconds to execute.  

To speed up the simulations, they employed hybrid MPI-GPU parallelization to simulate a 

2D model of the tongue [3,4]. The general flaw of the biophysical muscle models is a large 

computational requirements in terms of memory and time consumption. The speed-up 

achieved by parallelization can be significant, but this requires acces to high performance 

computing clusters. In their research, it is obvious that even with a computing cluster, a 

multi-scale finite simulation took a long time to execute. To lower the computational 

requirements of such simulations, we created a more computationally efficient surrogate 

model to replace the real Huxley muscle model. The advantage of the surrogate model is that 

high speed-up can be achieved using just a single processor. The drawback can be the loss of 

accuracy.  

Machine learning is becoming increasingly popular in scientific research. Some of the 

advantages in this area are shown by S. Aydın [5,6] using support vector machines and long 

short-term memory (LSTM) units to classify discrete emotional states. High classification 

accuracy is achieved indicating that these methods are very suitable for prediction tasks. A 

surrogate model based on artificial neural networks for composite materials considering 

progressive damage was firstly presented by Yan et al. [7]. A multi-layer perceptron was 

employed to construct the surrogate model by conducting regression for the constitutive law 

and classification for the damage information [7]. A surrogate model for strain-softening 

Perzyna visco-plasticity as the nonlinear material model at the micro-level was presented by 

Ghavamain and Simone [8]. They used modified long short-term memory (LSTM) units to 

predict stresses based on provided stretches. In both papers [7,8], a good resemblance 

between original and surrogate models was achieved. The multiscale simulation with 

generalized continua was presented by Feyel et al. [9]. These models are different from 

muscle models. For muscle models, more input features are needed and additional learning 

mechanisms had to be employed to create the muscle surrogate models. In research presented 

by Ghavamain and Simone [8], only strains are required for stress prediction, which isn’t 

sufficient in the case of muscles, since their behavior is dependent also on activation and 

previous stresses. They predict stress directly, but in the case of muscle modeling, this would 

result in low numerical precision and poor generalization. In our research, the stress 

increment is predicted instead. Also, in research presented by Yan et el. [7] and Ghavamain 

and Simone [8], the execution time is not explicitly measured, while we take it as a major 

motivation and first class performance metrics in our approach.  As far as the authors know, 

the surrogate model of the Huxley muscle model, such that the model is operating 

dynamically within the multi-scale simulation has not been created before.  
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Our goal was to create a surrogate model of the Huxley muscle model for a predefined set of 

parameters, varying only the muscle activation and external loads. During finite element 

analysis, we provide stretch to the material model and expect the stress and instantaneous 

stiffness, which depends on the state and parameters of the material. Therefore, stretch and 

muscle activation at the current time step, for each of the integration points, are necessary to 

calculate stress and instantaneous stiffness, but they are not sufficient since muscle behavior 

is history-dependent. To take this history dependence of muscle behavior into account, we 

used time series consisting of activation at current and previous time steps, stretch at current 

and previous time steps, stress at previous time steps, and instantaneous stiffness at previous 

time steps to predict stress instantaneous stiffness for the current time step. We also present 

the complete  procedure for surrogate model creation, using recurrent and convolutional 

neural networks, together with the integration of the surrogate model into the finite element 

analysis framework. The results obtained from different numerical experiments using the 

original and the surrogate Huxley model show the similarities between these two models. The 

proposed surrogate model is tens of times faster than the original model, making it 

significantly more convenient in simulating the left ventricle mechanical behavior.  

Materials and Methods 

In this section, we briefly present the finite element procedure used at the macro level 

together with the Huxley muscle model used at the microlevel of the multi-scale simulation. 

Further, we specify neural networks utilized for the creation of the surrogate model. In more 

detail, we demonstrate the surrogate model creation procedure and integration of the 

surrogate model into the finite element simulation, since, as far as we know, this approach 

has not been carried out before for surrogate muscle models.  

Finite element method 

From a mechanical point of view, a muscle can be considered a mechanical system. The most 

common method for solving complex materially and geometrically nonlinear structural 

problems is the finite element method. In an incremental-iterative scheme, the equilibrium 

configuration of a muscle can be calculated, considering the muscle as a structure composed 

of active fiber elements, able to contract under activation within the deformable connective 

tissue continuum as demonstrated by Kojic and Bathe [10,11]. The governing equilibrium 

equation of an FE structure in the deformed configuration at a time step (t) and iteration (i) is 

formulated as: 

(𝑡+Δ𝑡𝐾𝑝𝑎𝑠𝑠 +  𝑡+Δ𝑡𝐾𝑎𝑐𝑡) 
(𝑖−1)𝛿𝑈(𝑖) =  𝑡+Δ𝑡𝐹𝑒𝑥𝑡  +  𝑡+Δ𝑡𝐹𝑝𝑎𝑠𝑠

(𝑖−1)
+  𝑡+Δ𝑡𝐹𝑎𝑐𝑡

(𝑖−1)
           (1) 

where  𝑡+Δ𝑡𝐹𝑒𝑥𝑡,  
𝑡+Δ𝑡𝐹𝑝𝑎𝑠𝑠

(𝑖−1)
,  𝑡+Δ𝑡𝐹𝑎𝑐𝑡

(𝑖−1)
are vectors of external loads, passive internal nodal 

forces, and active molecular forces wrapped into finite element nodal forces, 

respectively;  𝑡+Δ𝑡𝐾𝑝𝑎𝑠𝑠
(𝑖−1)

 is the stiffness matrix of passive muscle components and 𝑡+Δ𝑡𝐾𝑎𝑐𝑡
(𝑖−1)

 

is the cumulative stiffness of actomyosin bonds; 𝛿𝑈(𝑖) are increments of nodal displacements 

at iteration (𝑖).  Active force generation 𝑡+Δ𝑡𝐹𝑎𝑐𝑡
(𝑖−1)

  and stiffness  𝑡+Δ𝑡𝐾𝑎𝑐𝑡
(𝑖−1)

  are directly 

dependent on the rate of muscle deformation in the principal direction of muscle fibers. The 

total stress 𝜎𝑚 is expressed as the contribution of active muscle forces and the contribution of 

passive elasticity of connective tissue and noncontractile parts of tissue: 

𝜎 = 𝜙𝜎𝑚 + (1 − 𝜙)𝜎𝐸                                                     (2) 
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where 𝜙 is the fraction of muscle fibers in total muscle volume, 𝜎𝑚 is the active stress 

generated in muscles and 𝜎𝐸 is the stress in the passive part of the muscle. A similar 

procedure was applied with the phenomenological Hill model as demonstrated by Stojanovic 

et al. [12]. More details about multiscale finite element analysis with the Huxley muscle 

model at a micro-level as demonstrated by Mijailovich et al. [15]. Figure 1a shows the finite 

element model. At each integration point of the finite element, muscle fiber is observed  

(Figure 1b) and the stress and stress derivative (instantaneous stiffness) are calculated by the 

Huxley micromodel (Figure 1c) or surrogate model (Figure 1d). The calculations to obtain 

active stresses are shown in further detail in the next section.  

 

Figure 1: Finite element with c) original Huxley muscle model c) and d) surrogate model at the microlevel.  

Huxley muscle model 

Huxley considered the dynamics of the filaments within muscle and the probability of 

establishing connections (cross-bridges) of myosin heads to actin filaments inside sarcomeres 

[15, 16]. The n(x,t) function describes the rate of connections between myosin heads and 

actin filaments, as a function of the position of the nearest available actin-binding site relative 

to the equilibrium position of the myosin head x: 

𝜕𝑛(𝑥,𝑡)

𝜕𝑡
− 𝑣

𝜕𝑛(𝑥,𝑡)

𝜕𝑥
= [1 − 𝑛(𝑥, 𝑡)]𝑓(𝑥, 𝑎) − 𝑛(𝑥, 𝑡)𝑔(𝑥), ∀𝑥 ∈ 𝛺 

where f(x,a) and g(x) represent the attachment and detachment rates of cross-bridges 

respectively, v is the velocity of filaments sliding, positive in the direction of contraction, and 

a is a muscle activation given as a function of time [14]. The partial differential Equation (3) 

can be solved using the method of characteristics with initial condition 𝑛(𝑥, 0) = 0. Once the 

𝑛(𝑥, 𝑡) values are acquired, we can calculate the generated force F within the muscle fiber 

and also stiffness K using the equations: 

𝐹(𝑡) = 𝑘 ∑ 𝑛(𝑥, 𝑡)𝑥 ∞
−∞ 𝑑𝑥                                               (4) 

𝐾(𝑡) = 𝑘 ∑ 𝑛(𝑥, 𝑡) ∞
−∞ 𝑑𝑥                                                 (5)      

where k is the stiffness of the cross-bridges. The stress and instantaneous stiffness can be 

calculated as: 

𝜎𝑚 = 𝐹
𝜎𝑖𝑠𝑜

𝐹𝑖𝑠𝑜
                                                                    (6) 

𝜕𝜎𝑚

𝜕𝑒
= 𝜆𝐿0𝐾

𝜎𝑖𝑠𝑜

𝐹𝑖𝑠𝑜
                                                       (7) 

where 𝐹𝑖𝑠𝑜 is a maximal force achieved during isometric conditions, 𝜎𝑖𝑠𝑜 maximal stress 

achieved during isometric conditions, 𝐿0 the initial length of sarcomere and 𝜆 is stretch. 

Calculated stresses and instantaneous stiffness are directly utilized at the upper, macro-level 

during finite element analysis to form  𝑡+Δ𝑡𝐹𝑎𝑐𝑡
(𝑖−1)

 and 𝑡+Δ𝑡𝐾𝑎𝑐𝑡
(𝑖−1)

. The muscles are activated 

under the influence of calcium. The muscle activation can be derived from the calcium 
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concentration function, which is prescribed in our numerical experiments. To generate 

calcium concentration function, we employ the parametric equation [17]:  

𝐶𝑎𝑖(𝑡) = 𝐶𝑎0 + (𝐶𝑎𝑚𝑎𝑥 − 𝐶𝑎0)
𝑡

𝜏𝐶𝑎
𝑒1−

𝑡

𝜏𝐶𝑎                            (8) 

where 𝐶𝑎𝑖(𝑡) is a time-dependent intracellular concentration of 𝐶𝑎2+, which has a resting 

level 𝐶𝑎0 and achieves its maximum value 𝐶𝑎𝑚𝑎𝑥 at time 𝑡 = 𝜏𝐶𝑎.  The calcium 

concentration is converted to an activation 𝛼 using the formula: 

𝛼 =
(𝐶𝑎)𝑛

(𝐶𝑎)𝑛+(𝐶50)𝑛
                                                     (9) 

where 𝐶50 is the value required to achieve 50% availability of calcium, calculated using 

𝑝𝐶50 = 𝑝𝐶50𝑟𝑒𝑓(1 + 𝛽2(𝜆 − 1)); 𝐶50 = 106−𝑝𝐶50 [µM], and 𝑛 is defined as  

𝑛 = 𝑛𝑟𝑒𝑓(1 + 𝛽1(𝜆 − 1 ))                                        (10) 

where 𝜆 is stretch, 𝑝𝐶50𝑟𝑒𝑓, 𝑛𝑟𝑒𝑓, 𝛽1 and 𝛽2 are constant coefficients. We used values 𝑛𝑟𝑒𝑓 =

5.2, 𝑝𝐶50𝑟𝑒𝑓 = 6.18, 𝛽1 = 1.95 and  𝛽2 = 0.31, taken from [17].  

Recurrent and convolutional neural networks 

Recurrent neural networks are often used for time series analysis [18]. These networks allow 

previous outputs to be used as inputs while having hidden states. Recurrent neural networks 

are hard to train because they are especially susceptible to the exploding and vanishing 

gradient problem [19]. There are several improvements to the basic recurrent neural 

networks, trying to resolve vanishing gradient problems. While the standard long short-term 

memory unit (LSTM) solves the vanishing gradient problem by adding internal memory 

[20,21] and the gated recurrent unit (GRU) attempts to be a faster solution than the long 

short-term memory unit by using no internal memory [22], the nested long short-term 

memory (nested LSTM) goes in the opposite direction of the gated recurrent unit by adding 

additional memory to the unit. The idea here is that adding additional memory to the unit 

allows for more long-term memorization. We briefly describe GRU and nested LSTM 

approaches, since they exhibit a clear potential for muscle surrogate modeling. 

 

Figure 2: Gated recurrent unit (GRU) scheme  

The GRU cell has only an update and a reset gate. Based on the information shown in Figure 

2, the mathematical expressions of the GRU cell are as follows: 

𝑟𝑡 = 𝜎(𝑊𝑟ℎℎ𝑡−1 + 𝑊𝑟𝑥𝑥𝑡 + 𝑏𝑟)                                   (11) 

𝑧𝑡 = 𝜎(𝑊𝑧ℎℎ𝑡−1 + 𝑊𝑧𝑥𝑥𝑡 + 𝑏𝑧)                                   (12) 

ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡𝑡𝑎𝑛ℎ(𝑊ℎℎ(𝑟𝑡ℎ𝑡−1) + 𝑊ℎ𝑥𝑥𝑡 + 𝑏𝑧)             (13) 

where t denotes a time step, r denotes reset gate output, z denotes update gate output and h is 

the hidden state, 𝜎 is sigmoid activation function, 𝑡𝑎𝑛ℎ is a tangential hyperbolic function, W 

represents weights of appropriate GRU cell parts, 𝑏𝑟, 𝑏𝑧 represent reset and update biases and 

x is an input vector. 

In an LSTM, the equations of updating the cell state and the gates are given by: 

𝑖𝑡 = 𝜎𝑖(𝑥𝑡𝑊𝑥𝑖 + ℎ𝑡−1𝑊ℎ𝑖 𝑏𝑖)                                          (14) 

𝑓𝑡 = 𝜎𝑓(𝑥𝑡𝑊𝑥𝑓 + ℎ𝑡−1𝑊ℎ𝑓 + 𝑏𝑖)                                      (15) 
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𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝜎𝑐(𝑥𝑡𝑊𝑥𝑐 + ℎ𝑡−1𝑊ℎ𝑐 + 𝑏𝑐)                        (16) 

𝜎𝑡 = 𝜎𝑜(𝑥𝑡𝑊𝑥𝑜 + ℎ𝑡−1𝑊ℎ𝑜 + 𝑏𝑜)                                      (17) 

ℎ𝑡 = 𝜎𝑖 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡)                                                     (18) 

where the input (i), forget (f), and output gate (o) activation functions 𝜎𝑖, 𝜎𝑓 , 𝜎𝑜 are sigmoid 

activation functions; 𝑡𝑎𝑛ℎ is a tangential hyperbolic function; 𝑐 represents the cell value, h 

represents the hidden state of the cell,  𝑊 represents weights, b denotes bias, and 𝑥 is an input 

vector. Nested LSTM replaces the addition operation used to compute 𝑐𝑡 in LSTM with a 

learned stateful function 𝑐𝑡 = 𝑚𝑡(𝑓𝑡 ⊙ 𝑐𝑡−1, 𝑖𝑡 ⊙ 𝑔𝑡). The state of the function 𝑚 at time t is 

inner memory, which is computed by another LSTM memory cell, producing a nested 

LSTM. The memory function can be another Nested LSTM cell, enabling deep nesting. The 

input and the hidden states of the memory function in a Nested LSTM become:  

ℎ̃𝑡−1 = 𝑓𝑡 ⊙ 𝑐𝑡−1                                                   (19) 

�̃�𝑡 = 𝑖𝑡 ⊙ 𝜎𝑐(𝑥𝑡𝑊𝑥𝑐 + ℎ𝑡−1𝑊ℎ𝑐 + 𝑏𝑐)                                 (20) 

Besides recurrent neural networks, convolutional neural networks can also be used for 

modeling sequential data. For a 1-D sequence input 𝑥 ∈ ℝ 𝑛 and a filter 𝑓: {0, … , 𝑘 − 1} → ℝ 

the dilated convolution operation 𝐹 on element  𝑠 of the sequence is defined as: 

𝐹(𝑠) = (𝑥 ∗𝑑 𝑓)(𝑠) =  ∑ 𝑓(𝑖) 𝑥𝑠−𝑑𝑖
𝑘−1
𝑖=0                                      (21) 

where 𝑑 is the dilation factor, 𝑘 is the filter size, and 𝑠 − 𝑑𝑖 accounts for the direction of the 

past. Choosing larger filter sizes and increasing the dilation factor increases the receptive 

field of the TCN. The scheme of TCN is shown in Figure 3.  

 

Figure 3: Temporal convolutional network scheme  

The surrogate model creation procedure 

In this section, we demonstrate the procedure for creating the surrogate model. We start from 

a numerical experiment generator, which is used to generate inputs for finite element 

analysis. The generated models contain a single 2-D finite element, shown next to the 

generator in Figure 4, with boundary conditions varying based on the type of the experiment. 

Using our generator, we created four types of numerical experiments: (1) isotonic 

contraction, (2) quick release, (3) prescribed force, and (4) prescribed displacement.  

For isotonic contraction experiments, the translations were constrained at node A in x and y 

directions, and at point C translations are constrained in x-direction. The generator varied the 

activation function or calcium concentration function for each generated isotonic contraction 

experiment.  During isotonic contraction, the muscles were activated directly by the 



 7 

activation function or by calcium function, which is converted to the activation function. 

Under the influence of activation, muscles contracted and, once deactivated, muscles slowly 

returned to the initial position. During quick release experiments muscles were fully activated 

and translations in all directions were constrained at points A, B, and D, until a specified time 

step, at which translation constraints were removed at points D and B, releasing the muscle 

and the force was dropped down to a value less than 25% of maximum force generated. The 

generator varied the time at which muscle was released and the value of the prescribed force. 

For prescribed forces experiments, forces were prescribed at nodes D and B, while translation 

constraints were the same as the ones in the isotonic contraction experiment. The generator 

varied the prescribed force function. For prescribed displacement experiments, displacements 

were prescribed at nodes D and B, while translation constraints were the same as the ones in 

the isotonic contraction experiment. The generator varied the prescribed displacement 

function. 

 

Figure 4: Surrogate creation scheme.  

Once we generated the inputs, we ran finite element analysis with the original Huxley muscle 

model and saved the data collected from these simulations. We stored the muscle activation, 

stretch, stress, and stress derivatives acting as the input features for all our neural networks.  

We preprocessed the data so that it was converted into time series. Input tensor passing 

through the neural network was three-dimensional, where the dimensions were equal to (1) 

the number of data points at which we wanted to predict output values, (2) the number of 

features, and (3) time-series length. For a single data point we had an input of the following 

form:  

[
 
 
 
 
 
 
  

𝑡−(𝑡𝑙−1)Δ𝑡𝛼  𝑡−(𝑡𝑙−1)Δ𝑡𝜆  𝑡−𝑡𝑙Δ𝑡𝜎𝑚
∂ 𝑡−𝑡𝑙Δ𝑡𝜎𝑚

∂ 𝑡−𝑡𝑙Δ𝑡𝑒

 𝑡−(𝑡𝑙−2)Δ𝑡𝛼  𝑡−(𝑡𝑙−2)Δ𝑡𝜆  𝑡−(𝑡𝑙−1)Δ𝑡𝜎𝑚
∂ 𝑡−(𝑡𝑙−1)Δ𝑡𝜎𝑚

∂ 𝑡−(𝑡𝑙−1)Δ𝑡𝑒

⋮ ⋮ ⋮ ⋮

 𝑡𝛼  𝑡𝜆  𝑡−Δ𝑡𝜎𝑚
∂ 𝑡−Δ𝑡𝜎𝑚

∂ 𝑡−Δ𝑡𝑒

 𝑡+Δ𝑡𝛼  𝑡+Δ𝑡𝜆  𝑡𝜎𝑚
∂ 𝑡𝜎𝑚

∂ 𝑡𝑒 ]
 
 
 
 
 
 
 

(𝑡𝑙+1)×4

              (22) 
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where 𝛼 is muscle activation, 𝜆 is stretch, 𝜎𝑚 is stress, 
∂𝜎𝑚

∂𝑒
 is stress derivative,  (tl+1) is the 

total length of the time series and t+Δt is the end of the current time step, within finite 

element simulation. Based on this input tensor we predicted stress increment  𝑡+Δ𝑡Δ𝜎
^

𝑚 and 

increment of stress derivative ∂ 𝑡+Δ𝑡Δ𝜎
^

𝑚/ ∂ 𝑡+Δ𝑡𝑒. With the “^” symbol, we denoted 

predicted values.  

To train the model, we scaled input values to the range between 0 and 1, thus enabling equal 

influence of all input features to the prediction of the neural network. We also scaled the 

output stress and instantaneous stiffness to the range between 0 and 1. To get the increments, 

we subtracted corresponding scaled values, and we further scaled these increments, 

producing increments that are more separated from each other and enabling the network to 

achieve higher precision predictions.  Once the network was trained we used simple 

formulas:  

 𝑡+Δ𝑡𝜎
^

𝑚 =  𝑡𝜎𝑚 +  𝑡+Δ𝑡Δ𝜎
^

𝑚                                                    (23) 

 ∂ 𝑡+Δ𝑡𝜎
^

𝑚/ ∂ 𝑡+Δ𝑡𝑒 = ∂ 𝑡𝜎𝑚/ ∂ 𝑡𝑒 + ∂ 𝑡+Δ𝑡Δ𝜎
^

𝑚/ ∂ 𝑡+Δ𝑡𝑒                          (24) 

to calculate the stress and instantaneous stiffness. 

After preprocessing the data, creation, and training of the model, we run identical numerical 

experiments, which we previously ran with the original Huxley model, with our surrogate 

model and stored the results. If a satisfying similarity between the original and surrogate 

model is achieved, we proceed to generate new random experiments. Contrary, in case our 

model fails to achieve satisfying similarity, we go back to the creation and training of the 

model. Once we generate new random experiments, we run additional tests and if we achieve 

satisfying similarity with random numerical experiments, we stop the process. On the other 

hand, if our surrogate model fails to pass the tests, we start the process from the beginning 

and enriched the data used for the creation of the surrogate model.   For the creation of the 

surrogate model, we generated a total of 160 numerical experiments for training and 

validation of the model: 45 isotonic contraction experiments, 20 quick release experiments, 

40 prescribed force experiments, and 55 prescribed displacement experiments. Every fourth 

experiment was used to validate the model, while the rest were used for model training. We 

generated 8 additional experiments, 2 of each kind, to test the surrogate model. The optimal 

hyperparameters of the neural networks were obtained by trial-and-error, following the 

process shown in Figure 4. The hyperparameters for each type of network are summarized in 

Table 1 in the results section. The main performance criterion was the correlation coefficient 

between stresses produced by the original Huxley model on one side, and the surrogate model 

during finite element analysis, on the other side. Secondary performance criteria include 

achieved speed-up, together with  memory consumption.   

Integration of the surrogate model into the finite element analysis framework  

The procedure of integrating the surrogate model into the finite element analysis framework 

consists of initialization, setting the input values for the neural network, getting the values, 

and updating the input at the end of each finite element time step. The full procedure is 

depicted in Figure 5.  

During initialization (surro_init), we initialize the input tensor of the neural network, load the 

neural network architecture and weights, and load time series and scaling/descaling 

parameters from the configuration file. The input tensor size depends on the time series 

length, the number of input features, and the number of integration points in the model. The 

initial stretch values were set to 1.0, and the other values of the input tensor to zero.  
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During each time step of the numerical simulation and each iteration of the simulation, we 

provide the activation and stretch at each integration point (ip) to the surro_set_values 

function. These values are scaled and stored in the appropriate location in the input tensor as 

shown in Figure 5.  Once all the values are set, by calling the surro_predict function the 

neural network predicts the stress increments and instantaneous stiffness increments. To 

utilize these values in finite element analysis, we employ the procedure surro_get_values, 

which descales the predicted increments and calculates stress (stress) and instantaneous 

stiffness (dstress), and returns the values for a specified integration point (ip). At the end of 

the finite element step,  the data in the input tensor shifts back in time, leaving the last row 

for the subsequent FE time step. 

Figure 5: Surrogate integration into finite element software scheme.  

 

Results and Discussion 

In this section, we specify the nature of the collected data, present the results obtained by the 

proposed surrogate model on various types of numerical experiments, and analyzeachieved 

speed-up. Moreover, we demonstrate the left ventricle multi-scale model, in which the 

proposed surrogate model is employed as a drop-in replacement for the Huxley model, acting 

as a muscle material model.  

The collected data and training mechanisms   

To demonstrate the specifics of the collected data and explain why we predict increments 

instead of stress values directly, it is best to show the stress autocorrelation. In Figure 6, the 

stress at time t+Δt and previous stress values at time t are shown. We can separate three 

distinct cases in Figure 6: (1) cases with only isotonic contractions, (2) cases with isotonic 

contractions and quick release experiments, and (3) cases with all numerical experiments 

used during training.  It can be noted that the correlation between stresses  𝑡𝜎𝑚 and  𝑡+Δ𝑡𝜎𝑚 is 

generally strong, but once the quick release experiments are added into the training set, the 

obvious outliers appear (circled in Figure 6).  
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In general, stress increments or decrements by a small value. The large difference between 

the current and previous muscle stress occurs at the quick release experiments at the moment 

where the muscle is suddenly released and the force is dropped. This is where the outliers 

come from. If we used neural networks to directly predict stress  𝑡+Δ𝑡𝜎𝑚 the neural network 

would use this strong general correlation, and with isotonic contraction, this approach could 

work. However, once the quick release experiments are added to the training set, this 

approach fails. Adding the quick release experiments makes the training harder since the 

range of values is a lot larger. A larger range of stress values makes it difficult to predict 

small and large stress values precisely enough for the surrogate model to work inside a finite 

element simulation. Since the number of outliers is not high compared to the full data set 

size, even if, during training, the predicted values for these data points are wrong, the total 

loss can be small. If we tested the network only on data, the prediction for the point of release 

would be wrong, but other points before and after the release moment would be similar to the 

original model leading to overall satisfactory performance. On the other hand, if we run the 

finite element simulation with the surrogate model, quick release experiments would fail, 

from the moment of muscle release to the end of the simulation. 

 

Figure 6: Stress autocorrelation.  

To resolve this issue, we propose predicting the increments of stress and stress derivatives, 

instead of values directly. By predicting the increments, we augment the importance of time 

moments at which the stress changes significantly. We also do not allow the neural network 

from abusing a strong correlation between input and output stress, enabling it to truly grasp 

the change of stress and stress derivatives (instantaneous stiffness) with respect to the input 

features (activation, stretch, stress, and stress derivative).  To enable the network to predict 

small and large increments precisely enough, we introduced a scaling factor for stress 

increments as a hyperparameter.  

A few mechanisms were key to successfully training the neural networks: (1) predicting 

stress and stress derivative increments, (2) scaling the prediction values, (3) Huber loss 

function, and (4) gradient normalizing. The early stopping mechanism prevents overfitting of 

the neural networks. Gradient clipping is a technique to prevent exploding gradients in very 

deep networks, usually in recurrent neural networks. The Huber loss function clips the 

gradient values since the derivative of the Huber loss function for errors larger than its delta 

parameter is constant. To normalize gradients, we set the gradient threshold. The gradient 

norms that exceed this threshold are scaled down to match the norm, making the training 
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more stable and less susceptible to exploding gradients. Normalizing gradients also helps the 

optimization algorithm to behave reasonably even if the loss landscape of the model is 

irregular. Without normalizing and clipping the gradients, the parameters can take a huge 

descent step and leave the region with a potentially optimal solution. With clipping, the 

descent step size is restricted and the parameter values stay in the good parameter space 

region. 

Comparison of the trained neural networks  

During the creation of the surrogate model, we constructed a lot of different neural networks. 

In this subsection, we show a few representatives, exhibiting the greatest potential for muscle 

surrogate modeling.  
Table 1: The hyperparameters of the selected neural networks 

Type of neural 
network 

Number of 
weights 

Hidden layers 

TCN 928,706 
11 convolutional layers ×192 filters   

dilations = [1,2,4,8,16], kernel_size=4 

Nested LSTM 992,002 1 nested layer, depth = 8, 128 neuros per depth 

GRU 992,770 
[1st,4th and 5th] GRU layer ×128 neurons,  

[2nd, 3rd] GRU layer ×256 neurons 

Nested LSTM-TCN 991,874 
1 nested layer, depth 6, 128 neurons per depth,  

 7 convolutional layers ×128 filters, dilations = [1,2,4], kernel_size=4 

GRU-TCN 974,978 

   
[1st, 4th] GRU layer ×64 neurons, [2nd, 3rd] GRU layer ×256 

neurons,  
 7 convolutional layers ×128 filters, dilations = [1,2,4], kernel_size=4 

Common hyperparameters: Rectified Adam teaches all networks with initial learning rate = 10-3,  
𝛃𝟏 = 𝟎. 𝟗𝟗, 𝛃𝟐 = 𝟎. 𝟗𝟗𝟗𝟗, clip norm = 10-4. Huber loss function was minimized with 𝛅 = 𝟓𝟖 ×10-6. The total 
number of epochs was set to a maximum of 50000 with the batch size 16384, together with Early stopping 
having the patience of 500 epochs. 

 

In Table 1, we show a summary of the hyperparameters for five different types of neural 

networks: (1) TCN, (2) Nested LSTM, (3) GRU, (4) Nested LSTM-TCN, and (5) GRU-TCN. 

TCN, GRU, and LSTM neural networks were chosen for comparison since they are typically 

used in time series analysis. Their hyperparameters were mainly optimized by trial-and-error, 

since it was not clear in advance which of these neural networks will perform the best within 

in the multi-scale finite element simulation. Rectified Adam turned out to be the best 

optimizer for our problem, so we used it to train all the networks. The rest common 

hyperparameters for all the networks are shown in Table 1. The total number of weights is 

similar in all constructed neural networks, so we can compare the computational performance 

of all these networks fairly enough. The mean correlation coefficients between true and 

predicted stress values for 5 types of neural networks are shown in Table 2. The table 

presents the correlation coefficients acquired on the train, validation, and test data, together 

with the correlation coefficients acquired on the train, validation, and test simulations. The 

quality of the proposed surrogate model is apparent in the high average correlation between 

real and predicted values and low deviation, showing that the surrogate performs similarly in 

all conducted numerical experiments. However, the obtained correlation coefficients are 

always lower in numerical simulations. For predictions made on data, we always have the 

correct input data, while for predictions made during simulations, inputs differ from the 

original under the influence of the cumulative effect of predicted stress and instantaneous 

stiffness. In general, high correlation acquired on data will produce high correlations with 
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simulations, if the generalization is good enough. The generalization is best shown in test 

experiments. If the network performs well on the test set, we can conclude that the 

generalization is sufficiently good. The low standard deviation between correlation 

coefficients acquired from the different numerical experiments also indicates a good 

generalization. The poorest results on the test set were achieved by TCN, indicating that 

convolutional neural networks generalize worse than recurrent neural networks in time series 

analysis tasks. The highest correlation coefficients on train, validation, and test data were 

achieved by GRU neural network. Note that the GRU neural network has the update and reset 

mechanisms that are mostly similar to the ones used during finite element iterations, which 

could explain their good performance in multi-scale simulations. With GRU approach, we 

also obtained the most accurate behavior in the numerical simulation. Moreover, GRU 

network exhibits the lowest deviations of correlation coefficients in most cases. It’s 

interesting to see that combining the Nested LSTM network and TCN network produces 

better results than Nested LSTM and TCN individually. The Nested LSTM performed better 

on the test set than TCN. On the other hand, TCN performed better on the training set. 

Combining these networks helped balance out the individual flaws of the Nested LSTM and 

TCN.  However, such an effect wasn’t achieved when combining GRU and TCN, because 

stand-alone GRU performed better. On the other hand, combined GRU-TCN performed 

better than combined Nested LSTM-TCN. In total, the GRU network showed the greatest 

potential for muscle surrogate modeling. It can be seen that the correlation coefficients drop 

in test experiments for all the networks, in Tables 2 and 3, indicating that the generalization 

of our networks could be further improved. The drop rate of the correlation coefficients in 

our test experiments is the lowest considering GRU, confirming its generalization potential. 

The mean correlation coefficients between real and predicted instantaneous stiffness values 

for all 5 types of neural networks are shown in Table 3.  They are very similar to the ones 

shown in Table 2. 

 
Table 2: Mean and standard deviation of correlation coefficients between true and predicted stress values 

Type of neural 

network  

Mean correlation coefficient between true and predicted stress  

on data within numerical simulation 

train validation test train validation test 

TCN 0.9̅545  0.9̅489 0.9̅387 0.961  0.967 0.634  

Nested LSTM 0.9̅379  0.9̅381 0.9̅430 0.543 0.632 0.216  

GRU 0.�̅�𝟔72  0.�̅�𝟔40 0.�̅�𝟓18 0.�̅�𝟑77  0.�̅�𝟑65 0.989  

Nested LSTM-TCN 0.9̅551 0.9̅556 0.9̅471 0.981 0.981 0.812  

GRU-TCN 0.�̅�𝟔72  0.9̅584 0.9̅459 0.9̅324 0.998 0.965  

Note: The notation �̅�𝒙means the 9 is repeated x times.  

Type of neural 

network  

The standard deviation of the correlation coefficient between true and predicted 

stress  

on data within numerical simulation 

train validation test train validation test 

TCN 3.31 ×10-5 3.78 ×10-5 2.95 ×10-4 1.20 ×10-1 9.29 ×10-2 5.19 ×10-1 

Nested LSTM 5.18 ×10-4 4.08 ×10-4  3.89 ×10-5 4.03 ×10-1 3.47 ×10-1 4.04 ×10-1 

GRU 9.60 ×10-7 1.38 ×10-6 1.80 ×10-5 1.03 ×10-3 6.83 ×10-4 2.35 ×10-2 

Nested LSTM-TCN 3.03 ×10-5 1.25 ×10-5 5.01 ×10-5 4.97 ×10-2 5.28 ×10-2 3.57 ×10-1 

GRU-TCN 8.70 ×10-7 4.05 ×10-6 9.09 ×10-5 3.04 ×10-3 4.52 ×10-3 6.92 ×10-2 

 
Table 3: Mean and standard deviation of correlation coefficients between true and predicted instantaneous 

stiffness values 
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Type of neural 

network  

Mean correlation coefficient between true and predicted instantaneous stiffness 

on data within numerical simulation 

train validation test train validation test 

TCN 0.9̅750  0.9̅620 0.9̅673 0.976  0.976 0.691  

Nested LSTM 0.9̅578  0.9̅551 0.9̅587 0.762 0.823 0.533  

GRU 0.�̅�𝟕80  0.�̅�𝟕80 0.�̅�𝟔84 0.�̅�𝟑84  0.�̅�𝟑70 0. �̅�𝟑75  

Nested LSTM-TCN 0.9̅740 0.9̅680 0.9̅470 0.987 0.984 0.845  

GRU-TCN 0.�̅�𝟕80   0.9̅660 0.9̅625 0.9̅346 0.998 0.986  

Note: The notation �̅�𝒙means the 9 is repeated x times.  

Type of neural 

network  

The standard deviation of the correlation coefficient between true and predicted 

instantaneous stiffness  

on data within numerical simulation 

train validation test train validation test 

TCN 1.60 ×10-7 4.20 ×10-6 3.90 ×10-7 1.10 ×10-1 7.00 ×10-2 4.08 ×10-1 

Nested LSTM 6.35 ×10-6 2.38 ×10-5  1.10 ×10-6 3.57 ×10-1 2.41 ×10-1 4.63 ×10-1 

GRU 6.00 ×10-8 3.10 ×10-7 2.40 ×10-7 4.61 ×10-4 6.70 ×10-4 4.64 ×10-4 

Nested LSTM-TCN 1.60 ×10-7 7.70 ×10-7 4.80 ×10-7 3.60 ×10-2 3.91 ×10-2 1.75 ×10-1 

GRU-TCN 4.00 ×10-8 1.47 ×10-6 1.43 ×10-6 2.84 ×10-3 6.83 ×10-3 2.62 ×10-2 

Stress-time diagrams with GRU network and original Huxley model  

In this subsection, we compare the results obtained using the proposed surrogate model based 

on GRU neural network, and the original model in different types of numerical experiments. 

Figures 7-9 show stress-time diagrams obtained from the numerical simulation carried out 

using the original Huxley model and the surrogate Huxley model. For the sake of simplicity, 

we don’t show the instantaneous stiffness, since the results are analogous. Figure 7 shows 

some cases of numerical experiments used to train the neural network. Figure 7a shows an 

example of isotonic contraction with calcium concentration function prescribed and 

corresponding activation function. Figure 7b depicts an example of quick release experiment, 

where the muscle is released and the force is dropped. Figure 7c shows an example of 

prescribed force experiments, along with the prescribed force function. Figure 7d depicts 

stress acquired from a prescribed displacement experiment. Figure 8 shows some of the cases 

used for validation during training of the neural network, while Figure 9 demonstrates some 

of the cases used to test the surrogate model. In all these experiments, the surrogate model 

performed very similarly to the original Huxley model.  
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Figure 7: Stress obtained from the numerical experiments used to train the neural network. Isotonic contraction 

a), quick release b), prescribed force c), prescribed displacement d). 

 

Figure 8: Stresses obtained from the numerical experiments used to validate the neural network. Isotonic 

contraction a), quick release b), prescribed force c), prescribed displacement d). 



 15 

 

Figure 9: Stresses obtained in numerical experiments used to test the neural network. Isotonic contraction a), 

quick release b), prescribed force c), prescribed displacement d). 

Speeding up the numerical simulations by using surrogate modeling 

To recall, the main goal of the proposed surrogate is to create a model that is computationally 

more efficient than the original. In this section, we analyze obtained speed-up. The speed-ups 

achieved by the surrogate modeling are depicted in Figure 10.  We compare the execution 

times of the sequential and parallel versions of the multiscale finite element simulation using 

the original Huxley model with the simulation carried out using the surrogate model. The 

parallelization is performed at the level of the integration points. Since all numerical 

experiments contain 4 integration points, we spawn 4 MPI processes. The surrogate model is 

faster than the original Huxley muscle model by an order of magnitude. More precisely, 

compared to the sequential version of the original Huxley muscle model, the surrogate model 

was around 50 times faster for the quick release, prescribed force, and prescribed 

displacements experiments, and around 25 times faster for the isotonic contraction 

experiments. This makes the surrogate model more usable in models with a larger number of 

finite elements. The memory consumption of the surrogate model depends on the size of the 

neural network and also the size of input and output tensors, while memory consumption of 

the original Huxley model mostly depends on the sizes of arrays for storing positions and 

probabilities of the cross-bridge attachments at the micro-level. The input tensors of the 

surrogate model are fairly small, since the length of the time series is 11, and the number of 

features is 4. In contrast, arrays in the original Huxley model implementation are large, 

requiring thousands of double precision numbers. In our use case with 4000 integration 

points, the original Huxley model consumed 23960 MB, while the simulation which 

incorporated the proposed surrogate required only 812 MB.   
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Figure 10: Execution time of the surrogate and the original model. 

Cardiac cycle with the left ventricle model  

To demonstrate the surrogate’s potential on a larger model, we used the left ventricle model 

with parameterized geometry.  The left ventricle model, consisting of a fluid and a solid wall 

is shown in Figure 11. We modeled the half of the left ventricle with a mitral and aortic 

branch at the top of the model. These branches are connected to the base by a connective 

geometrical component (Figure 11a). The fluid model geometry is generated by prescribing 

the lengths and diameters of all of the components. We also introduced additional parameters 

to control the mesh density. The solid domain is appended to the fluid domain (Figure 11b). 

To generate the solid domain, we prescribed wall thickness and the number of solid wall 

layers. The arrows in Figure 11b represent the helical muscle fibers with angles varying from 

60° at the endocardium (yellow arrows) to -60° at the epicardium (red arrows). Fibers in the 

middle of the wall thickness are shown in pink color. A linear change of the fiber directions 

is assumed over the wall thickness. The solid component of the model contains around 4000 

integration points. 

 

Figure 11: Left ventricle model a) fluid domain b) solid domain with muscle fibers  

The transient model takes into account the entire heart cycle, starting with the initial 

geometry, shown in Figure 11, which corresponds to the very start of diastole. During 

diastole, a constant fluid velocity of 100 mm/s is prescribed at the entrance to the mitral 

valve, while the aortic valve is closed. At the end of the diastolic period, the velocity at the 

mitral valve reduces to zero, and both valves are closed. This time interval when both valves 

are closed corresponds to the isovolumetric compression, and the muscles are activated 
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during this period.  The aortic valve opens at the very start of the systole and the muscles are 

slowly being deactivated. Under the influence of forces generated by muscles, the blood 

flows out of the ventricle, through the aortic valve. We used the Holzapfel material model to 

calculate the passive stresses generated within left ventricle tissue [23-29]. To determine the 

active stress, we employ the surrogate model based on GRU neural network, which showed 

the best similarity to the original Huxley muscle model (Figure 9). 

 

Figure 12: Left ventricle displacement field at start of the diastole (t=0.1s, t=0.2s, t=0.3s), and at the start and 

the middle of the systole (t=0.6s, t=0.7s, t=0.8s) 

In Figure 12 we showed displacement fields, in the solid wall of the model, at the start of the 

diastole (t=0.1s, t=0.2s, t=0.3s), and the start and middle of the systole (t=0.6s, t=0.7s, 

t=0.8s). Figure 13 shows the velocity field in fluid, at the start and middle of the diastole and 

the middle of the systole. It is visible that the muscles are generating the force at the start of 

the systole, contracting the ventricle, and towards the end of the cardiac cycle, the muscles 

are slowly being deactivated returning the ventricle to the initial configuration. These results 

confirm that the proposed surrogate model can be used in larger models. 

 

Figure 13: Left ventricle fluid velocity field at the start and the middle of the diastole, and the middle of the 

systole 

Conclusions 

In this paper, we presented the surrogate model of the Huxley muscle model, which is a 

biophysical muscle model based on the underlying physiology of the muscles. The surrogate 
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model was created via a data-driven approach, in which the data is collected from the multi-

scale finite element simulation with the original Huxley muscle model built in. Since muscles 

are a history-dependent type of material, i.e. their behavior is influenced by previous states of 

the model, we converted the collected data into time series and trained recurrent and 

convolutional neural networks. During the multiscale finite element simulation, we provide 

the material model with stretch and muscle activation, and the material model returns the 

stress and instantaneous stiffness based on these inputs and internal state. To produce stress 

and instantaneous stiffness for the current time step, the input of the neural network consists 

of the activation at current and previous time steps, stretch at current and previous time steps, 

stress at previous time steps, and instantaneous stiffness at previous time steps. 

The numerical experiment generator generates different types of experiments such as (1) 

isotonic contraction, (2) quick release, (3) prescribed forces, and (4) prescribed displacement 

experiment. The procedure to integrate the surrogate model into the finite element simulation 

is also presented in detail. 

Training the neural network to achieve similarity to the original model within finite element 

simulation was quite challenging. The precision of the predicted stress had to be high for the 

finite element simulation to work properly. The generalization of the neural network also had 

to be sufficiently good. If the generalization was insufficient, the network would fail in the 

numerical experiments that it wasn’t trained on, and it could even fail in the numerical 

experiment, which was used during training, since the neural network itself would produce 

the stress a bit different from the one used during training. 

We trained different types of recurrent and convolutional neural networks such as (1) TCN, 

(2) Nested LSTM, (3) GRU, (4) Nested LSTM-TCN, and (5) GRU-TCN. To train the neural 

networks well enough, we employed several machine-learning mechanisms, such as gradient 

clipping and normalizing. One of the key mechanisms that resolved the issues of 

generalization and precision, was preventing the neural network to abuse stress 

autocorrelation, by predicting the stress and instantaneous stiffness increment instead of 

stress and instantaneous stiffness values directly. We also introduced specific scaling factors 

for stress and instantaneous stiffness increments during training, that enabled the network to 

make higher precision predictions. The best neural network for this specific problem turned 

out to be the GRU neural network. We achieved high precision and a sufficient generalization 

with this network in four different types of numerical experiments. We also achieved a high 

speed-up which enabled us to use the model in significantly larger, realistic, and 

computationally intensive simulations. We demonstrate the potential of the proposed 

surrogate model to be used in modeling the behavior of the left ventricle, which would be 

much harder to accomplish using the original Huxley model due to the enormous 

computational requirements.  

The proposed surrogate model is created for a single set of parameters of the Huxley muscle 

model, so our future research could also include creating different surrogate models for a 

different set of Huxley model parameters that are related to the muscle protein mutations and 

disorders. Future research will include the application of newly discovered physics-informed 

neural networks [30] for solving Huxley muscle partial differential equation. The proposed 

surrogate model is precise enough, but generalization could be even better with a physics-

informed neural network, since they are specialized for solving partial differential equations.  

Data Availability 

The data used to support the findings of this study have been deposited in the GitHub 

repository https://github.com/BogdanM1/surro-muscle/data/. The code used to preprocess the 

https://github.com/BogdanM1/surro-muscle/data/
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data, create surrogate models, train and integrate the model into the finite element solver is 

also available in the repository https://github.com/BogdanM1/surro-muscle.   
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