Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex

Jelena Gitarić^a, Ivana M. Stanojević^b, Dušanka D. Radanović^c, Aurélien Crochet^d, Darko P. Ašanin^e, Vukasin Jankovic^f, Sanja Skaro-Bogojevic^f, Miloš I. Djuran^{g,*} and Biljana Đ. Glišić^{a,*}

^aUniversity of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia; ^bUniversity of Niš, Faculty of Agriculture in Kruševac, Kosančićeva 4, 37000 Kruševac, Serbia; ^cUniversity of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia; ^dUniversity of Fribourg, Department of Chemistry, Chemin du Musée 9, CH-1700 Fribourg, Switzerland; ^eUniversity of Kragujevac, Institute for Information Technologies Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia; ^fUniversity of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia; ^gSerbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia

*Corresponding authors. *E-mail addresses*: <u>milos.djuran@pmf.kg.ac.rs</u> (Miloš I. Djuran); <u>biljana.glisic@pmf.kg.ac.rs</u> (Biljana Đ. Glišić).

ABSTRACT

To investigate how modification in the structure of 1,3-propanediamine chain of 1,3-pdta (1,3propanediamine-N,N,N',N'-tetraacetate) ligand affects the structural and biological properties of the corresponding metal complexes, two new octahedral complexes, [Co(H₂O)₅Co(2,2diMe-1,3-pdta)]·H₂O (1) and [Mg(H₂O)₅Mg(2,2-diMe-1,3-pdta)]·1.5H₂O (2) (2,2-diMe-1,3pdta = 2,2-dimethyl-1,3-propanediamine-N,N,N',N'-tetraacetate), were synthesized and characterized by IR spectroscopy and single-crystal X-ray diffraction analysis. Additionally, UV-Vis and NMR spectroscopic methods were applied for the characterization of 1 and 2, respectively. Crystallographic data indicate that these complexes contain 2,2-diMe-1,3-pdta coordinated to the metal ion through 2 N and 4 O atoms forming [M(H₂O)₅M'(2,2-diMe-1,3pdta)] complex unit (M, M' = Co(II), Co(II) (1) and M, M' = Mg(II), Mg(II) (2)), which is composed of $[M'(2,2-diMe-1,3-pdta)]^{2-}$ and $[M(H_2O)_5O]^{2+}$ octahedra bridged by one of the axial carboxylate groups. The antimicrobial activities of 1 and 2 were evaluated against different bacteria and Candida spp., while their cytotoxic effect was tested on the normal human lung fibroblasts (MRC-5). The ability of 1 and 2 to inhibit formation of C. glabrata biofilms was also assessed. The obtained structural parameters and biological properties of the two complexes were compared to Co(II) and Mg(II) complexes with 1,3-pdta ligand.

KEYWORDS: Cobalt(II) complexes; magnesium(II) complexes; 1,3-pdta-type ligands; structural characterization; antimicrobial activity

TABLE OF CONTENTS

Figure S1. ¹³ C NMR spectra of $[Mg(2,2-diMe-1,3-pdta)]^{2-}$ (a) and $[Mg(1,3-pdta)]^{2-}$	S4		
(b) complex anions of $[Mg(H_2O)_5Mg(2,2-diMe-1,3-pdta)]$ ^{-1.5H₂O (2) and}			
$[Mg(H_2O)_6][Mg(1,3-pdta)]^2H_2O$ complexes.			
Table S1 . Details of the crystal structure determinations of complexes 1 and 2.	S5		
Table S2. Selected bond distances (Å) and valence angles (°) in complexes 1 and 2.	S 6		
Table S3. Geometrical parameters describing hydrogen bond interactions in crystals of	S 8		
complexes 1 and 2 .			
Table S4. IR carboxylate stretching frequencies $(v, \text{ cm}^{-1})$ of cobalt(II) and	S 9		
magnesium(II) complexes with 1,3-pdta and 2,2-diMe-1,3-pdta ligands.			
Table S5. ¹³ C NMR chemical shifts for [Mg(2,2-diMe-1,3-pdta)] ²⁻ and [Mg(1,3-	S10		
pdta)] ²⁻ complex anions of $[Mg(H_2O)_5Mg(2,2-diMe-1,3-pdta)]$ ^{-1.5H₂O (2) and}			
$[Mg(H_2O)_6][Mg(1,3-pdta)]^2H_2O$ complexes.			

Figure S1. ¹³C NMR spectra of $[Mg(2,2-diMe-1,3-pdta)]^{2-}$ (a) and $[Mg(1,3-pdta)]^{2-}$ (b) complex anions of $[Mg(H_2O)_5Mg(2,2-diMe-1,3-pdta)] \cdot 1.5H_2O$ (2) and $[Mg(H_2O)_6][Mg(1,3-pdta)] \cdot 2H_2O$ complexes.

	1	2
Empirical formula	$C_{13}H_{30}Co_2N_2O_{14}\\$	$C_{13}H_{31}Mg_2N_2O_{14.5}$
Formula weight (g/mol)	556.25	496.02
Crystal system, space group	monoclinic, C2/c	monoclinic, C2/c
a (Å)	31.2713(7)	31.2752(5)
<i>b</i> (Å)	10.8581(2)	10.8978(2)
<i>c</i> (Å)	13.6012(3)	13.7754(2)
α (°)	90	90
eta (°)	103.775(2)	104.3020(10)
γ (°)	90	90
$V(\text{\AA}^3)$	4485.42(17)	4549.57(13)
F_{000}	2304	2104
Ζ	8	8
X-radiation, λ /Å	Cu Kα (λ = 1.54186)	Cu Ka ($\lambda = 1.54186$)
Data collect. temperat. /K	250(2)	250(2)
Calculated density (Mg/m ³)	1.647	1.448
Absorption coefficient (mm ⁻¹)	12.233	1.611
Crystal size (mm)	$0.2\times0.14\times0.1$	$0.19 \times 0.12 \times 0.04$
2θ range (°)	13.284 to 136.63	10.43 to 136.094
index ranges h, k, l	-37 30, -9 13, -16 14	-33 37, -12 12, -15 10
No. of collected and independent	29866, 4034	34600, 4046
reflections		
R _{int}	0.0280	0.0249
Data / restraints / parameters	4034 / 3 / 304	4046 / 4 / 305
Goodness-on-fit on F^2	1.059	1.023
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0440, wR_2 = 0.1271$	$R_1 = 0.0308, wR_2 = 0.0856$
Final R indices (all data)	$R_1 = 0.0473, wR_2 = 0.1294$	$R_1 = 0.0319, wR_2 = 0.0865$
Difference density: max, min (e/Å ³)	0.55, -0.55	0.31, -0.38

Table S1. Details of the crystal structure determinations of complexes 1 and 2.

	1	2
М	Со	Mg
M1O1	2.069(2)	2.0288(11)
M1–O3	2.092(2)	2.0402(10)
M1-O5	2.056(2)	2.0414(11)
M1–O7	2.087(2)	2.0614(11)
M1-N1	2.137(2)	2.1970(12)
M1-N2	2.164(2)	2.2241(12)
M2–O8	2.128(2)	2.1007(11)
M209	2.081(3)	2.0523(12)
M2-O10	2.050(3)	2.0324(11)
M2011	2.081(3)	2.0484(12)
M2012	2.055(3)	2.0491(12)
M2013	2.118(3)	2.1361(12)
O1-M1-O3	104.89(8)	109.65(4)
O1–M1–O7	91.31(10)	92.34(4)
O1-M1-N1	80.56(9)	80.28(4)
O1-M1-N2	170.81(10)	168.10(5)
O3-M1-N1	173.90(9)	169.75(5)
O3-M1-N2	79.45(9)	79.18(4)
O5-M1-O1	97.73(10)	97.50(5)
O5-M1-O3	94.83(9)	95.69(4)
O5–M1–O7	167.42(9)	164.46(5)
O5-M1-N1	81.56(9)	80.12(4)
O5-M1-N2	89.89(9)	89.31(4)
O7–M1–O3	91.25(9)	92.26(4)
O7-M1-N1	91.37(10)	89.78(4)
O7-M1-N2	80.40(9)	79.08(4)
N1-M1-N2	95.57(9)	91.36(4)
O9-M2-O8	89.98(11)	90.01(5)
O9-M2-O11	175.78(14)	177.59(6)
O9-M2-O13	89.75(16)	91.69(6)

 Table S2. Selected bond distances (Å) and valence angles (°) in complexes 1 and 2.

O10-M2-O8	176.76(10)	175.78(5)
O10-M2-O9	86.82(11)	86.6
O10-M2-O11	93.96(11)	93.21(5)
O10-M2-O12	96.09(15)	97.19(6)
O10-M2-O13	89.29(13)	89.35(5)
O11-M2-O8	89.20(10)	88.26(4)
O11-M2-O13	86.12(14)	85.90(5)
O12-M2-O8	84.53(13)	85.39(5)
O12-M2-O9	91.63(15)	91.67(6)
O12-M2-O11	92.12(13)	90.74(5)
O12-M2-O13	174.45(13)	172.82(5)
O13-M2-O8	90.18(10)	88.26(4)

 $Table \ S3. \ Geometrical \ parameters \ describing \ hydrogen \ bond \ interactions \ in \ crystals \ of \ complexes \ 1$

an	d	2.

D—H···A	<i>D</i> —H (Å)	$H \cdots A$ (Å)	$D \cdots A$ (Å)	D—H···A (°)	
		1			
O9—H9A…O14 ⁱ	0.85	1.91	2.686(5)	150.7	
O9—H9B…O3 ⁱⁱ	0.85	1.88	2.715(4)	165.8	
O10—H10A…O5 ⁱⁱⁱ	0.85	1.84	2.679(3)	169.0	
O10-H10BO4 ⁱⁱ	0.85	1.88	2.711(3)	165.9	
O11—H11A…O2 ^{iv}	0.85	1.85	2.695(5)	169.2	
O11—H11B…O6 ⁱⁱⁱ	0.85	1.94	2.713(4)	150.8	
O12—H12A…O1 ^{iv}	0.85	1.84	2.687(4)	175.2	
O12—H12B…O15 ⁱⁱⁱ	0.85	1.91	2.704(3)	154.4	
O13—H13A…O7	0.86	1.91	2.657(4)	145.0	
O13—H13B…O14 ^v	0.86	1.96	2.745(6)	152.4	
$O14$ — $H14A$ ··· $O8^{i}$	0.85	2.86	3.374(6)	121.0	
O14—H14B…O8	0.85	2.04	2.772(5)	143.3	
O14—H14B…O12	0.85	2.69	3.414(7)	143.9	
O15—H15A…O4	0.85	1.98	2.759(3)	151.5	
O15—H15B····O4 ⁱ	0.85	1.97	2.759(3)	154.7	
Symmetry codes: (i) 1	$-x, +y, \frac{1}{2}-z;$ (ii) 1-	-x, 1-y, 1-z; (iii) -	+x, -1+y, +z; (iv) -	$+x, 1-y, \frac{1}{2}+z;$	
(v) +x, $1-y, \frac{1}{2}+z$		-	-	-	
		2			
O9—H9A…O14 ⁱ	0.85	1.90	2.7444(17)	172.2	
O9—H9B…O3 ⁱⁱ	0.85	1.92	2.7661(15)	170.6	
O10—H10A…O5 ⁱⁱⁱ	0.85	1.85	2.6870(14)	170.6	
O10—H10B…O4 ⁱⁱ	0.85	1.89	2.7372(15)	173.7	
011—H11A…06 ⁱⁱⁱ	0.86	1.89	2.6940(16)	155.4	
O11—H11B…O2 ^{iv}	0.86	1.89	2.7095(16)	159.6	
O12—H12A…O1 ^{iv}	0.85	1.87	2.7174(15)	171.9	
O12—H12B…O15 ⁱⁱⁱ	0.85	1.89	2.7287(14)	169.5	
O13—H13A…O7	0.86	1.87	2.6641(15)	153.3	
O14—H14…O9 ⁱ	0.91	1.97	2.7444(17)	142.2	
O14—H14A…O13 ^{iv}	0.85	2.02	2.8081(19)	153.3	
O14—H14B…O8	0.85	2.07	2.8616(17)	154.6	
O14—H14B…O12	0.85	2.74	3.325(2)	127.5	
$O15$ — $H15A$ ···· $O4^{i}$	0.85	1.94	2.7865(15)	176.2	
O15—H15B…O4	0.85	1.98	2.7865(15)	157.1	
Symmetry codes: (i) $1-x$, $+y$, $\frac{1}{2}-z$; (ii) $1-x$, $1-y$, $-z$; (iii) $+x$, $-1+y$, $+z$; (iv) $+x$, $1-y$, $\frac{1}{2}+z$					

Complex	Vasym	Vsym	Ref.
$[Co(H_2O)_6][Co(1,3-pdta)]^{-2}H_2O$	1675 (w),	1477 (m), 1447 (m), 1407 (s),	[4]
	1587 (s)	1334 (s)	
[Co(H ₂ O) ₅ Co(2,2-diMe-1,3-	1614 (s)	1483 (w), 1463 (w), 1442 (m),	This work
pdta)]·H ₂ O (1)		1396 (s), 1340 (m), 1324 (m),	
		1306 (<i>m</i>)	
[Mg(H ₂ O) ₆][Mg(1,3-pdta)] ² H ₂ O	1687(<i>w</i>),	1479 (m), 1447 (m), 1407 (s),	[5]
	1597 (s)	1335 (s), 1326 (w)	
[Mg(H ₂ O) ₅ Mg(2,2-diMe-1,3-	1618 (s)	1444 (<i>m</i>), 1414 (<i>w</i>), 1393 (<i>s</i>),	This work
pdta)] ^{-1.5H2O} (2)		1339 (<i>m</i>), 1325 (<i>m</i>), 1306 (<i>w</i>)	

Table S4. IR carboxylate stretching frequencies (ν , cm⁻¹) of cobalt(II) and magnesium(II) complexes with 1,3-pdta and 2,2-diMe-1,3-pdta ligands.

asym = asymmetrical; *sym* = symmetrical; *s* = strong; *m* = medium; *w* = weak.

- [4] D.D. Radanović, U. Rychlewska, M.I. Djuran, N.S. Drašković, M.M. Vasojević, I.M.
 Hodžić, D.J. Radanović, *Polyhedron*, 22, 2745 (2003).
- [5] D.D. Radanović, U. Rychlewska, M.I. Djuran, B. Warżajtis, N.S. Drašković, D.M.
 Gurešić, *Polyhedron*, 23, 2183 (2004).

Table S5. ¹³C NMR chemical shifts for $[Mg(2,2-diMe-1,3-pdta)]^{2-}$ and $[Mg(1,3-pdta)]^{2-}$ complex anions of $[Mg(H_2O)_5Mg(2,2-diMe-1,3-pdta)]^{-}1.5H_2O$ (**2**) and $[Mg(H_2O)_6][Mg(1,3-pdta)]^{-}2H_2O$ complexes.

Complex anion/carbon atom (ppm)	C1, C3	C2	C4, C4'	C5, C5'	C6, C7
$[Mg(2,2-diMe-1,3-pdta)]^{2-}(2)$	72.73	40.65	67.79	184.39	34.49
$[Mg(1,3-pdta)]^{2-}$	59.94	25.52	64.43	181.65	