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ON INELASTICITY OF DAMAGED
QUASI-RATE-INDEPENDENT
ORTHOTROPIC MATERIALS

Milan Mićunović and Ljudmila Kudrjavceva

Abstract. The paper deals with a body having a random 3D-distribution of
two-phase inclusions: spheroidal mutually parallel voids as well as differently
oriented reinforcing parallel stiff spheroidal short fibers. By the effective field
approach the effective stiffness fourth-order tensor is formulated and found
numerically. Simultaneous and sequential embeddings of inclusions are com-
pared. Damage evolution is described by modified Vakulenko’s approach to
endochronic thermodynamics. A brief account of the problem of effective elas-
tic symmetry is given. The results of the theory are applied to the damage-
elasto-viscoplastic strain of reactor stainless steel AISI 316H.

1. Introduction

In classical texts devoted to the continuum theory of dislocations as the prin-
cipal source of residual stresses, incompatibility either of plastic strains or quasi-
plastic strains (thermal and some others) is considered. The key point is that if
volume elements in the natural state space of the body deform freely, i.e. inde-
pendently of neighbors, then they cannot be connected without residual stresses.
While such an approach (promoted originally by Kondo, Kroener, Stojanovic and
others) looked very promising in plasticity based on continuum dislocations, the
recent papers mainly use an alternative approach of implantations as proposed by
Eshelby in the paper [4]. The Eshelbian approach is especially suitable for the de-
scription of composites with particulate phases such as either stiff or soft inclusions
(more specifically, voids or cracks).

To achieve this aim, first we briefly review some existing self-consistent theo-
ries of elastic composites with multiphase structure. Further, damage development
is treated by means of Vakulenko’s endochronic thermodynamics (cf. [16]) in its
extended version [10]. We assume, as in [6], that the considered composite consists
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of three isotropic phases: solid phase matrix, spheroidal oblate voids and spher-
oidal stiff prolate inclusions. For simplification of numerical analysis, each class of
inclusions contains parallel, but randomly distributed spheroids

1.1. Eshelbian approach to eigenstrains. Constrained implanting strains
induced by free strains are often termed as “eigenstrains”. Constrained and free
strains are connected by the famous Eshelby formula:

(1.1) 𝜀constr = S 𝜀free

derived in [4]. In the above formula the unconstrained strain 𝜀free is related to
the implanting “eigenstrain” by the fourth-rank tensor S. All the details concerning
determination of the Eshelby tensor for isotropic and anisotropic materials are given
in [14] and elsewhere. It is essential that inclusions be ellipsoidal. For other shapes
relation (1.1) and the whole next section do not hold.

2. Effective properties tensors

Let stiffness and its inverse be denoted by DΛ, MΛ ≡ D−1
Λ , (Λ ∈ {0, 𝑐, 𝑓})

for matrix, voids and fibers respectively. Then by means of the notation 𝛿D(𝑥) ≡
D(𝑥)− D0, 𝛿M(𝑥) ≡ M(𝑥)−M0, and by the characteristic function

𝑉 (𝑥) =

𝑁∑︁
𝑘=1

𝑉𝑘(𝑥) =

{︃
1, 𝑥 ∈ 𝑣,

0, 𝑥 /∈ 𝑣,

for 𝑁 inclusions we have

(2.1) 𝜀(𝑥) = 𝜀0 −K𝜀
0 * (𝛿D𝜀𝑉 ),

and

(2.2) 𝜎(𝑥) = 𝜎0 +K𝜎
0 * (𝛿M𝜎𝑉 )

with a compact writing (K * 𝒜)(𝑥) ≡ 𝐾(𝑥− 𝑦)𝐴(𝑦)𝑑𝑦.
The above two kernels are introduced by means of the Green function of the

matrix G0 by Kunin’s notation (cf.[8]) K𝜀
0 ≡ −defG0 def and K𝜎

0 = D0K𝜀
0D0 −

D0𝛿(𝑥) where total (linear) strain expressed by the displacement reads 𝜀 = def u
and 𝛿(𝑥) is the delta function. Here (def u)𝑖𝑗 = (∇𝑖𝑢𝑗+∇𝑗𝑢𝑖)/2 is the symmetrized
gradient of the displacement vector and ∇𝑖 stands for the covariant derivative.

2.1. Effective stiffness. Effective stiffness tensor is defined by spatial aver-
aging as follows. Micro formulation of Hooke’s law in the case of a thermoelastic
deformation leads to the definition of the effective stiffness:

⟨𝜎⟩ = Deff⟨𝜀𝑒⟩,

where 𝜀𝑘𝑒 = 𝜀𝑘 − 𝛼𝑘𝜃 for a point 𝑥 ∈ 𝑣𝑘 and ⟨𝐹 ⟩ := 1/𝑣
∫︀
𝑣
𝐹 (𝑥)𝑑𝑥 due to the

ergodic hypothesis.
Introducing the notation

(2.3) 𝜀*(𝑥𝑘) := 𝜀0 −
∑︁
�̸�=𝑘

K𝜀
0 * (𝛿D𝜀𝑉𝑚),
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we may write for a 𝑘-th inclusion a nonlocal formula which has the same form as
the corresponding formula for a continuum with a single inclusion i.e.:

(2.4) 𝜀(𝑥𝑘) +

∫︁
𝑣𝑘

K𝜀
0(𝑥− 𝑥′)𝛿𝐷(𝑥′)𝜀(𝑥′)𝑑𝑥′ = 𝜀*(𝑥𝑘).

The two principal hypotheses of the effective field method are:
a) 𝜀*(𝑥) = const for |𝑥− 𝑥𝑘| inside 𝑉𝑘-inclusion and
b) 𝜀*(𝑥𝑘) is statistically independent on the positions and shapes of the other

inclusions 𝑉𝑚 (𝑚 ̸= 𝑘).
Then, due to linearity of governing equations it is possible to write: 𝜀(𝑥) = L𝑘(𝑥)𝜀*,
for 𝑥 ∈ 𝑣𝑘, where, for the 𝑘-th inclusion L𝑘 = (I+ A𝑘𝛿D𝑘)

−1 with

(2.5) A𝑘 =

∫︁
𝑣𝑘

K𝜀
0(𝑥)𝑑𝑥 ≡ S(𝑎𝑘)D−1

0 ,

S(𝑎𝑘) being Eshelby’s fourth-rank tensor for the considered inclusion. Let concen-
tration of inclusions be 𝑐. Following [6], let us introduce a correlation function by
means of:

(2.6) AΦ =

∫︁
𝑣𝑘

K𝜀
0(𝑥)Φ(𝑥)𝑑𝑥,

where the scalar function

Φ(𝑥− 𝑥′) := 1− 1

𝑐

⟨ ∑︁
𝑚 ̸=𝑘

𝑉𝑚(𝑥′) | 𝑥
⟩
, 𝑥 ∈ 𝑉𝑘

obtained by averaging is defined by the shape of the correlation hole. This function
shows how an inclusion situated at a place 𝑥′ acts on a particle at a place 𝑥 (see
the right side of Figure 1 where the region of acting is limited to 𝑟 ∈ (0, 2)).

By means of this function we get the effective stiffness for a single family of
inclusions (built from the same material):

(2.7) Deff = D0 + 𝑐(⟨𝛿DL⟩−1 − 𝑐AΦ)−1.

If all the inclusions are the same (shape, orientation and elastic properties) with
A𝑘 ≡ A(𝑎) then (2.7) simplifies into:

(2.8) Deff = D0 + 𝑐(𝛿D−1 + A(𝑎)− 𝑐AΦ)−1,

which in the most special case when A(𝑎) = AΦ (the correlation gap and inclusion
have the same aspect ratios) leads to the Mori–Tanaka formula.

Let us note that due to linearity of (2.4) it is possible to solve it by 𝜀(𝑘) = F𝑘𝜀0,
𝑘 ∈ 1, . . . , 𝑁 and get in such a way the effective stiffness tensor Deff . Details are
given in [12]. The calculation in [12] was done under the hypothesis of ellipsoidal
symmetry for the distribution of the inclusions. The integration ellipsoids exclude
overlapping of ellipsoidal inclusions. Explicit results that these authors gave hold
for spheroidal inclusions immersed into an isotropic matrix.

In the paper [6], the authors considered pure elasticity of a composite with
isotropic matrix possessing two families of mutually parallel inclusions (spheroids
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and cylinders). We will use their results to our subject of interest: prolate spher-
oidal voids and oblate spheroidal fibres (denoted by indices 𝑐 and 𝑓 respectively).
From their analysis Boolean distribution of inclusions is preferable. They consid-
ered two typical cases of generation priority:

- Simultaneous generation of both families when one family has priority. In
our case it is logical to take that fibres have priority since voids could not
introduce restriction on fibre appearance.

- Sequential generation when the second family of voids is delayed after
the Boolean generation of fibres. As the authors in [6] pointed out, such
an order is recommended when the fibre concentration 𝑐𝑓 is considerably
greater than the void concentration 𝑐𝑐.

The correlation hole here has the same form and orientation as the spheroidal
inclusion itself. The above-mentioned Φ-correlation functions have a smooth ending
at the relative distance 𝑟𝐶 = 2, which is two times larger than the distance from
the centre of the inclusion to its boundary. Thus, outside of the hole for 𝑟 > 2 the
considered grain does not interact with other grains (cf. Figure 1).

Figure 1. Notion of the representative volume element and
Kanaun–Jeulin interactions.

2.2. Symmetry groups in presence of ellipsoidal inclusions. The ma-
terial symmetry group ℵ of an elastic anisotropic material with Hooke’s tensor
D is defined by all orthogonal second-order tensors H satisfying the relationship:
D = H♢D, (H ∈ ℵ), where the Rayleigh product explicitly reads: (H♢D)𝑘𝑙𝑚𝑛 ≡
(H)𝑘𝑎(H)𝑙𝑏(H)𝑚𝑐(H)𝑛𝑑(D)𝑎𝑏𝑐𝑑. A similar relationship holds true for the thermal
expansion tensor (cf. [12]). We now state the problem of overall symmetry for a
representative volume element.

Overall symmetry definition. Given elastic symmetries of the matrix and
𝑁 ellipsoidal inclusions (whose semiaxes are defined by the rotation tensors RΛ)
are as follows: DΛ = H𝑒

Λ♢DΛ, with H𝑒
Λ ∈ ℵ𝑒

Λ, (Λ ∈ {0, 1, . . . 𝑁}) find 2-tensor
H𝑒

eff ∈ ℵ𝑒
eff such that

(2.9) Deff = H𝑒
eff♢Deff , H𝑒

eff ∈ ℵ𝑒
eff
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holds. The group ℵ𝑒
eff is then called effective elastic symmetry group.

Obviously, the real task is to find ℵ𝑒
eff when ℵ𝑒

Λ, (Λ ∈ {0, 1, . . . 𝑁}), is given. An
appealing and the simplest approach would be to use the orientation distribution
function 𝜔ODF (ODF) by statistical averaging in the following way:

(2.10) ⟨𝐹 ⟩ =
∫︁
𝑆𝑂(3)

𝐹 (R)𝜔ODF(R)𝑑ℵ, 𝐹 ≡ ⟨𝐹 ⟩+ 𝛿𝐹, 𝐹 ∈ {D, 𝜎, 𝜀}.

Then, using the definition of the effective stiffness tensor, we get the expression for
the effective stiffness:

(2.11) Deff = ⟨D⟩+ ⟨𝛿D 𝛿𝜀⟩⟨𝜀⟩−1.

Explicit structure of (2.11) depends on the topology and materials of the matrix
and inclusions. However, in all the cases we have the dependence

Deff = Deff(D0, 𝜔
ODF(R), 𝑎1, . . . , 𝑎𝑁 ,R1, . . . ,R𝑁 ),

as should be expected. For calculation of the above indicated mean values of strain
and stiffness the usual procedure is to develop the ODF function into a series over
generalized spherical functions (cf. [14]).

Before proceeding with general symmetry issues, let us consider now some char-
acteristic distributions of inclusions immersed into a matrix. While orientations and
shapes of inclusions of constituting diverse subgroups are fixed, their translational
distributions inside each subgroup are random.

For the sake of a simple estimation of anisotropy degree induced by inclusions,
let us recall Schouten’s harmonic decomposition (cf. [7])

(2.12) Deff = Deff
iso + Deff

𝑎𝑛.

Here the isotropy elasticity tensor Deff
iso is the nearest to Deff and the anisotropy

elasticity tensor Deff
𝑎𝑛 is their difference. By means of the identity 2-tensor I and

identity 4-tensor I (satisfying IA = A and IA = A) we have for the isotropic part
(cf. [7]):

(2.13) Deff
iso = 𝐾effI⊗ I+ 2𝜇effI.

Herein 𝐾eff is the effective bulk modulus and 𝜇eff is the effective shear modulus

𝐾eff =
1

15
(6𝑡𝑟IDeffI− 𝑇𝑟Deff) =

1

15
(6Deff

𝑎𝑎𝑏𝑏 − Deff
𝑎𝑏𝑎𝑏),

𝜇eff =
1

30
(3𝑇𝑟Deff − 𝑡𝑟IDeffI) =

1

30
(3Deff

𝑎𝑏𝑎𝑏 − Deff
𝑎𝑎𝑏𝑏).

Let us introduce 6×6 matrices [Deff
𝑎𝑛] and [Deff

iso] by Kelvin notation in the way often
done in anisotropic elasticity. Now, the simplest way is to introduce the anisotropy
factor 𝜁𝑎𝑛 by norms of these matrices as follows:

(2.14) 𝜁𝑎𝑛 :=
‖Deff

𝑎𝑛‖
‖Deff

iso‖
.

For a detailed analysis of the anisotropic part Deff
𝑎𝑛 it is necessary to employ the
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Novozhilov second-rank tensors 𝜈1
𝑖𝑗 = Deff

𝑖𝑗𝑎𝑎 and 𝜈2
𝑖𝑗 = Deff

𝑖𝑎𝑗𝑎. An alternative way is
to apply the so-called spectral decomposition (cf. [7]) by an analysis of eigenvectors
and eigenvalues of the 6× 6 matrix [Deff ].

Example 2.1. First, suppose that a matrix is weakened by some identical
parallel spheroidal voids with the symmetry axis aligned with a Cartesian axis
𝑧3 = 𝑥3. Suppose now that two thirds of voids population are rotated by some angle
𝜃1 around an axis 𝑧1, whereas the remaining one third is rotated by 𝜃2 = −𝜃1 = 𝜋/6
around the same axis. Then concentrations of voids are 𝑐𝑐1 = 2𝑐𝑐2. Aspect ratios
are the same: 𝛾𝑐1 = 𝑎1/𝑎3 = 𝛾𝑐2 = 𝑎2/𝑎3. In this way, we obtain a composite with
a planar symmetry with a mirror axis 𝑥1 = 𝑧1 and one family of voids with two
subfamilies of parallel identical voids. Otherwise voids inside each subgroup are
randomly distributed.

Clearly, speaking here about two families of inclusions and a simultaneous
approach is not necessary since in both subgroups inclusions are identical, but
differently oriented. Applying the formulae (2.9)–(2.11) for 𝑁 = 2 with tensors
𝒜𝑘(𝑧) = R𝑘♢𝒜𝑘(𝑥), 𝑘 ∈ {𝑐1, 𝑐2}, we obtain results for the stiffness tensor which are
best represented by a monoclinic group. Here, for brevity of notation (R◇𝒜)𝛼𝛽𝛾𝛿 ≡
(R)𝛼𝑎(R)𝛽𝑏(R)𝛾𝑐(R)𝛿𝑑(𝒜)𝑎𝑏𝑐𝑑 is introduced. When the axis of reflexive symmetry
is 𝑧1 = 𝑥1 with invariance to the transformation 𝑥 ↦→ 𝑥* and 𝑥*

1 = −𝑥1, 𝑥*
2 = 𝑥2,

𝑥*
3 = 𝑥3, then the corresponding effective stiffness tensor of the monoclinic group is

met. In order to show elastic material symmetry in the simplest way, we calculated
the effective Young modulus as a function of direction by means of 𝐸eff(𝑛) = 𝑛◇Deff .
In the following subsection the other smaller angles between the two subgroups of
voids are analyzed.

2.3. Elasticity and damage tensors caused by ellipsoidal inclusions.
In the majority of papers dealing with composites where the matrix is reinforced
either with one or two distinct groups of inclusions, simple distributions are consid-
ered. Typical distributions are: (a) random with a constant orientation distribution
function (ODF) where all orientations are equally probable, (b) parallel (but ran-
domly distributed) ellipsoidal inclusions. Neither is the case in real situations.
Namely, if inclusions are randomly distributed thin ellipsoidal voids, then during
either compression or tension some of them either close or open in accordance with
the direction of applied stress. Thus (mechanical as well as thermal) anisotropy
appears. Such dissymmetry effects, ODF, and corresponding correlation holes are
analyzed in detail in [11].

Let us consider a body whose Young modulus and Poisson ratio of the virgin
matrix are taken to be 𝐸0 = 100GPa and 𝜈0 = 0.3, whereas the aspect ratio
amounts to 1/200. In the sequel we introduce 6× 6 symmetric matrices of stiffness
formed by indices equivalence {11, 22, 33, 23, 31, 12} ↦→ {1, 2, 3, 4, 5, 6}.

If instead of 𝜋/3 the angle of disorientation of the two subgroups of voids is
much smaller, say (a) 2𝜋/36, (b) 2𝜋/216, (c) 2𝜋/1296, then instead of monoclinic
we arrive approximately at orthotropic symmetry with a small error. This can be
seen from the following results for effective stiffness of a composite with two families
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of disoriented voids:

[𝒟]ISO𝜃=𝜋/3 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

106.4477 63.2435 63.2435 0 0 0
106.4477 63.2435 0 0 0

106.4477 0 0 0
43.2042 0 0

43.2042 0
43.2042

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

[𝒟]eff𝜃=𝜋/3 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

121.5701 57.7953 58.3116 −0.1962 −0.0000 −0.0000
103.6423 72.6828 5.0261 0.0000 −0.0000

96.0126 −2.1262 −0.0000 0.0000
45.9620 −0.0000 0.0000

29.3102 6.2215
52.4587

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

[𝒟]eff𝜃=𝜋/18 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

121.5702 57.5450 58.5619 −0.0393 −0.0000 −0.0000
120.8868 59.1372 1.7031 0.0000 −0.0000

105.8594 −1.1216 −0.0000 −0.0000
18.8711 −0.0000 0.0000

18.0879 1.2475
63.6813

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

These matrices of effective elasticity are calculated by the homogenization proce-
dure of subsection 2.1 taking two groups of very flattened voids (aspect ratio 1/200)
mutually inclined by 𝜋/3, . . . 𝜋/648.

Comparing these matrices, we can see that in the case of slight disorder 𝐷14,
𝐷24, 𝐷34, 𝐷56 are nearly equal to zero, which is the feature of the orthotropic
stiffness matrix. Moreover, such an orthotropy is characterized also by a reduced
number of constants since the axes 𝑥1 and 𝑥2 in this special case become almost
indistinguishable.

[𝒟]eff ≈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐷11 𝐷12 𝐷13 0 0 0
𝐷11 𝐷13 0 0 0

𝐷33 0 0 0
𝐷44 0 0

𝐷44 0
𝐷11−𝐷12

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑎 𝑏 𝑒 0 0 0
𝑎 𝑒 0 0 0

𝑐 0 0 0
𝑑 0 0

𝑑 0
𝑎− 𝑏

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

When these elasticity tensors are calculated, the corresponding anisotropy factors
and angles of effective elastic symmetry are determined by the ODF analysis ex-
plained above. The results are

𝜁𝑎𝑛𝜋/3 = 0.0806, 𝜃eff𝜋/3 = −0.0670, 𝜁𝑎𝑛𝜋/18 = 0.108, 𝜃eff𝜋/18 ≈ 0,

𝜁𝑎𝑛𝜋/108 = 0.1093, 𝜃eff𝜋/108 ≈ 0, 𝜁𝑎𝑛𝜋/648 = 0.1093, 𝜃eff𝜋/648 ≈ 0.

Let us comment on damage measures. Comparing the above matrices with the
stiffness matrix of the isotropic matrix, we can see that the most natural definition
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of damage by means of:

(2.15) ΩΓΛ := 1− 𝐷eff
ΓΛ

𝐷0
ΓΛ

, Γ ∈ {1, 2, . . . 6}

may be applied only for components of [𝐷]ISO different from zero, i.e.,

𝐷0
ΓΛ ̸= 0, (Γ,Λ) ∈ {(1, 1), (1, 2), . . . , (3, 3), (4, 4), (5, 5), (6, 6)}

In order to show the elastic material symmetry in the simplest way we calcu-
lated the Young modulus as a function of m-direction by means of 𝐸eff(𝑚) = 𝑚◇Deff

(cf. Fig. 2 and Fig. 3).

Figure 2. Spatial distribution of the Young modulus (𝐸(𝑚)/𝐸0)
for two subgroups of parallel voids (normal 𝑚1, concentration 𝑐𝑐1 =
0.2) and (normal 𝑚2, concentration 𝑐𝑐2 = 0.1) mutually rotated
by 𝜋/3.

Figure 3. Spatial distribution of the Young modulus (𝐸(𝑚)/𝐸0)
for two subgroups of parallel voids (normal 𝑚1, concentration 𝑐𝑐1 =
0.2) and (normal 𝑚2, concentration 𝑐𝑐2 = 0.1) mutually rotated
by 𝜋/18.
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In these figures, the ratio of the effective Young modulus and Young modulus of
the matrix i.e. 𝐸eff(𝑚)/𝐸0 is shown. The figures for 𝜃 = 𝜋/108 and 𝜃 = 𝜋/648 are
omitted since they are practically the same as for 𝜃 = 𝜋/18. This ratio is depicted
as radius vector for all 𝑚-directions in the 𝐸(𝑥1), 𝐸(𝑥2), 𝐸(𝑥3) space.

Damage matrices, calculated in this way for subgroup disorientation angles,
{𝜋/3, 𝜋/18, 𝜋/108, 𝜋/648}, are given below

[Ω]𝜃=𝜋/3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.0969 −0.0018 −0.0107 0 0 0

0.2301 −0.2598 0 0 0

0.2868 0 0 0

0.4025 0 0

0.6190 0

0.3180

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

[Ω]𝜃=𝜋/18 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.0969 0.0026 −0.0151 0 0 0

0.1020 −0.0250 0 0 0

0.2136 0 0 0

0.7547 0 0

0.76490

0.1721

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

Inspecting the above elasticity as well as damage matrices, we can see that in all
the cases except 𝜃 = 𝜋/3 they are very close to transverse isotropy. The nondiagonal
elements of damage matrices are then negligible and elements connecting shear
strains and shear stresses, namely, Ω44, Ω55, Ω66 are too large and describe shear
strains caused by shear stresses on the assumption that voids preserve original
orientations and aspect ratios. Thus, by now, the reliable damage components are
Ω11, Ω22 ≈ Ω11 and Ω33. Taking this into account, we will restrict our further
consideration to elastic transverse isotropy for 𝜃 ⩽ 𝜋/18.

3. Evolution equations by endochronic thermodynamics

Let us now try to characterize damage evolution making use of the thermo-
dynamics of irreversible processes following [16] and [10]. In this section we will
restrict our attention either to a single family of parallel inclusions or to the sequen-
tial approach to finding effective constants. Staying in the range of small strains,
for thermoinelastic strain of the considered composite we have:

(3.1) 𝜀𝑒 = Meff𝜎 = 𝜀− 𝜀in −𝛼eff(𝑇 − 𝑇0),

where 𝜀in is damage-plastic strain, Meff is inverse of Deff , 𝑇 − 𝑇0 the temperature
increment and 𝛼eff the effective thermal expansion tensor (determined for two fam-
ilies of fibres and voids in [12]). Here and in the sequel, for the sake of simpler
writing, we drop brackets in ⟨𝜎⟩ and ⟨𝜀⟩. Strictly speaking, if the damage-plastic
strain changes with time, then the process is thermo-inelastic while 𝜀in = const
corresponds to an elastic region. It is assumed (cf. [12]) that the internal energy
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𝑈 has a purely elastic part 𝑈𝑒 and an inelastic part 𝑈Π associated with defects. In
our case the defects are spheroidal voids. Then

(3.2) 𝑈 = 𝑈𝑒 + 𝑈Π =
1

2
𝜎Meff(𝜌)𝜎 + 𝑈Π,

where 𝜌 is the defect density 2-tensor of Mark Kachanov [9]. Now the first law of
thermodynamics reads:

(3.3) 𝑑𝑈 = 𝜎 𝑑𝜀+ 𝑑𝑄.

Introducing the dissipation coefficient Π (where 0 ⩽ Π < 1) by means of:

(3.4) 𝑑𝑄 = −(1−Π)𝜎 𝑑𝜀in,

we have:

(3.5) 𝑑𝑈Π = Π𝜎 𝑑𝜀in +
1

2
𝜎 𝑑Meff(𝜌)𝜎 + 𝜎𝛼eff𝑑𝑇.

On the other hand, the second law of thermodynamics in our case has the form
(with the absolute temperature 𝑇 ):

(3.6) 𝑑𝐹 = 𝜎 𝑑𝜀− 𝑆 𝑑𝑇 −
(︁
ℵ+

1

𝑇 2
𝑞 grad𝑇

)︁
𝑇 𝑑𝑡,

where ℵ > 0 is total dissipation, 𝐹 is free energy, 𝑆 - entropy, 𝑡 - time, while the
term in brackets is inelastic dissipation denoted by ℵ𝑖 = ℵ+ ( 1

𝑇 2 )𝑞 grad𝑇 .
Following [16] and [10], we introduce thermodynamic time by the next hered-

itary function

(3.7) 𝜁(𝑡) :=

∫︁ 𝑡

0

(ℵ𝑖(𝑡′))𝑎𝑑𝑡′.

It is shown in [10] that the exponent a is of great importance since it shows the
speed of ageing. For example, 𝑎 < 1 may be named decelerated ageing, whereas
𝑎 > 1 would be defined as accelerated ageing. By such a classification Vakulenko’s
value 𝑎 = 1 might be termed as steady ageing. The function 𝜁(𝑡) is piecewise
continuous and nondecreasing in the way that 𝑑𝜁(𝑡)/𝑑𝑡 = 0 within elastic ranges
and 𝑑𝜁(𝑡)/𝑑𝑡 > 0 when inelastic deformation takes place. Splitting the whole
time history into a sequence of infinitesimal segments, Vakulenko represented the
inelastic strain tensor as a functional of stress and stress rate history:

(3.8) 𝜀in(𝜁) ≡ 0𝜁Δ(𝜁 − 𝜉,𝜎(𝜉))𝑑𝜉.

For simplicity, suppose that 𝜕Δ/𝜕𝜁 = 0. Then

(3.9)
𝑑𝜀in

𝑑𝑡
= Δ(0,𝜎) (ℵ𝑖)𝑎.

Suppose, moreover, that an associate flow rule holds i.e. that Δ(0,𝜎) = 𝜕Ω/𝜕𝜎.
Then

(3.10)
𝑑𝜀in

𝑑𝑡
= (ℵ𝑖)𝑎𝜕Ω/𝜕𝜎

Let 𝑑𝑈Π ≡ 𝜎𝑑𝜀in. Usually free energy is assumed to have the form: 𝐹 = 𝐹 𝑒(𝜀𝑒, 𝜃)+
𝐹Π(𝑈Π, 𝜃). Then, by means of the notation Π̄ ≡ Π+𝜕𝐹/𝜕𝑈Π, taking into account
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that 𝜌 = 𝜌𝑚⊗𝑚 and inserting all these expressions into the second law (3.6) as well
as the first law of thermodynamics (3.3), we arrive at the expression for inelastic
dissipation

(3.11) ℵ𝑖 = (1− Π̄)𝜎
𝑑𝜀in

𝑑𝑡
+
(︁𝑑𝑈Π

𝑑𝜌
+

1

2
𝜎
𝑑Meff

𝑑𝜌
𝜎
)︁𝑑𝜌
𝑑𝑡

.

Time rate of 𝜌 is determined for the case of transverse isotropy in [14]. The
orthotropic symmetry will be considered below.

3.1. Orthotropic QRI materials. When the material body possesses three
preferred anisotropy directions, then the arguments of the evolution equation have
to include the diadics M𝑘 = m𝑘 ⊗ m𝑘, 𝑘 = 1, 2, 3. If m𝑘 are unit vectors then
𝑡𝑟M𝑘 = 1. Thus,

(3.12) D𝑃 = Λ𝜕𝜎Ω(𝜎, e𝑃 ,M1,M2,M3)

with Ω = Ω(𝜎, e𝑃 ,M1,M2,M3). We restrict our consideration here to a reduced
set of invariants to be used as the source of tensor generators (notation 𝜎𝑑 stands
for the stress deviator):

(3.13) 𝑠𝑘 = 𝑡𝑟𝜎M𝑘, 𝑠𝑘+3 = 𝑡𝑟𝜎2M𝑘, 𝑘 = 1, 2, 3,

omitting eigen and mixed invariants of the inelastic strain tensor. Suppose now
that Ω is a polynomial of third order in 𝜎. Then the loading function has the
following simple form (material constants 𝑎1, . . . , 𝑎9, 𝑏1, . . . , 𝑏13 could depend on
inelastic strain):

2Ω = 𝑎1𝑠
2
1 + 𝑎2𝑠

2
2 + 𝑎3𝑠

2
3 + 𝑎4𝑠4 + 𝑎5𝑠5 + 𝑎6𝑠6 + 𝑎7𝑠1𝑠2 + 𝑎8𝑠2𝑠3 + 𝑎9𝑠3𝑠1(3.14)

+ 𝑏1𝑠
3
1 + 𝑏3𝑠

3
3 + 𝑏2𝑠

3
2 + 𝑏4𝑠1𝑠4 + 𝑏5𝑠1𝑠5 + 𝑏6𝑠1𝑠6 + 𝑏7𝑠2𝑠4

+ 𝑏8𝑠2𝑠5 + 𝑏9𝑠2𝑠6 + 𝑏10𝑠3𝑠4 + 𝑏11𝑠3𝑠5 + 𝑏12𝑠3𝑠6 + 𝑏13𝑠7

and the evolution equation reads:

(3.15)
1

Λ

𝑑𝜀in

𝑑𝑡
= M1𝑑(2𝑎1𝑠1 + 𝑎7𝑠2 + 𝑎9𝑠3 + 3𝑏1𝑠

2
1 + 𝑏4𝑠4 + 𝑏5𝑠5 + 𝑏6𝑠6)

+M2𝑑(2𝑎2𝑠2 + 𝑎7𝑠1 + 𝑎8𝑠3 + 3𝑏2𝑠
2
2 + 𝑏7𝑠4 + 𝑏8𝑠5 + 𝑏9𝑠6)

+M3𝑑(2𝑎3𝑠3 + 𝑎8𝑠2 + 𝑎9𝑠1 + 3𝑏3𝑠
2
3 + 𝑏10𝑠4 + 𝑏11𝑠5 + 𝑏12𝑠6)

+ (M1𝜎 + 𝜎M1)𝑑(𝑎4 + 𝑏4𝑠1 + 𝑏7𝑠2 + 𝑏10𝑠3)

+ (M2𝜎 + 𝜎M2)𝑑(𝑎5 + 𝑏5𝑠1 + 𝑏8𝑠2 + 𝑏11𝑠3)

+ (M3𝜎 + 𝜎M3)𝑑(𝑎6 + 𝑏6𝑠1 + 𝑏9𝑠2 + 𝑏12𝑠3) + 3𝑏13(𝜎
2)𝑑.

In [13, Chapter 5] it was reported that, based on dynamic tests on stainless steels
AISI 316H performed in JRC, Ispra, the function Λ was calibrated to have the form

(3.16) Λ = 𝜂(𝜎𝑒𝑞 − 𝑌 )
(︁𝜎𝑒𝑞

𝑌0
− 1

)︁𝜆 𝑑𝜎𝑒𝑞

𝑑𝑡
exp(−𝑀).

Here 𝑌 is the dynamic initial equivalent yield stress, 𝑌0 is its static counterpart, 𝜂(𝑥)
is Heaviside’s function, 𝜆 is a material constant and 𝑀 is the material constant. It
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is worthy of note that inserting (3.16) into (3.15) leads to an evolution equation of
incremental form seemingly characteristic for rate-independent materials. At first
sight the evolution equation for plastic stretching looks rate-independent since it can
be transformed into an incremental equation if it is multiplied by an infinitesimal
time increment. However, the rate dependence appears in the stress-rate dependent
value of the initial yield stress 𝑌 which has a triggering role for inelasticity onset.
This phenomenon has been detected during dynamic straining experiments where
yield stress is higher at higher stress rates. The model could be termed quasi-rate-
independent. It is remarkable that the constant 𝑀 covers inelastic behavior of AISI
316 stainless steel at multiaxial stress histories and strain rates from 10−3𝑠−1 to
103𝑠−1 [1].

On the other hand, a comparison of (3.15) with (3.10) reveals that this function
Λ is proportional to the inelastic dissipation ℵ𝑖.

3.2. Classical J2 theory of orthotropic materials. In the classical theory
of plasticity of orthotropic materials the evolution equation is based on Hill’s yield
function:

(3.17)
3ℎ

2
(𝑓 + 1) = 𝐹 (𝜎2 − 𝜎3)

2 +𝐺(𝜎3 − 𝜎1)
2 +𝐻(𝜎1 − 𝜎2)

2

and equivalent inelastic strain 𝜀in𝑒𝑞 :=
∫︀ 𝑡

0
‖𝑑𝜀in(𝜏)/𝑑𝜏‖𝑑𝜏 such that the correspond-

ing evolution equation reads:

(3.18)
𝑑𝜀in

𝑑𝑡
= 𝜕𝜎𝑓 =

1

2ℎ(𝜀in𝑒𝑞)
𝜕𝜎𝜎

2
𝑒𝑞.

A comparison of QRI with J2 approach is possible if all the 𝑏-constants in (3.15) are
negligible. However, a linearized evolution equation of QRI has a larger number of
constants being more capable of description of multiaxial stress histories. It has to
be underlined here that Hill’s yield function (3.17) is incorrect for nonproportional
stress paths (cf. [13] for details).

4. Concluding remarks

Following the approach in the paper [10] total thermo-magnetostrictive-elasto-
plastic strain of ferromagnetic polycrystals was here also assumed to obey linear
decomposition. Indeed, such an assumption is correct only for small strains. Appli-
cability of the results by the effective field method for large strains is obtained here
since we combine Kröner’s incompatibility with the Eshelbian implanting approach.
Results of this paper are briefly summarized as follows:

- By making use of Kanaun–Jeulin stochastic analysis of the self-consistent
method (the effective field approach) the effective stiffness 4-tensor is
formulated and found numerically. The simultaneous embedding and
Kanaun–Jeulin theory are employed to a composite with voids and fibres
as inclusions.

- Damage deterioration described by a temporal change of effective stiffness
and effective thermal expansion is then related to the inelastic history by



ON INELASTICITY OF DAMAGED QUASI-RATE-INDEPENDENT ORTHOTROPIC... 27

means of modified Vakulenko’s approach to endochronic thermodynam-
ics. The explicit results open up a possibility for further application to
thermoinelasticity of damaged steels deteriorated by voids.

- Development of damage induces elastic dissymmetry which deserves at-
tention in attempts to develop a multiphase self-consistent theory. An
extension of the present results to some other and more complex distri-
bution of voids deserves special attention.
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О НЕЕЛАСТИЧНОСТИ ОШТЕЋЕНИХ ОРТОТРОПНИХ
МАТЕРИJАЛА НАИЗГЛЕД НЕЗАВИСНИХ ОД БРЗИНЕ

Резиме. Рад се бави телом са насумичним тродимензиoним распоредом две
фазе укључака: сфероидних међусобно паралелних шупьина као и различито
орнjентисаннх оjачаваjућих паралелних крутих сфероидних кратких влака-
на. Приступом ефективног поља формулисан je и нумерички пронађен тензор
ефектнвне крутости четвртог реда. Упоређена су симултана и узастопна угра-
ђивања укључака. Еволуциjа оштеђења je описана модификованим Вакулен-
ковим приступом ендохроноj термодинамици. Дат je кратак приказ проблема
ефектнвне еластичне симетриjе. Резултати теориjе примењенн су на еластови-
скопластично деформисање са оштећењем реакторског нерђаjућег челика AISI
316H.
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