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In this paper, we discussed the probability distribution of exponential and non-exponential tunneling ionization of atoms, taking into account
that the tunneling is not instantaneous, but requires a very short time interval. We also investigated how different laser beam profiles affected
the probability distribution. These physical situations were analyzed for the valence electron of a potassium atom exposed to a strong laser
field in a wide range of intensities (1012 − 1015 W/cm2). We used the ADK theory formalism to compute probability distributions. The
results demonstrate that the probability distribution in the non-exponential mode has a significantly lower value than in the exponential
mode, calculated under the same conditions. We showed that various laser beam profiles on these probability distributions produce different
tunneling time intervals.
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1. Introduction

Today it is possible to get laser pulses of high intensities even
to relativistic orders, with their duration lasting less than a
femtosecond. That is why studying the tunneling ionization
process, which occurs when a laser interacts with matter, is
much easier. This analysis was impossible before the 1980s.
Experimental confirmation of the existence of this process [1]
opened a completely new chapter in quantum physics. It en-
abled the approach to many important scientific issues from a
totally different perspective, such as radioactive decay [2, 3],
the scanning tunneling microscope (STM) that gives infor-
mation about surface topography [4, 5]; in the area of public
health and safety, as an innovative concept for nanostructure-
based gas ionization sensors [6–8]; a technique called ”tun-
neling ionization with a perturbation for the time-domain ob-
servation of an electric field” (TIPTOE) was developed. Us-
ing TIPTOE, the temporal profile of an input pulse can be
determined by modulation of the ionization yield using an
appropriate reconstruction algorithm [9,10].

In a well-defined combination of strong intensity and a
correspondingly low frequency of the laser field, in the in-
frared or optical domain, electron tunneling occurs through a
potential barrier, which is impenetrable in classical mechan-
ics. The laser electric field suppresses the Coulomb potential
and thus forms a barrier through which the electron can tun-
nel. To describe the tunneling process, scientists have devel-

oped models and theories. Just a few of them will be men-
tioned. Starting from the Schrödinger equation for a hydro-
gen atom in a uniform electric field, Landau and Lifshitz de-
termined the ionization probability (per unit of time) [11]. In
1965. Keldysh wrote a paper whose essence was to express
rate as a sum of multiphoton processes, given as a total ion-
ization rate [12]. He derived a relatively complex formula,
but using the function:γ = ω

√
2meIp/(eF ), it can be di-

vided into two independent equations related to two types of
ionization, tunnel and multiphoton. This function is called
the Keldysh parameter, where:ω, F andIp interpret the fre-
quency of the external field, laser-field strength and ioniza-
tion potential, respectively,e andme are the charge and mass
of the electron, respectively. It is generally accepted that ion-
ization processes can be separated by the Keldysh parame-
ter, in the following way: when the Keldysh parameter has a
valueγ ¿ 1, ionization occurs in the tunnel mode, while in
the case ofγ À 1, in the multiphoton mode. The first ex-
periments satisfied Keldysh’s parameter condition. Later ex-
periments showed that these limits do not have to be strictly
adhered to [13, 14]. Theories that directly rely on Keldysh’s
theory are PPT (Perelomov, Popov and Terent’ev) [15] and
ADK (Ammosov, Delone and Krainov) [16]. These theo-
ries have adapted and improved Keldish’s theory and can be
applied on hydrogen atoms and extended to more complex
atoms and molecular systems. In ADK theory the regions, in
which the ionized electron interacts with the parent ion and
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with the electric field, can be separated. The electron bound
in the atom moves under the influence of the atomic forces,
and the external field does not influence its motion and vice
versa. The ionized electron moves only under the influence
of the external field, in which the energy of one photon is
smaller than the ionization potentialω ¿ Ip and the field
strength is smaller compared to the strength of the atomic
field F ¿ Fa, Fa = 5.14 × 109 V/cm. Under these con-
ditions, the atom is treated quantum mechanically while the
electromagnetic field is classical. However, in both cases,
there are deviations from the given rules. In the case of an
electromagnetic field, the term photon is used, while in the
case of atoms, a quasi-classical approximation is used,i.e.
states with a large quantum numbern are observed. Am-
mosov, Delone and Krainov in their paper replaced the quan-
tum numbersn, l by their effective valuesn∗ = Z/

√
2Ip and

l∗ = n∗0 − 1, whereZ is a charge of the ionized atom, while
n∗0 is the smallest value of the effective quantum numbern∗.

The resulting formula given by the ADK theory describes
the tunnelling process in which an unstable system decays
according to the exponential law. The probability of sur-
vival of such a system decreases exponentially with timet.
This method of calculating the tunnel ionization rate has be-
come accepted and widely used, but tunneling can also be
analyzed in a non-exponential mode [17, 18]. To mention
briefly, in the 1920s, the law of decay in the exponential
form was established [19, 20]. In the 1950s Khalfin [21] as-
sumed the existence of decay, which can be described by a
non-exponential law, and his assumptions were proved ex-
perimentally [22, 23]. Time dependence of non-exponential
decay is in the formt−3/2, but Nicolaides and Beck [24] sug-
gested in their paper that this dependence could be∼ t−1.
For non-exponential decay in a many-particle system that
takes place over a longer period. This dependence is also
possible in the formt−N , where the quantityN is propor-
tional to the number of particles and depends on the quan-
tum Bose-Einstein or Fermi-Dirac statistics of these parti-
cles. There are several approaches how to determine the tun-
neling time. One of them is Keldysh’s [12], in which tun-
neling through a barrier is instantaneous and doesn’t take
a finite time. Buttiker and Landauer considered time to be
imaginary because it is thought that a breakdown of a wave
function is below the barrier [25]. One of the concepts is
that the tunneling time is viewed as an average value, not
as a quantity that is strictly determined. Using this way of
approaching the problem, the Feynman path integral (FPI)
was obtained [26, 27], which can be presented as a process
of averaging using the tunneling time of probability ampli-
tude. The development of science enables us to solve this
dilemma experimentally. Now it is possible to determine the
real tunneling time using attoclock measurements in a wider
range of laser field intensities [28]. For a more detailed anal-
ysis of the tunnel ionization process and calculation of the
ionization probability distribution of ejected electrons, it’s
important to take into account the spatial distribution of a
laser beam profile when optimizing the experimental setup.

Laser systems can operate with near-Gaussian beams or non-
Gaussian beams. The most commonly used models of laser
beam shaped profiles, in physics as well as in other branches
of sciences, are Gaussian [29,30], Super-Gaussian (SG) (flat-
top beams where a beam exhibits a nearly constant irradiance
over its beam width) [31], Hermite-Gaussian (HG) (rectan-
gular) [32–34], cylindrical and are called Laguerre-Gaussian
(LG) [35, 36], as well as Lorentzian [37]. Experimentally
it is possible to achieve a transition from a spot-like pro-
file of the laser beam to a doughnut shape, and vice versa
[38–40]. The processes that take place under the influence
of the laser field must be discussed theoretically by includ-
ing different spatial distributions of the laser beam, from fun-
damental modes (Lorentzian and Gaussian) to higher-order
beam modes (SG, HG, LG). This paper report results ob-
tained by calculating and estimating the effects of different
laser beam profiles on ionization probability distributions in
a wide range of laser intensities for the specific wavelength
in the infrared domain, when the electron tunneling time is
in the range oft = (1 − 800) as. Potassium was chosen
as the target atom exposed in a linearly polarized laser field.
This model is applicable in a non-relativistic regime, for laser
intensities less than1018 W/cm2. It could be extended to a
relativistic regime for much higher intensities, with the inclu-
sion of required relativistic corrections, but this would be out
of the scope of this paper. Research in the fields of ultrahigh
laser intensities exceeding1020 W/cm2 would allow study-
ing multiple tunneling ionization of heavy atoms [41,42].

The structure of our paper is the following. After the in-
troduction, the theoretical background is presented in Sec. 2,
followed by a presentation of the results and discussion
(Sec. 3) where the probability distribution in exponential
and non-exponential modes was calculated. In Sec. 4 we
gave our conclusions. A complete description of the sys-
tems of probability equations, as well as all the parameters
needed for their implementation, are given in atomic units
(|e| = me = ~ = 1).

2. Theoretical background

An unstable system has multiple ways of decaying: sponta-
neous decay, tunneling alpha decay of atomic nuclei, single-
photon ionization of atoms, etc. The basic formulas used to
describe each of the decay processes are [43]:

a(t) = 〈S|e−iHt|S〉, (1)

P (t) = |a(t)|2, (2)

where|S〉 is the state vector,H is the Hamiltonian of an un-
stable system, whilea(t) andP(t) is the decay survival prob-
ability amplitude and the survival probability, respectively.
The unstable state|S〉 is not an eigenstate of the Hamiltonian
H, and the energy distribution of this state can be defined as:
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a(t) =

∞∫

−∞
ds(E)e−iEtdE, (3)

where the energy normalization condition holds:
∞∫

−∞
ds(E)dE = 1. (4)

In order to discuss the probability distribution of expo-
nential and non-exponential tunneling ionization of atoms ex-
posed to an intense laser field, it is necessary to define the
probability amplitude for both of these mechanisms.

2.1. Exponential decay

The energy distribution of an ejected electron of the exponen-
tial decay, with respect to mean electron energyε, is given by
the Breit-Wigner distribution [44]:

ds(E) = 1
2π

Γ(E)(
(E−ε)2+

Γ(ε)2

4

) , (5)

whereΓ(E) is the decay width. A detailed derivation of this
equation can be found in Ref. [45]. The first step in deriving
the probability amplitude is to apply the Fourier transform
using a complex integral:

f(t) =

∞∫

−∞

1
2π F (ω)e−iωtdω. (6)

FunctionF (ω) has two simple poles atω = ε±i(Γ(ε)/2).
The integral at poleω = ε + i(Γ(ε)/2) diverges and cor-
respond to an unphysical state; therefore we account only
for the contribution from the simple pole located atω =
ε − i(Γ(ε)/2) in order to obtain an exponentially decaying
state.

By the residue theorem:

∫

arc

F (ω)dω −
∞∫

−∞
F (ω)dω

= 2πiResω=ε−i(Γ(ε)/2)F (ω). (7)

The first integral tends to zero,
∫

arc

F (ω)dω → 0.

The notation arc means arc length and represents the distance
between two points along a section of a curve. Eq. (5) can be
written in the following form:

ds(E) = 1
2π

2(
Γ(ε)
2 )(

Γ(ε)
2

)2

+(E−ε)2

= 1
2π

(
1

Γ(ε)
2 +i(E−ε)

+ 1
Γ(ε)
2 −i(E−ε)

)
, (8)

by applying the residual theorem Eq. (7) and after several
mathematical transformations the Breit-Wigner probability
amplitude can be obtained:

a
(1)
0 (t) = −iΓ(ε)

[ ∞∫

−∞

e−iEt

Γ(ε)
2 +i(E−ε)

dE

+

∞∫

−∞

e−iEt

Γ(ε)
2 −i(E−ε)

dE

]
. (9)

A suitable simple pole atE = ε − i(Γ(ε)/2) in Eq. (9)
provides:

a
(1)
0 (t) = −i

∞∫

−∞
e−i(ε−i(Γ(ε)/2)td(ε− i(Γ(ε)/2), (10)

which leads to the formula for the probability amplitude of
the initial state:

a
(1)
0 (t) = e−iεt−Γ(ε)

2 t. (11)

The decay widthΓ = 1/τ is the inverse of a lifetime,
which is the initial decay rate, and can be measured by fitting
the counting rate of decay products to the exponential law:

1
N

dN(t)
dt ∝ Γe−Γt, (12)

wheredN(t) is the number of decay products registered in
the detector during the time intervaldt. In the case of the tun-
neling ionization of an atom in a strong low-frequency laser
field the widthΓ(E) can be represented by the equation [18]:

Γ(E) = 4
√

3γ

πω
√

2Ip

exp
(
− 2(1−Eγ2)

3F

)
, (13)

whereE is the kinetic energy and has values greater than
zero,E > 0 [15]. The probability amplitude is interpreted as
the possibility of the appearance of a particle (in our case an
electron) at the momentt when it’s mean kinetic energy isε.
The probability amplitudes are complex numbers. The corre-
sponding probability is proportional to the modulus squared
of the probability amplitude, which, unlike the amplitude, is
a positive real number. The square of the module of Eq. (11)
gives:

P
(1)
Exponential= exp[−Γ(E)t], (14)

where the mean electron energyE = ε corresponds to the
average kinetic energy of the ejected electron that oscillates
in the electric field and it is equal to the ponderomotive po-
tential. The ponderomotive potential for a linearly polarized
laser field has the formε = Up = F 2/(4ω2) [46, 47]. Using
the expression for mean electron energyε and substituting
expression Eq. (13) into Eq. (14) probability is defined as:

P
(1)
Exponential(F, t)= exp

(
−

[
A exp

{
− 2

3F−Fγ2

6ω2

}]
t
)

, (15)

where isA = 4
√

3γ/(πω
√

2Ip).
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2.2. Non-exponential decay

To get a basic insight into the mechanism of non-exponential
ionization of the tunnel, it is required to calculate the appro-
priate probability amplitude as a function of time. Starting
from Eqs. (5) and (6) the following is obtained [48]:

a
(2)
0 (t) = 1

2π

∞∫

0

e−ixtΓ(−x)

(x+ε)2+
Γ(−x)2

4

dx. (16)

Choosing a negative imaginary axis is useful for calcu-
lating a long time limit. The analysis will remain unchanged
when using this integration contour, as long as the contour
closes the physically relevant poles near the positive real axis.
After implementing the replacementy = xt, the equation
above becomes:

a
(2)
0 (t) = 1

2πt

∞∫

0

e−iyΓ(−y/t)

(y/t+ε)2+
Γ(−y/t)2

4

dy. (17)

Knowing that att → ∞ the non-exponential decay is
determined by small values ofE → 0, the denominator in
Eq. (17) becomes equal toε2:

a
(2)
0 (t) = 1

2πε2t

∞∫

0

e−iyΓ(−y/t)dy. (18)

This time limit determines the behavior of near zero, that
Γ(−y/t) = Γ(0) [48,49]:

a
(2)
0 (t) = − iΓ(0)

2πε2t . (19)

In accordance with Eq. (13), the non-exponential decay
width is obtained:

Γ(0) = 4
√

3γ

πω
√

2Ip

exp
(− 2

3F

)
. (20)

This derivation leads to a finite expression for probability
in a non-exponential mode:

P
(2)
Non-exponential=

(
−Γ(0)

2π

)2
1

ε4t2 , (21)

P
(2)
Non-exponential(F, t) =

(
A exp

[− 2
3F

])2 4ω4

(πF 2)2t2 . (22)

In the tunnel ionization regime, the total probability can
be viewed as a function ofP (F, t), which maps values into
real numbers over the range of [0,1]. A detailed theoretical
analysis of the ionization probability gives us an advantage in
better understanding of the experimental data. Experimental
determination of absolute ionization probabilities is compli-
cated because ionization of atoms in strong laser fields de-
pends on various experimental setups: target density, excited
state fraction, incoming photon flux, detector efficiency and
relative spatial alignment of the target and laser pulse [50,51].
Therefore, we tested the influence of different beam profiles
on exponential and non-exponential probability distributions.

The Gaussian (G) beam profile was the first we paid attention
to. The electric field for this beam profile can be expressed
as [30,31]:

FG = F0 exp
(
−

[
r

ω(z)

]2
)

, (23)

wherer2 is the distance from the centre of the beam,ω(z) =
ω0

√
1 + (z/z0)2 is the Gaussian width,ω0 is the Gaussian

beam waist,z0 is the Rayleigh length. A Gaussian-shaped
laser beam does not necessarily have to be parabolic; it also
can be a flat-top beami.e. higher-order Gaussian (Super-
Gaussian). A Super Gaussian (SG) electric field is given
by [52]:

FSG = F0 exp
(
−

[
r

ω(z)

]n)
, (24)

n represents the order/index of the Super-Gaussian beam, and
it’s value isn > 2. The casen = 2 corresponds to the basic
Gaussian profile. It is shown that the Super-Gaussian beam
of the higher index and smaller beam width can produce
much stronger radiation compared to the Gaussian beam [52].
By differentiating the fundamental Gaussian mode, higher-
order beams like Hermite-Gaussian and Laguerre-Gaussian
with complex arguments can be obtained. These calculations
can be generalized to deriving a whole family of Hermite-
Gaussian (HG) and Laguerre-Gaussian (LG) modes, includ-
ing also those with real arguments [53, 54]. Field intensity
distributions of higher-order HG mode laser beams and the
amplitude of the electric field are given in literature [55, 56].
For this research the Hermite-Gaussian beam of the first order
was used:

FHG(z) = ω0
ω(z)2

√
8x4

ω2
0ω(z)2

− 8x2

ω(z)2 + 2

× exp
(

1
2 −

[
r

ω(z)

]2
)

. (25)

The Hermite-Gaussian mode is closely related to the
Laguerre-Gaussian mode, and some research requires con-
version of the HG into the LG mode and vice versa. The way
this can be performed is given in literature [57]. The behavior
of tunneling probabilities under the influence of a LG(0,1)*
spiral phase mode was also analyzed. The electric field for
a linearly polarized laser light with this beam profile is given
by [58]:

FLG(SP ) = F0

√
2r2

a

ω2
0

exp
(
− r2

a

ω2
0

)
cos φ, (26)

wherera(φ) = aekaφ is the polar equation,a and ka are
constants, whileφ is the azimuthal angle. More about LG
beams can be seen in Refs. [59–61]. In experiments, high
laser intensities are involved. It has been shown that the trans-
verse intensity profile is not always described well by a Gaus-
sian distribution [62,63] and that Lorentzian’s (L) distribution
would be more appropriate [40,64,65]. A Lorentzian electric
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field distribution function was propounded in work of Shealy
et al. [66]:

FL = F0

1+

(
r

ω(z)

)2 . (27)

Experiments in the attosecond domain indicated that the
tunneling time is much shorter than predicted by theories
[67, 68]. The presented laser beam profiles in combina-
tion with controlled light pulses lasting attoseconds(10−18s),
made it possible to observe what happens during ionization,
providing the possibility of a detailed analysis of the process.

3. Results and discussion

The behavior of an atom located in the external electro-
magnetic field, directed along thez axis, can be conve-
niently investigated in parabolic coordinates:ξ = r + z,
η = r−z, φ = arctan(y/z), whereφ is the azimuthal angle,
φ ∈ [0, 2π], ξ, η ∈ [0,∞). Conversely in Cartesian coor-
dinatesx =

√
ξη cos φ, y =

√
ξη sin φ, z = (ξ − η)/2,

r =
√

x2 + y2 + z2 ⇔ r = (ξ + η)/2. Therefore, all
the quantities given in Cartesian coordinates, in the equations
above, were converted into parabolic coordinates before the
analysis started.

The potential barrier through which the electron tunnels
is along theη coordinate in the directionz → −∞, where
the η coordinate has higher values. The exit point is deter-
mined byηexit

∼= 1/F in the range1 ¿ η ¿ ηexit [11, 69].
The laser field strength for linearly polarized light in atomic
units is approximately equal to∼ 5.4× 10−9

√
I, and within

a broad intensity range(1012 − 1015) W/cm2, exponential
and non-exponential tunneling was observed. These inten-
sities correspond to the values ofη coordinates in the range
6− 185 a.u.. The investigation was performed when the exit
point wasη = 10. It is possible that the tunnel exit point
is located in this region for the laser intensityI ∼ 3 × 1014

W/cm2. Calculations were done for an intense infrared Ti:
sapphire laser pulse with wavelengthλ = 800 nm (15117.2

a.u.), beam waist ofω0 = 4 mm (7.559 × 107 a.u.) [70, 71]
and photon energyω = 0.05696 a.u. It should be empha-
sized that the beam waist can be in a wide range of values,
from micrometers(3− 60) µm to millimeters(15− 30) mm.
Higher-order beam modes correspond to the narrower beam
waist andω0 has to be adapted. The target to which this beam
is directed is the potassium atom with the ionization poten-
tial of valence electron ofIp = 4.3406 eV (0.1595 a.u.). The
value of the Keldysh parameter isγ = 0.1, which is in the
range of values given by the conditionγ ¿ 1 that defines the
domain of tunnel ionization.

To calculate the probability for a Laguerre-Gaussian
beam shape, it was necessary to define the values of the pa-
rameters that appear in Eq. (26). ra(φ) = aekaφ is the loga-
rithmic function whenra has a value inµm range, parameter
a is equal toa = 0.57 (1.08 × 104 a.u.). φ is azimuthal
angle lies in interval[−180◦, 180◦]. Angle θ defines spiral
geometryθ ∈ [−90◦, 90◦]. Using this angle, the constantka

can be determined.ka = tan θ which for θ = 22.5◦ and
θ = 45◦ areka = 0.414 andka = 1.0, respectively. As said
above, higher-order beams produce a much smaller focused
spot than a conventional beam and the diameter is fixed to the
value 3µm (5.7× 104 a.u.) [72].

3.1. Exponential mode

The exponential probability distribution is given Eq. (15)
when a field strength of a laser pulse is approximately equal
to the root of the field intensity and without a defined spa-
tial distribution(F ∼ √

I), hereinafter referred to as basic.
The behavior of the probability distribution is observed in
a wide range of laser field intensity and tunneling time in-
terval (1 − 800) as, which is sufficiently long enough for
an ionization event to occur (as confirmed in experiments
[28, 73]). It should be emphasized that the Figures given
in the text are computed for laser intensity in the interval
(1012 − 5 × 1015) W/cm2. However, in the laser intensity

FIGURE 1. Exponential probability distributionP (1)
Basic for the tunneling time ranget = (1− 800) as i.e. t = (0.041− 33.073) a.u. (a) in

the interval of laser intensitiesI = (1014 − 5× 1014)W/cm2, (b) I = (1014 − 1.5× 1015) W/cm2.
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FIGURE 2. Exponential probability distributionP (1)
Basic, for the laser

intensity rangeI = (1014 − 1.5 × 1015) W/cm2. Each proba-
bility curve corresponds to an integer value of attoseconds of tun-
neling timet1 = 1 as (solid line),t2 = 50 as (large dashed line),
t3 = 100 as (medium dashed line),t4 = 200 as (small dashed
line), t5 = 400 as (tiny dashed line),t6 = 600 as (dotted line),
t7 = 800 as (dot-dashed line).

range of (1012 − 1013) W/cm2 the probability is negligible,
so in Figs. 1-10 we showed the probability distribution for
the laser intensity range of (1014 − 1015) W/cm2.

P
(1)
Basic 2D curves, plotted into a 3D coordinate system,

provide the opportunity to quite clearly notice the depen-
dence of the exponential probability distribution on the tun-
neling time for the specific values of the laser field intensities:
(0.8× 1013, 1.4× 1014, 2.0× 1014, 2.6× 1014, 3.2× 1014,
3.8×1014, 4.4×1014) W/cm2 (Fig. 1a). At the field intensity
of ∼ 1014 W/cm2, no matter how long the tunneling time is,
the distribution of the electron ionization probability changes
very little, while with increasing field intensity, the maximum
probabilities are more pronounced. It can be assumed that an
electron in a very short time interval receives an amount of
energy sufficient to pass through a potential barrier so that
the tunneling time with increasing intensity becomes shorter.

Dependences of the ionization process for any values
of tunneling time in an extended range of intensitiesI =
(1012 − 1.5 × 1015) W/cm2 can be estimated from the 3D
surface (Fig. 1b). In very intensive fields, the exponential
probability distribution of the tunneling time reaches a max-
imum for t ∼ 1 as. As the laser field intensity increases,
the range of values of the tunneling time narrows. The prob-
ability distribution P

(1)
Basic as a function of laser field inten-

sity for the fixed integer value of attosecond tunneling time
is shown in Fig. 2. The probability sharply increases with
the increase of laser intensity for all observed tunneling time
values, then reaches a maximum at the same field intensity
0.2×1014 W/cm2 and then with a further increase of intensity
decreases slightly in different ways. The longer the expected
tunneling time is, the faster the probability decreases.

For the tunneling time of1as (0.041 a.u.), a maximum
probability value isP (1)

Basic = 1 or P
(1)
Basic ≈ 1 for almost all

the field intensities ranges. With the tunneling time increase
up to several hundred attoseconds and with increasing laser

intensity, the probability decreases, which corresponds to the
physical picture that the electron requires real time to tunnel
through the barrier, in fact, as the interaction time with the
electron shortens, the probability that the electron will com-
pletely tunnel through the barrier becomes greater [74]. The
probability reaches a maximum at a precisely defined laser
intensity and then decreases monotonically, which is the ef-
fect of atom stabilization in the superintense field [75].

By including Eqs. (23), (24), and Eq. (27) in Eq. (15)
we obtained probability distributionsP (1)

G , P
(1)
SG, P

(1)
L . From

Fig. 3a) and 3b) one can see that these probabilities be-
have in the same manner. At the fixed laser intensity, the
probabilities decrease as the tunneling time increases in the
whole range of the observed time. For the higher-order
laser beam, Hermite-Gaussian (HG) and Laguerre-Gaussian
(LG) the influence of pulse shape on the probabilities,P

(1)
HG,

P
(1)
LG(SP ) (dot and dashed line), obtained by a combina-

tion of Eq. (15) with Eqs. (25) and (26), respectively, are
clearly noticeable (Fig. 3a and 3b). At a fixed laser intensity
4.2 × 1014 W/cm2 P

(1)
HG has an approximately three times

lower value thanP (1)
LG(SP ). The probabilityP (1)

HG is possible
when the tunneling time is in the range oft = (1− 150) as

FIGURE 3. Exponential probability distribution as a function of

the tunneling time.P (1)
G , P

(1)
SG (beam ordern = 4), P

(1)
L , (solid

line), P
(1)
HG (dotted line),P (1)

LG(SP )(dashed line). Tunneling time
is in range oft = (1 − 800) as with corresponding value in
atomic unitst = (0.041− 33.073)a.u. laser intensity is fixed a) at
I = 4.2× 1014 W/cm2, b) atI = 1.5× 1015 W/cm2.
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FIGURE 4. Exponential probability distributions.P (1)
G , P

(1)
SG

(beam ordern = 4), P (1)
L (solid line),P (1)

HG (dotted line),P (1)

LG(SP )

(dashed line) vs laser intensity in rangeI = (1014 − 3 ×
1015) W/cm2 for fixed value of tunneling timet = 100 as
(4.13 a.u.).

FIGURE 5. Exponential probability distributionsP (1)
G , P

(1)
HG,

P
(1)

LG(SP ) 2D curves plotted into the 3D coordinate system for the
intensity rangeI = (1014−5×1014) W/cm2 and tunneling time
t = (1− 800) as.

((0.041−6.201) a.u.). ForP (1)
LG(SP ) the probability of tunnel-

ing is the maximum no matter how long the tunneling time
lasts (Fig. 3a). At a stronger field intensity of1.5 × 1015

W/cm2 , it is observed that probabilities for all beam profiles
decrease with increasing tunneling time (Fig. 3b)). ForP

(1)
HG

the tunneling time narrowed in an interval of (35 − 80) as
((1.43− 3.03) a.u.) whileP

(1)
LG(SP ) decreases but the tunnel-

ing time is still in a wide range.
For the tunneling timet = 100 as the probability dis-

tribution P
(1)
G,SG,L (solid line) is the highest at0.3 × 1014

W/cm2 (Fig. 4). P
(1)
HG andP

(1)
LG(SP ) reached a maximum at

I = 0.1 × 1014 W/cm2 and then theP (1)
HG probability de-

creased and at the intensity value5.5×1014 W/cm2 asymptot-
ically tends to zero. TheP (1)

LG(SP ) probability slightly begins
to decrease at the intensity1.15 × 1014 W/cm2 and asymp-
totically tended to zero at higher intensities≈ 1016 W/cm2.
Simultaneous dependence probability distributions of laser
field intensity and tunneling time, are shown in the 3D co-
ordinate system (Fig. 5).

Tunneling time duration intervals differ from profile to
profile of the laser beam (Fig. 5). The shortest time interval
gives the HG beam profile andP (1)

HG shows the fastest asymp-
totical tend to zero in the region of the longer tunneling time
interval.

3.2. Non-exponential mode

In order to get a basic insight into the tunnel ionization pro-
cess in a non-exponential regime, calculations analogous to
the previous analysis were performed. For inception, the non-
exponential probability distribution (Eq. (22)) for the basic
form of laser field distribution was calculated. In contrast
to the exponential mode, the maximum probability distribu-
tion reached much lower values at higher laser intensities.
In Fig. 6a the ionization probability distributionP (2)

Basic 2D
curves plotted into a 3D coordinate system is obtained as a
function of the tunneling time (t = (1−800) as) and concrete
values of laser intensities: (4.0×1014, 7.0×1014, 9.0×1014,
1.3 × 1015, 1.5 × 1015, 1.75 × 1015, 2.0 × 1015) W/cm2.
It can clearly be seen that the position of the peak does not
change, but reached maximum values decrease with increas-
ing field values. The tunneling time interval narrows from
t = (1 − 500) as to instantaneous tunneling at higher laser
intensities. The laser field is stronger so the potential barrier
is suppressed and the electron needs a shorter time to pass
through. Using the 3D surface plotting method, in a wide
range of laser field intensity and full interval of tunneling
time, a more complete picture of the ionization probability
P

(2)
Basic behavior is obtained. A steep drop with a long plateau

was observed (Fig. 6b).
Assuming how long the tunneling time can last, the prob-

ability distribution dependence on the intensity of the laser
field was analyzed Fig. 7. As the tunneling time increases,
the non-exponential probability distribution decreases. The
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FIGURE 6. Non-exponential probability distributionP (2)
Basic, as a function of tunneling time in the intervalt = (1 − 800) as and laser

intensity range: a)I = (1015 − 2× 1015) W/cm2, b) I = (1015 − 6× 1015) W/cm2.

FIGURE 7. Non-exponential probability distributionP (2)
Basic, for the

laser intensity rangeI = (8 × 1014 − 6 × 1015) W/cm2. Each
probability curve corresponds to an integer value of attoseconds of
tunneling time. t1 = 1as (solid line), t2 = 50as (large dashed
line), t3 = 100 as (medium dashed line),t4 = 200 as (small
dashed line),t5 = 400 as (tiny dashed line),t6 = 600 as (dotted
line), t7 = 800 as (dot-dashed line).

FIGURE 8. Non-exponential probability distributionP (2)
G , P

(2)
SG

(beam ordern = 4), P (2)
L (solid line),P (2)

HG (dotted line),P (2)

LG(SP )

(dashed line) as a function of tunneling time in range oft =
(1 − 800) as for fixed value of laser intensity atI = 1.2 ×
1015 W/cm2.

maxima shift to the left, towards lower intensities, which cor-
responds to a larger barrier width.

We have computed the probability distributions by com-
bining Eqs. (23-27), with Eq. (22) and present them in
Fig. 8. It is shown thatP (2)

Non-exponentialis completely indepen-
dent of most laser beam profiles. For a fixed laser intensity
1.2 × 1015 W/cm2, all probability distributions overlapped
perfectly exceptP (2)

HG. TheP
(2)
HG probability distribution has

a five times lower value and a much narrower time interval
in which tunneling is possible.P (2)

G , P
(2)
SG, andP

(2)
L non-

exponential probability distributions reached maximums at a
stronger field intensity, compared to the exponential mode,
0.95 × 1015 W/cm2 (Fig. 9). The positions of maximums
define the exit point of the barrier, so it can be seen that
this point will be shifted using LG and HG laser beam pro-
files. The resulting peaks appear at3.4 × 1015 W/cm2 and
1.6 × 1014 W/cm2 intensities of the laser field forP (2)

LG(SP )

andP
(2)
HG, respectively (Fig. 9).

Variations of the non-exponential probability distribution
for the corresponding laser beam profiles, computed follow-
ing the numerical procedure outlined above, are shown in
Fig. 10. In a broad range of tunneling time,P

(2)
G , P

(2)
HG,

FIGURE 9. Non-exponential probabilityP (2)
G , P

(2)
SG (beam order

n = 4.), P
(2)
L (solid line), P (2)

HG (dotted line),P (2)

LG(SP ) (dashed
line) vs laser intensity in rangeI = (8×1014−6×1015) W/cm2

for fixed value of tunneling timet = 1 as (0.0413411 a.u.).
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FIGURE 10. Non-exponential probability distributionsP (2)
G , P

(2)
HG, P

(2)

LG(SP ) 2D curves plotted into a 3D coordinate system for intensity
rangeI = (1015 − 2× 1015) W/cm2 and tunneling timet = (1− 800) as.

FIGURE 11. Non-exponential probability distributionsP (2)
G (red),

P
(2)

LG(SP ) (orange),P (2)
HG (light orange) vs tunneling time in the in-

terval t = (1 − 800) as and photon energyω = (0.0000456 −
0.0651) a.u. which corresponds to the entire infrared spectra
λ = (700 × 10−9 − 1 × 10−3) m. Laser intensity is fixed at
I = 1.3× 1015 W/cm2.

P
(2)
LG(SP ) probabilities behave similarly, reach a maximum

and then decrease with a long asymmetric tail appearing.
Along with an increase of tunneling time, the position of the
probability peaks changes. With increasing laser intensity,
the maximum values of probabilities become smaller, and at
certain field intensities, they are so small that they approach
zero.

The analysis is extended into the region of the entire in-
frared spectrum. Figure 11 presents the results of comparison
of the non-exponential probability distribution surfacesP

(2)
G ,

P
(2)
LG(SP ), P

(2)
HG, for a fixed laser intensity1.3× 1015 W/cm2.

It is observed that the tunnel ionization in the non-exponential
domain for these laser beam shapes becomes possible in the
regionω > 0.04 a.u. which corresponds toλ > 1.138 µm.

4. Conclusion

Our paper reported calculation and analysis of the probabil-
ity distribution of exponential and non-exponential tunneling
ionization for the valence electron of a potassium atom ex-
posed to a linearly polarized strong laser field using a broad
range of laser intensities. This discussion is presented to
investigate the effects of different laser beam profiles that
propagate differently and exhibit significantly different spa-

tial distributions on the ionization probability distribution in
both modes. Several laser beam profiles were used: fun-
damental Gaussian and Lorentzian (low-order beams) and
Super-Gaussian, Laguerre-Gaussian and Hermite-Gaussian
(high-order beams). It was found that application of Gaus-
sian, Lorentzian and Super-Gaussian beam profiles does not
affect the exponential probability distribution. Moreover, ap-
propriate probabilities matched perfectly and gave the same
tunneling time interval on any laser intensity in the ob-
served range. In the case of Laguerre-Gaussian and Hermite-
Gaussian beam profiles, the tunneling time interval is com-
pletely different. The probability distribution for the LG pro-
file has a maximum in a large range of tunneling times. On
the other hand, the HG probability, for the same parame-
ters, has lower values while the tunneling time is in a much
narrower range. Calculations in the non-exponential mode
showed that the probability distributions reached a hundred
times lower maximum values at much higher laser intensi-
ties than in the exponential mode. In the non-exponential
mode, all beam profiles give a broad interval of tunneling
time, except in the Hermite-Gaussian case where this inter-
val is constricted. In the region of the infrared spectrum,
whereω < 0.04 a.u.(λ < 1.138 µm), non-exponential prob-
ability distributions are approximately equal to zero. Non-
exponential ionization becomes possible only at higher fre-
quencies. The results presented above indicate that the differ-
ence between probabilities, computed for lower and higher-
order beam field distributions, could be associated with spa-
tial propagation characteristics of the higher-order beam. The
spatial beam pattern of the higher-order modes is preserved
during propagation to increase the slope of the spatial electric
field at any position along the path.
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