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Abstract
In this article, we introduce a new type of non-expansive mapping, namely weakly
K-nonexpansive mapping, which is weaker than non-expansiveness and stronger
than quasi-nonexpansiveness. We prove some weak and strong convergence results
using weakly K-nonexpansive mappings. Also, we define weakly (α,K )-nonexpansive
mapping and using it prove one stability result for JF-iterative process. Some
prominent examples are presented illustrating the facts. A numerical example is given
to compare the convergence behavior of some known iterative algorithms for weakly
K-nonexpansive mappings. Moreover, we show by example that the class of
α-nonexpansive mappings due to Aoyama and Kohsaka and the class of generalized
α-nonexpansive mappings due to Pant and Shukla are independent. Finally, our fixed
point theorem is applied to obtain a solution of a nonlinear fractional differential
equation.
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1 Introduction
Throughout this article, (B,‖·‖) denotes a real Banach space, and D is a non-empty, closed
and convex subset of B, unless otherwise stated. Let Υ : D → D be a self-mapping, and
Fix(Υ ) denotes the set of all fixed points of Υ . Also, we use the notations un ⇀ u and
un → u for a sequence {un} converging weakly and strongly to u, respectively.

The self-mapping Υ on D is said to be non-expansive (see [19]) if ‖Υ x – Υ y‖ ≤ ‖x – y‖
for all x, y ∈D and is said to be quasi-nonexpansive (see [19]) if Fix(Υ ) �= ∅ and ‖Υ x –ρ‖ ≤
‖x – ρ‖ for all x ∈ D and ρ ∈ Fix(Υ ). There are several extensions and generalizations of
non-expansive mappings considered by many researchers.

In 1973, Hardy and Rogers [21] introduced the notion of generalized non-expansive
mapping as below:
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Definition 1.1 ([21]) A mapping Υ : D → D is said to be a Generalized non-expansive
mapping if for all x, y ∈D,

‖Υ x – Υ y‖ ≤ α1‖x – y‖ + α2‖x – Υ x‖ + α3‖y – Υ y‖ + α4‖x – Υ y‖ + α4‖y – Υ x‖, (1.1)

where αi ≥ 0 with
∑5

i=1 αi ≤ 1. Or equivalently, [11]

‖Υ x – Υ y‖ ≤ α1‖x – y‖ + α2
(‖x – Υ x‖ + ‖y – Υ y‖) + α3

(‖x – Υ y‖ + ‖y – Υ x‖) (1.2)

with αi ≥ 0 and α1 + 2α2 + 2α3 ≤ 1.

It is clear that if Fix(Υ ) �= ∅, then Υ is a quasi-nonexpansive mapping.
In 2008, Suzuki [44] introduced a new generalization of non-expansive mappings,

namely Condition (C) as below:

Definition 1.2 ([44]) A mapping Υ : D →D is said to satisfy Condition (C) if for all x, y ∈
D,

1
2
‖x – Υ x‖ ≤ ‖x – y‖ 	⇒ ‖Υ x – Υ y‖ ≤ ‖x – y‖. (1.3)

It is also clear that a mapping with a fixed point satisfying Condition (C) is necessarily a
quasi-nonexpansive mapping.

After that, in 2011, Aoyama and Kohsaka [9] introduced another class of non-expansive
mappings and proved the existence of fixed point of such mappings.

Definition 1.3 ([9]) A mapping Υ : D →D is said to be an α-nonexpansive mapping if

‖Υ x – Υ y‖2 ≤ α
(‖x – Υ y‖2 + ‖y – Υ x‖2) + (1 – 2α)‖x – y‖2 (1.4)

for all x, y ∈D and for some 0 ≤ α < 1.

Furthermore, in 2017, Pant and Shukla [34] introduced a larger class of mappings, which
contains both Suzuki-type mappings and α-nonexpansive mappings, and established some
convergence theorem.

Definition 1.4 ([34]) A mapping Υ : D → D is said to be a generalized α-nonexpansive
mapping if 1

2‖x – Υ x‖ ≤ ‖x – y‖ implies

‖Υ x – Υ y‖ ≤ α
(‖x – Υ y‖ + ‖y – Υ x‖) + (1 – 2α)‖x – y‖ (1.5)

for all x, y ∈D and for some 0 ≤ α < 1.

It can be easily prove that for both α-nonexpansive mappings and generalized α-
nonexpansive mappings, if Fix(Υ ) �= ∅, then they are quasi-nonexpansive mappings. Thus,
all the classes of mappings defined in (1.2), (1.3), (1.4), and (1.5) are wider than the class
of non-expansive mappings and are narrower than the quasi-nonexpansive mappings.
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Very recently, in 2020, Ali et al. [6] showed that the Suzuki Condition (C) and the gener-
alized non-expansive mapping are independent.

On the other hand, the iterative processes have great importance in modern fixed point
theory. To find a fixed point of a self-mapping defined on a metric type space, we often use
the Picard iteration. On a distance space X for a mapping Υ , the Picard iterative process
is defined by un+1 = Υ un with an initial guess u1 ∈X . Most of the researchers working on
fixed point theory use this iterative process to obtain fixed points of a mapping [1, 14, 18,
41].

In 1953, Mann [26] first initiated an iterative process to approximate the fixed point for
non-expansive mappings with an initial guess u1 ∈D as:

un+1 = (1 – τn)un + τnΥ un, (1.6)

where {τn} is a sequence in (0, 1).
After that, Ishikawa [24] in 1974 introduced a two step iterative process with the help of

two constant sequences {τn} and {ξn} in (0, 1) with an initial guess u1 ∈D as:
⎧
⎨

⎩

un+1 = (1 – τn)un + τnΥ vn,

vn = (1 – ξn)un + ξnΥ un,
(1.7)

which the convergence is faster than the Mann iterative process.
In the last few years, several researchers obtained various iterative process to approx-

imate fixed points of various classes of mappings. Among them are the iterations intro-
duced by Noor [28], Agarwal et al. [2], Thakur et al. [45], and Piri et al. [36], as well as
Picard-S iteration [35], M-iteration [48], M∗-iteration [47], K-iteration [22], etc.

Very recently, in 2020, Ali et al. [6] have introduced a new iterative process called JF-
iterative process with an initial guess u1 ∈D, which is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

un+1 = Υ ((1 – τn)vn + τnΥ vn),

vn = Υ (wn),

wn = Υ ((1 – ξn)un + ξnΥ un),

(1.8)

where {ξn} and {τn} are two sequences in (0, 1).
Considering generalized non-expansive mappings, they proved in [6] that the iterative

process given by (1.8) converges faster than the Mann iteration, Ishikawa iteration, Noor
iteration, S-iteration, Picard-S iteration, and Thakur et al. iteration.

Now, a natural question arises: How can we approximate the fixed point of such map-
pings using a certain iterative scheme if a mapping does not belong to any of non-
expansive, generalized non-expansive, Condition (C), α-nonexpansive and generalized α-
nonexpansive classes? In this paper, we answer this question only partially. Indeed, in-
spired by the papers [33] and [40], we introduce a new class of non-expansive mappings,
namely weakly K-nonexpansive mappings, which is defined as follows:

Definition 1.5 A mapping Υ : D → D is said to be a weakly K-nonexpansive mapping if
there exists K ≥ 0 such that

‖Υ x – Υ y‖ ≤ ‖x – y‖ + K‖x – Υ x‖.‖y – Υ y‖. (1.9)
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It is to be noted that a weakly K-nonexpansive mapping does not guarantee the existence
of fixed point. In particular, if K = 0, then (1.9) reduces to non-expansive mapping, and if
Fix(Υ ) �= ∅, then (1.9) reduces to quasi-nonexpansive mapping. Thus, the class of weakly
K-nonexpansive mappings is larger than the that of non-expansive mappings and smaller
than the class of quasi-nonexpansive mappings.

Here, using weakly K-nonexpansive mappings Υ with Fix(Υ ) �= ∅, we establish a conver-
gence theorem for the JF-iterative process to approximate fixed point for such mappings,
and finally we compare its convergence rate by providing a numerical example with some
other known iterative process.

In 1967, Ostrowski [32] was the first who studied the stability of iterative procedures in
a metric space for the Picard iteration.

Definition 1.6 ([10]) Let (X , d) be a metric space and Υ : X →X be a mapping. Let u1 ∈
X and un+1 = f (Υ , un) be a general iterative process involving the mapping Υ . Suppose
that {un}n converges to a fixed point ρ ∈ X of Υ . Let {xn}n ⊂ X be any sequence and let
εn := d(xn+1, f (Υ , xn)) for all n ∈ N. Then the iterative process un+1 = f (Υ , un) is Υ -stable (or
stable with respect to the mapping Υ ) if and only if limn→∞ εn = 0 implies limn→∞ xn = ρ .

The stability of different iterative procedures of certain contractive mappings have been
studied by several researchers (See, [20, 37–39, 46], and [10, 16]).

In 1995, Osilike [31] proposed a new type of contractive mapping in a normed linear
space X as: for all x, y ∈X , there exists α ∈ [0, 1) and K ≥ 0 such that

‖Υ x – Υ y‖ ≤ α‖x – y‖ + K‖x – Υ x‖. (1.10)

Using this contractive condition, he proved that the Picard and Ishikawa iterating se-
quences are Υ -stable. Thereafter, in 2003, Imoru et al. [23] generalized the contractive
mapping due to Osilike by replacing the constant K by a certain function as follows and
proved some stability results for the Picard and Mann iterative processes (see, also [29]
for the Ishikawa iterative process):

For all x, y ∈ X , there exists α ∈ [0, 1) and a monotone increasing and continuous func-
tion ψ : [0, +∞) → [0, +∞) with ψ(0) = 0 such that

‖Υ x – Υ y‖ ≤ α‖x – y‖ + ψ
(‖x – Υ x‖). (1.11)

Now, the question is: Does there exist a larger class of contractive mappings than that of
(1.11) so that the stability results can be improved? We have also answered this question
partially. Indeed, we employ another type of non-expansivity, namely the weakly (α, K)-
nonexpansive mappings defined as follows, and show by an example that there are such
mappings, which do not satisfy (1.11), but they are weakly (α, K)-nonexpansive mappings.

Definition 1.7 A mapping Υ : D →D is said to be a weakly (α, K)-nonexpansive mapping
if ∃ α ∈ (0, 1) and K ≥ 0 such that

‖Υ x – Υ y‖ ≤ α.‖x – y‖ + K‖x – Υ x‖.‖y – Υ y‖. (1.12)

Using weakly (α, K)-nonexpansive mapping (1.12), we prove stability results for the JF-
iterative process (1.8).
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2 Preliminaries
In this section, we recall some basic definitions, preliminary facts, and Lemmas, which we
have used in our main results.

Definition 2.1 ([19]) A Banach space B is said to be strictly convex if for all x, y ∈ B with
x �= y and ‖x‖ = ‖y‖ = 1 implies ‖ x+y

2 ‖ < 2, andB is said to be uniformly convex if for each ε ∈
(0, 2], ∃ a 0 < δ < 1 such that ‖x+y‖

2 ≤ 1 – δ; ∀x, y ∈ B with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x – y‖ ≥ ε.

A mapping Υ : D → B is said to be demiclosed at y ∈ B (see [19]) if for every sequence
{un} ⊂D with un ⇀ x for some x ∈D and Υ un → y implies that Υ x = y.

A Banach space B is said to satisfy Opial’s property(see [30]) if for any arbitrary sequence
{un} ⊂ B with un ⇀ x ∈ B such that for all y ∈ B \ {x},

lim inf
n→+∞ ‖un – x‖ < lim inf

n→+∞ ‖un – y‖.

Let {un} be a bounded sequence in B. Then, for every x ∈D, we define (see [19]):
• Asymptotic radius of {un} relative to x by

r
(
x, {un}

)
:= lim sup

n→+∞
‖un – x‖.

• Asymptotic radius of {un} relative to D by

r
(
D, {un}

)
:= inf

x∈D
r
(
x, {un}

)
.

• Asymptotic centre of {un} relative to D by

A
(
D, {un}

)
:=

{
x ∈D : r

(
x, {un}

)
= r

(
D, {un}

)}
.

Moreover, if B is uniformly convex, then it is well known that A(D, {un}) is a singleton
set.

A mapping Υ : D → D is said to satisfy Condition (I) (see [43]) if there exists a non-
decreasing function ϕ : [0, +∞) → [0, +∞) with ϕ(0) = 0 and ϕ(t) > 0, for all t > 0 such
that ‖x – Υ x‖ ≥ ϕ(d(x, Fix(Υ ))), for all x ∈D; where d(x, Fix(Υ )) := infρ∈Fix(Υ )‖x – ρ‖.

Lemma 2.2 ([42]) Let B be a uniformly convex Banach space and 0 < r ≤ sn ≤ t < 1 for all
n ∈ N. Suppose that {an} and {bn} are two sequences in B satisfying lim supn→+∞‖an‖ ≤
s, lim supn→+∞‖bn‖ ≤ s and lim supn→+∞‖snan + (1 – sn)bn‖ = s for some s ≥ 0. Then
limn→+∞‖an – bn‖ = 0.

Lemma 2.3 ([15]) Let μ be a real number with 0 ≤ μ < 1 and {εn} be a sequence of positive
reals such that limn→+∞ εn = 0. Then, for any sequence of positive reals {xn} satisfying xn+1 ≤
εn + μxn, we have limn→+∞ xn = 0.

3 Some basic discussions
In this section, we discuss the nature of our weakly K-nonexpansive and weakly (α, K)-
nonexpansive mappings, compare them with the other previously defined mappings, and
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prove some basic properties of our newly defined non-expansive type mappings, which we
used in our main results. Pant & Shukla [34] proved that every mapping satisfying Condi-
tion (C) (1.3) is a generalized α-nonexpansive mapping (1.5), but the reverse implication
is not true.

Ali et al. [6] proved via some examples that the generalized non-expansive mapping (1.2)
due to Hardy-Rogers and the Condition (C) (1.3) are independent.

Also, it has already been proved that generalized α-nonexpansive mapping (1.5) is not
necessarily a α-nonexpansive mapping (1.4) (see [34], Example 3.4).

First, we will prove that the class of α-nonexpansive mappings (1.4) and the class of
generalized α-nonexpansive mapping (1.5) are independent. For this purpose, we consider
the following example:

Example 3.1 Let B = R and D = {1, 2, 4}. Define Υ : D →D by

⎧
⎪⎪⎨

⎪⎪⎩

1 �→ 2,

2 �→ 4,

4 �→ 4.

Then, Υ is an α-nonexpansive mapping but not generalized α-nonexpansive mapping.

To prove that Υ is an α-nonexpansive mapping, take α = 3
7 .

Case 1: If x = 2 and y = 1, then

‖Υ x – Υ y‖2 = 4 = α
(‖x – Υ y‖2 + ‖y – Υ x‖2) + (1 – 2α)‖x – y‖2.

Case 2: If (x, y) ∈ {(1, 1), (2, 2), (4, 4), (2, 4)} then, ‖Υ x – Υ y‖2 = 0 and since α = 3
7 > 0 and

1 – 2α = 1
7 > 0, so, α(‖x – Υ y‖2 + ‖y – Υ x‖2) + (1 – 2α)‖x – y‖2 ≥ 0. Thus, ‖Υ x – Υ y‖2 ≤

α(‖x – Υ y‖2 + ‖y – Υ x‖2) + (1 – 2α)‖x – y‖2 holds.

Case 3: If x = 1 and y = 4 then,

‖Υ x – Υ y‖2 = 4 <
48
7

= α
(‖x – Υ y‖2 + ‖y – Υ x‖2) + (1 – 2α)‖x – y‖2.

Hence, Υ is an α-nonexpansive mapping.
Now, take x = 2 and y = 1. Then, 1

2‖x – Υ x‖ = 1 = ‖x – y‖. Suppose that there exists α ∈
[0, 1) such that ‖Υ x–Υ y‖ ≤ α(‖x–Υ y‖+‖y–Υ x‖)+(1–2α)‖x–y‖. Then, 2 ≤ 3α+(1–2α)
implies α ≥ 1, a contradiction. Hence, Υ is not a generalized α-nonexpansive mapping.

Also, note that Υ is a weakly K-nonexpansive mapping for K = 1.

Example 3.2 Let B := R and D = [0, 4]. Define Υ : D →D by

Υ x =

⎧
⎨

⎩

0, if 0 ≤ x < 4,

3, if x = 4.
(3.1)

Then, Υ is a weakly K-nonexpansive mapping, whether it is neither a generalized α-
nonexpansive mapping nor satisfies the Suzuki Condition (C).
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Take K = 1. If x, y ∈ [0, 4), then (1.9) holds trivially, as ‖Υ x – Υ y‖ = 0.
If x = 4 and y ∈ [0, 4), then ‖Υ x –Υ y‖ = 3 < 4 = ‖x – y‖+ K‖y –Υ y‖.‖x –Υ x‖. Therefore,

Υ is a weakly K-nonexpansive mapping.
Take x = 4 and y = 3. Then 1

2‖x – Υ x‖ = 1
2 < 1 = ‖x – y‖. Suppose that there exists α ∈

[0, 1) such that ‖Υ x–Υ y‖ ≤ α(‖x–Υ y‖+‖y–Υ x‖)+(1–2α)‖x–y‖. Then 3 ≤ 4α+(1–2α)
implies α ≥ 1, a contradiction. Therefore, Υ is not a generalized α-nonexpansive mapping
and contrapositively Υ does not satisfy Condition (C).

Example 3.3 Let B := R
2. Define a norm on R

2 by ‖x‖ = ‖(x1, x2)‖ := |x1| + |x2|. Then
(B,‖·‖) is a Banach space. Consider a subset of D ⊂R

2 defined as:
D := {(0, 0), (2, 0), (4, 0), (0, 4), (4, 5), (5, 4)}. Define a map Υ : D →D by

Υ x :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(0, 0), if x ∈ {(0, 0), (2, 0)},
(2, 0), if x = (4, 0),

(4, 0), if x ∈ {(4, 5), (0, 4)},
(0, 4), if x = (5, 4).

(3.2)

Then, Υ is a weakly K-nonexpansive mapping but satisfies none of the (1.2), (1.3), (1.4),
and (1.5).

It can be easily verify that Υ is a weakly K-nonexpansive mapping for K = 1.
Take x = (4, 5) and y = (5, 4). Suppose that there exists α ∈ [0, 1) satisfying ‖Υ x – Υ y‖2 ≤

α(‖x – Υ y‖2 + ‖y – Υ x‖2) + (1 – 2α)‖x – y‖2. Then, 64 ≤ α(25 + 25) + 4(1 – 2α) implies
α ≥ 30

21 > 1, a contradiction. Therefore, Υ is not an α-nonexpansive mapping (1.4).
Taking the same x and y, suppose that there exists α1,α2,α3 ∈ [0, 1) with α1 + 2α2 + 2α3 ≤

1 such that (1.2) holds. Then, 8 ≤ 2α1 + 10α2 + 10α3 ≤ 2 + 6α2 + 6α3 ≤ 5 – 3α1 implies
α1 ≤ –1, a contradiction. Therefore, Υ is not a generalized non-expansive mapping (1.2).

Next take x = (0, 4) and y = (5, 4). Then 1
2‖x – Υ x‖ = 4 < 5 = ‖x – y‖. Now, suppose that

there exists α ∈ [0, 1) satisfying

‖Υ x – Υ y‖ ≤ α
(‖x – Υ y‖ + ‖y – Υ x‖) + (1 – 2α)‖x – y‖.

Then, 8 ≤ α(0 + 5) + 5(1 – 2α) implies α ≤ – 3
5 , a contradiction. Therefore, Υ is not a gener-

alized α-nonexpansive mapping (1.5). Then, contrapositively, Υ does not satisfy Condition
(C) (1.3). Moreover, Υ is not a non-expansive mapping.

Proposition 3.4 For a weakly K-nonexpansive mapping Υ : D →D we have,

‖x – Υ y‖ ≤ ‖x – y‖ + ‖x – Υ x‖(1 + K‖y – Υ y‖) for all x, y ∈D. (3.3)

Proof Simply using the triangle inequality, we have

‖x – Υ y‖ ≤ ‖x – Υ x‖ + ‖Υ x – Υ y‖
≤ ‖x – Υ x‖ + ‖x – y‖ + K‖x – Υ x‖.‖y – Υ y‖
= ‖x – y‖ + ‖x – Υ x‖(1 + K‖y – Υ y‖),

for all x, y ∈D. �
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Lemma 3.5 Let Υ : D → D be a weakly K-nonexpansive mapping, where D is a closed
subset of a Banach space B. Then, Fix(Υ ) is closed. Moreover, if B is strictly convex, and D
is convex, then Fix(Υ ) is convex.

Proof To show that Fix(Υ ) is closed, let us assume that ρ ∈ Fix(Υ ). Then, there exists a
sequence {ρn} ⊂ Fix(Υ ) such that ρn

n→+∞−−−−→ ρ .
Now, using (3.3), we have

‖ρn – Υρ‖ ≤ ‖ρn – ρ‖ + ‖ρn – Υρn‖
(
1 + K‖ρ – Υρ‖)

= ‖ρn – ρ‖, since ρn = Υρn.

Taking the limit on both sides, we have limn→+∞‖ρn – Υρ‖ ≤ limn→+∞‖ρn – ρ‖ = 0, which
implies that ρn

n→+∞−−−−→ Υρ , and hence, ρ = Υρ , i.e., ρ ∈ Fix(Υ ), and consequently, Fix(Υ )
is closed.

Now, we will show that Fix(Υ ) is convex. For this aim, let ρ1,ρ2 ∈ Fix(Υ ) with ρ1 �= ρ2

and let 0 < μ < 1. Put ρ := μρ1 + (1 – μ)ρ2. We claim that ρ ∈ Fix(Υ ).
Using (3.3), we have,

‖ρ1 – Υρ‖ ≤ ‖ρ1 – ρ‖ + ‖ρ1 – Υρ1‖
(
1 + K‖ρ – Υρ‖) = ‖ρ1 – ρ‖. (3.4)

Similarly,

‖ρ2 – Υρ‖ ≤ ‖ρ2 – ρ‖. (3.5)

Now,

‖ρ1 – ρ2‖ ≤ ‖ρ1 – Υρ‖ + ‖ρ2 – Υρ‖
≤ ‖ρ1 – ρ‖ + ‖ρ2 – ρ‖
= ‖ρ1 – ρ2‖, putting the value of ρ

implies that ‖ρ1 – Υρ‖ + ‖Υρ – ρ2‖ = ‖ρ1 – ρ2‖. Since B is strictly convex, there exists a
constant κ > 0 such that ρ1 – Υρ = κ(Υρ – ρ2). Then, Υρ = δρ1 + (1 – δ)ρ2, where δ = 1

1+κ
∈

(0, 1). Now, using (3.4) and (3.5), we get

(1 – δ)‖ρ1 – ρ2‖ = ‖ρ1 – Υρ‖ ≤ ‖ρ1 – ρ‖ = (1 – μ)‖ρ1 – ρ2‖

and

δ‖ρ1 – ρ2‖ = ‖ρ2 – Υρ‖ ≤ ‖ρ2 – ρ‖ = μ‖ρ1 – ρ2‖.

Thus, we get 1 – δ ≤ 1 – μ, and δ ≤ μ implies δ = μ. Then, Υρ = ρ , i.e., ρ ∈ Fix(Υ ), and
hence, Fix(Υ ) is convex. �

Lemma 3.6 Let B be a Banach space having Opial’s property and Υ : D →D be a weakly
K-nonexpansive mapping, where D is a closed subset of B. If {un} is a sequence in D such
that un ⇀ x for some x ∈D and limn→+∞‖un – Υ un‖ = 0, then I – Υ is demiclosed at zero,
where I is the identity mapping on D.
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Proof Using (3.3), we have, ‖un – Υ x‖ ≤ ‖un – x‖ + ‖un – Υ un‖(1 + K‖x – Υ x‖).
Taking lim inf on both sides, we get lim infn→+∞‖un – Υ x‖ ≤ lim infn→+∞‖un – x‖ and

by Opial’s property, we have Υ x = x, i.e., I – Υ is demiclosed at zero. �

4 Stability results
In this section, first we present an example, which does not satisfy (1.11) but satisfies (1.12),
and then we prove some stability results of JF-iterative process (1.8) for weakly (α, K)-
nonexpansive mappings (1.12).

Example 4.1 Let X := [2,∞). Define Υ : X → X by Υ (x) = x2. Then, it is easy to check
that Υ is a weakly (α, K)-nonexpansive mapping with α = 1

2 and K = 1. But Υ does not
satisfy (1.11). For this, we take x = 2 and y = 2n (n ∈ N). Then, for any α ∈ [0, 1) we have
ψ(2) ≥ 1

2 .[(22n – 4) – α(2n – 2)] → +∞ as n → +∞, which is a contradiction.

Remark 4.2 A weakly (α, K)-nonexpansive mapping does not ensure the existence of fixed
point. Example 4.1 shows this.

Theorem 4.3 Let (X ,‖·‖) be a normed linear space and Υ : X → X be a weakly (α, K)-
nonexpansive mapping. Suppose that Υ has a fixed point ρ ∈ X . Let u1 ∈ X and un+1 =
f (Υ , un) be the JF-iterating process defined by (1.8). Then, the JF-iterative process is Υ -
stable.

Proof Here, un+1 = f (Υ , un) defined by the iterative scheme (1.8), where {τn} and {ξn} are
sequences in (0, 1). Let {xn} ⊂X be an arbitrary sequence. Define εn := ‖xn+1 – f (Υ , xn)‖.

First suppose that limn→+∞ εn = 0. Then,

‖xn+1 – ρ‖
≤ ∥

∥xn+1 – f (Υ , xn)
∥
∥ +

∥
∥f (Υ , xn) – ρ

∥
∥

= εn +
∥
∥Υ

[
(1 – τn)Υ Υ

{
(1 – ξn)xn + ξnΥ xn

}
+ τnΥ Υ Υ

{
(1 – ξn)xn + ξnΥ xn

}]
– ρ

∥
∥

≤ εn + α
∥
∥(1 – τn)Υ Υ

{
(1 – ξn)xn + ξnΥ xn

}
+ τnΥ Υ Υ

{
(1 – ξn)xn + ξnΥ xn

}
– ρ

∥
∥

≤ εn + α
∥
∥(1 – τn)(yn – ρ) + τn(Υ yn – ρ)

∥
∥, where yn = Υ Υ

{
(1 – ξn)xn + ξnΥ xn

}

≤ εn + α[(1 – τn)‖yn – ρ‖ + τn‖Υ yn – ρ‖
≤ εn + α(1 – τn + ατn)‖yn – ρ‖
= εn + α(1 – τn + ατn)

∥
∥Υ Υ

{
(1 – ξn)xn + ξnΥ xn

}
– ρ

∥
∥

≤ εn + α2(1 – τn + ατn)
∥
∥Υ

{
(1 – ξn)xn + ξnΥ xn

}
– ρ

∥
∥

≤ εn + α3(1 – τn + ατn)
∥
∥(1 – ξn)xn + ξnΥ xn – ρ

∥
∥

≤ εn + α3(1 – τn + ατn)
[
(1 – ξn)‖xn – ρ‖ + ξn‖Υ xn – ρ‖]

≤ εn + α3(1 – τn + ατn).(1 – ξn + αξn)‖xn – ρ‖.

Since α ∈ (0, 1), so 0 ≤ 1–τn +ατn = 1–τn(1–α) < 1, and 0 ≤ 1–ξn +αξn = 1–ξn(1–α) < 1.
Therefore, by Lemma 2.3, we have limn→+∞‖xn – ρ‖ = 0, i.e., limn→+∞ xn = ρ . Conse-
quently, JF-iterative process is Υ -stable. �
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5 Convergence results
In this section, we present some convergence results for weakly K-nonexpansive mappings
using JF iterative algorithm (1.8). For this purpose, the following Lemmas are crucial.

Lemma 5.1 Let D be a non-empty, closed and convex subset of a uniformly convex Banach
space B and Υ : D → D be a weakly K-nonexpansive mapping with Fix(Υ ) �= ∅. Let {un}
be the iterative sequence defined by (1.8). Then, limn→+∞‖un – ρ‖ exists for all ρ ∈ Fix(Υ ).

Proof Let ρ ∈ Fix(Υ ). Since Υ is a weakly K-nonexpansive mapping, so for every sequence
{xn} ⊂D, we can get ‖Υ xn – ρ‖ ≤ ‖xn – ρ‖. Then using the iteration (1.8), we have

‖wn – ρ‖ =
∥
∥Υ

(
(1 – ξn)un + ξnΥ un

)
– ρ

∥
∥

≤ ∥
∥(1 – ξn)un + ξnΥ un – ρ

∥
∥

≤ (1 – ξn)‖un – ρ‖ + ξn‖Υ un – ρ‖
≤ (1 – ξn)‖un – ρ‖ + ξn‖un – ρ‖
= ‖un – ρ‖. (5.1)

Now, using (5.1), we have

‖vn – ρ‖ = ‖Υ wn – ρ‖
≤ ‖wn – ρ‖ (5.2)

≤ ‖un – ρ‖. (5.3)

Finally, using (5.3), we have

‖un+1 – ρ‖ =
∥
∥Υ

(
(1 – τn)vn + τnΥ vn

)
– ρ

∥
∥

≤ ∥
∥(1 – τn)vn + τnΥ vn – ρ

∥
∥

≤ (1 – τn)‖vn – ρ‖ + τn‖Υ vn – ρ‖
≤ (1 – τn)‖vn – ρ‖ + τn‖vn – ρ‖
= ‖vn – ρ‖ (5.4)

≤ ‖un – ρ‖. (5.5)

Thus, we get {‖un – ρ‖}n is a non-increasing sequence of reals, which is bounded below
by zero. Hence, limn→+∞‖un – ρ‖ exists for all ρ ∈ Fix(Υ ). �

Lemma 5.2 Let Υ : D →D be a weakly K-nonexpansive mapping defined on a non-empty
closed convex subset D of a uniformly convex Banach space B. Let {un} be the iterative
sequence defined by (1.8). Then, Fix(Υ ) �= ∅ if and only if {un} is bounded and limn→+∞‖un –
Υ un‖ = 0.

Proof First suppose that Fix(Υ ) �= ∅ and let ρ ∈ Fix(Υ ). Then, from Lemma 5.1, we have
limn→+∞‖un – ρ‖ exists and consequently {un} becomes bounded.
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Let limn→+∞‖un – ρ‖ = θ . Then, from (5.1) and (5.3), we have lim supn→+∞‖wn – ρ‖ ≤ θ

and lim supn→+∞‖vn – ρ‖ ≤ θ .
Since Υ is weakly K-nonexpansive mapping, we have ‖Υ un – ρ‖ = ‖Υ un – Υρ‖ ≤ ‖un –

ρ‖ and therefore lim supn→+∞‖Υ un – ρ‖ ≤ θ .
Now, taking lim inf on both sides of (5.4), we have

θ = lim inf
n→+∞ ‖un+1 – ρ‖ ≤ lim inf

n→+∞ ‖vn – ρ‖ ≤ lim sup
n→+∞

‖vn – ρ‖ ≤ θ ,

which yields limn→+∞‖vn – ρ‖ = θ .
Again by taking lim inf on both sides in (5.2), we have

θ = lim inf
n→+∞ ‖vn – ρ‖ ≤ lim inf

n→+∞ ‖wn – ρ‖ ≤ lim sup
n→+∞

‖wn – ρ‖ ≤ θ ,

implying that limn→+∞‖wn – ρ‖ = θ .
Therefore,

θ = lim
n→+∞‖wn – ρ‖

= lim
n→+∞

∥
∥Υ

(
(1 – ξn)un + ξnΥ un

)
– ρ

∥
∥

≤ lim
n→+∞

∥
∥(1 – ξn)un + ξnΥ un – ρ

∥
∥

= lim
n→+∞

∥
∥(1 – ξn)(un – ρ) + ξn(Υ un – ρ)

∥
∥

≤ lim
n→+∞

[
(1 – ξn)‖un – ρ‖ + ξn‖Υ un – ρ‖]

≤ lim
n→+∞‖un – ρ‖ = θ ,

which implies that limn→+∞‖(1 – ξn)(un – ρ) + ξn(Υ un – ρ)‖ = θ . Consequently, using
Lemma 2.2, we can conclude that limn→+∞‖un – Υ un‖ = 0.

Conversely, suppose that {un} be bounded and limn→+∞‖un – Υ un‖ = 0. Since B is a
uniformly convex Banach space, and D is a non-empty closed and convex subset of B,
A(D, {un}) is a singleton set, say {ρ}.

Now, we claim that ρ is a fixed point of Υ . Using (3.3), we have

r
(
Υρ, {un}

)
= lim sup

n→+∞
‖un – Υρ‖

≤ lim sup
n→+∞

[‖un – ρ‖ + ‖un – Υ un‖
(
1 + K‖ρ – Υρ‖)]

= lim sup
n→+∞

‖un – ρ‖ = r
(
ρ, {un}

)
= r

(
D, {un}

)
.

Therefore, Υρ ∈ A(D, {un}) and consequently, Υρ = ρ , i.e., ρ is a fixed point of Υ , and we
are done. �

Now, we are ready to prove a weak convergence result and a strong convergence result
for a weakly K-nonexpansive mapping using the iterative scheme given by (1.8).
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Theorem 5.3 Let B be a uniformly convex Banach space having the Opial property and
D(�= ∅) be a closed and convex subset of B. Let Υ : D → D be a weakly K-nonexpansive
mapping and let {un} be an iterated sequence defined by (1.8). If Fix(Υ ) �= ∅, then {un}
converges weakly to a fixed point of Υ .

Proof Suppose that Fix(Υ ) �= ∅. Then, from Lemma 5.2, we have limn→+∞‖un – Υ un‖ = 0.
Since B is uniformly convex, it is reflexive, and hence there exists a sub-sequence {uni}i of
{un} such that uni ⇀ ρ for some ρ ∈D. Then, by Lemma 3.6, I – Υ is demiclosed at zero,
where I is the identity mapping on D, i.e., ρ ∈ Fix(Υ ).

By the contrary, suppose that un �⇀ ρ . Then, there exists a subsequence {unj}j of {un}
such that unj ⇀ ρ ′ for some ρ ′ (�= ρ) ∈D. Then, by Lemma 3.6, ρ ′ ∈ Fix(Υ ).

Again from Lemma 5.1, we conclude that limn→+∞‖un – ρ‖ exists, ∀ρ ∈ Fix(Υ ). There-
fore,

lim
n→+∞‖un – ρ‖ = lim

i→+∞‖uni – ρ‖

< lim
i→+∞

∥
∥uni – ρ ′∥∥, using Opial’s property

= lim
n→+∞

∥
∥un – ρ ′∥∥

= lim
j→+∞

∥
∥uni – ρ ′∥∥

< lim
j→+∞‖unj – ρ‖, using Opial’s property

= lim
n→+∞‖un – ρ‖

arrives at a contradiction and consequently, un ⇀ ρ , which completes the proof. �

Theorem 5.4 Let B be a uniformly convex Banach space and D be a closed and convex
subset of B. Let Υ : D →D be a weakly K-nonexpansive mapping with Fix(Υ ) �= ∅ and let
{un} be the iterated sequence defined by (1.8). Then, {un} converges strongly to a fixed point
of Υ if one of the followings hold:

(i) lim infn→+∞ d(un, Fix(Υ )) = 0,
(ii) Υ satisfies Condition (I).

Proof (i) Assume that lim infn→+∞ d(un, Fix(Υ )) = 0. Since Fix(Υ ) �= ∅, let us choose
ρ ∈ Fix(Υ ). From (5.5), we have ‖un+1 –ρ‖ ≤ ‖un –ρ‖, which implies that d(un+1, Fix(Υ )) ≤
d(un, Fix(Υ )). Thus, {d(un, Fix(Υ ))}n is a non-increasing sequence, which is bounded be-
low by zero. Therefore, limn→+∞ d(un, Fix(Υ )) exists and by our assumption,
limn→+∞ d(un, Fix(Υ )) = 0. Then, there exists a subsequence {unk }k of {un} and a sequence
{ρk} of Fix(Υ ) such that

‖unk – ρk‖ <
1
2k , for all k ∈ N.

Again, we have ‖unk+1 – ρk‖ ≤ ‖unk – ρk‖ < 1
2k .

Therefore, ‖ρk+1 – ρk‖ ≤ ‖ρk+1 – unk+1‖ + ‖unk+1 – ρk‖ ≤ 1
2k+1 + 1

2k < 1
2k–1 . Now, can be

easily proved that {ρk} is a Cauchy sequence in Fix(Υ ) and since Fix(Υ ) is closed, ρk → ρ ′

for some ρ ′ ∈ Fix(Υ ).
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Table 1 Convergence behavior of various iterative process

Name of the iterations Number of iterations needed

Mann 30
Ishikawa 24
Agarwal 13
M 8
M∗ 8
Thakur-new 8
JF 5

Again, ‖unk – ρ ′‖ ≤ ‖unk – ρk‖ + ‖ρk – ρ ′‖ → 0 as k → ∞. So, unk → ρ ′. Since
limn→+∞‖un – ρ ′‖ exists, by Lemma 5.1 un → ρ ′.

(ii) From Lemma 5.2, we have limn→+∞‖un – Υ un‖ = 0. Again, from Condition (I), we
have,

0 ≤ lim
n→+∞ϕ

(
d
(
un, Fix(Υ )

)) ≤ lim
n→+∞‖un – Υ un‖ = 0,

which implies limn→+∞ ϕ(d(un, Fix(Υ ))) = 0 and hence limn→+∞ d(un, Fix(Υ )) = 0, which
reduces to (i) and completes the proof. �

Now, we compare the behavior of convergence of some known iterative scheme for the
weakly K-nonexpansive mappings by choosing the parameter sequences {τn} and {ξn} in
(0, 1).

Example 5.5 Let B = R be equipped with the usual norm and D = [1, +∞). Define a map
Υ : D →D by

Υ x =

⎧
⎨

⎩

x+2
3 , if x ∈ [1, 3],
x

x+1 , if x ∈ (3, +∞).
(5.6)

Then, it can be easily checked that Υ is a weakly K-nonexpansive mapping for K = 2.

It is clear that x = 1 is the unique fixed point of Υ . Now, to approximate this fixed point,
consider τn = 5n

7n+4 and ξn = 2n
3n+1 and let the initial guess be u1 = 3. Using these sequences of

scalars and the weakly K-nonexpansive mapping defined in (5.6), in Table 1, we compare
the convergence behavior of the Mann-iteration, Ishikawa-iteration, Agarwal-iteration,
Thakur-new iteration, M-iteration, M∗-iteration, JF-iteration, and we stop the process
when the result is correct up to 7-decimal places (i.e., we stop the process when the result
comes 1.0000000).

6 Application to nonlinear fractional differential equation
During the last three decades, fractional differential calculus has became an interesting
and fruitful area of research in science and engineering. It has several applications in the
field of signal processing, fluid flow, diffusive transport, electrical networks, electronics,
robotics, telecommunication, etc.; for more details, one can refer to ([3–5, 7, 8, 17, 25], and
[27]). Sometimes, it is observed that a particular nonlinear fractional differential equation
may have no analytic solution. In this case, we need to find out an approximate solution. In
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this section, we will estimate an approximate solution of a nonlinear fractional differential
equation using the iterative algorithm (1.8).

Type-I:
Consider the fractional differential equation:

Dγ y(x) + f
(
x, y(x)

)
= 0, 0 ≤ x ≤ 1 and 1 < γ < 2 (6.1)

with the boundary conditions y(0) = 0 and y(1) = 1, where f : [0, 1]×R→R is a continuous
function, and Dγ (= dγ

dxγ ) denotes the fractional derivative of order γ .
Let B = C[0, 1] be the Banach space of all continuous functions from [0, 1] to R equipped

with the sup-norm. The Green function [12] corresponding to the equation (6.1) is defined
by

G(x, t) =

⎧
⎨

⎩

1
�(γ ) [x(1 – t)γ –1 – (x – t)γ –1] for 0 ≤ t ≤ x,

1
�(γ ) x(1 – t)γ –1 for x ≤ t ≤ 1.

Now, we approximate the solution of the fractional differential equation (6.1) using the
iterative scheme (1.8).

Theorem 6.1 Let B = C[0, 1] be a Banach space equipped with the sup-norm and {un} be
a sequence defined by JF-iterative scheme for the function Υ : B → B defined by

Υ y(x) =
∫ 1

0
G(x, t)f

(
t, y(t)

)
dt, for all x ∈ [0, 1] and y ∈ B.

Moreover, assume that f is a Lipschitz function with respect to the second variable, i.e.,
|f (x, y1) – f (x, y2)| ≤ |y1 – y2|, for all x ∈ [0, 1] and y1, y2 ∈ B. Then JF-iterative sequence
converges to a solution of the problem (6.1).

Proof We know that the solution of the fractional differential equation (6.1) in terms of
Green’s function is

y(x) =
∫ 1

0
G(x, t)f

(
t, y(t)

)
dt.

Then for all y1, y2 ∈ B and x ∈ [0, 1], we have

∣
∣Υ y1(x) – Υ y2(x)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G(x, t)f

(
t, y1(t)

)
dt –

∫ 1

0
G(x, t)f

(
t, y2(t)

)
dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0
G(x, t)

{
f
(
t, y1(t)

)
– f

(
t, y2(t)

)}
dt

∣
∣
∣
∣

≤
∫ 1

0
G(x, t)

∣
∣f

(
t, y1(t)

)
– f

(
t, y2(t)

)∣
∣dt

≤
∫ 1

0
G(x, t)

∣
∣y1(t) – y2(t)

∣
∣dt
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Table 2 Approximate solution of Example 6.2

Sl. no. x u2 u4 u7 u9 u10

1 0.0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 0.1 0.04573922 0.04573922 0.04573922 0.04573922 0.04573922
3 0.2 0.09039085 0.09039085 0.09039085 0.09039085 0.09039085
4 0.3 0.13196066 0.13196066 0.13196066 0.13196066 0.13196066
5 0.4 0.16763088 0.16763088 0.16763088 0.16763088 0.16763088
6 0.5 0.19379645 0.19379645 0.19379645 0.19379645 0.19379645
7 0.6 0.20606552 0.20606552 0.20606552 0.20606552 0.20606552
8 0.7 0.19924752 0.19924752 0.19924752 0.19924752 0.19924752
9 0.8 0.16733569 0.16733569 0.16733569 0.16733569 0.16733569
10 0.9 0.10348689 0.10348689 0.10348689 0.10348689 0.10348689
11 1.0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

≤ ‖y1 – y2‖.
(

sup
x∈[0,1]

∫ 1

0
G(x, t) dt

)

≤ ‖y1 – y2‖.

Thus, we get ‖Υ y1 – Υ y2‖ ≤ ‖y1 – y2‖, ∀y1, y2 ∈ B. Then, Υ is a non-expansive mapping
and so is a weakly K-nonexpansive mapping, and hence the JF-iterative scheme converges
to the solution of (6.1). �

Now, we present a numerical example, corresponding to the above theorem.

Example 6.2 Consider the following fractional differential equation:

Dγ y(x) + x2(x + 2) = 0 0 ≤ x ≤ 1,γ ∈ (1, 2) (6.2)

with the boundary conditions y(0) = 0 and y(1) = 1.
Consider the mapping Υ : C[0, 1] → C[0, 1] defined by

Υ y(x) :=
1

�(γ )

∫ x

t=0

[
x(1 – t)γ –1 – (x – t)γ –1]t2(t + 2) dt

+
x

�(γ )

∫ 1

t=x
(1 – t)γ –1t2(t + 2) dt. (6.3)

Take γ = 3
2 , initial guess u1(x) = x2(1 – x)2 and x ∈ [0, 1]. Choose the sequences ξn = 0.87

and τn = 0.69 for all n ∈ N. Then, the JF-iterative scheme (1.8) converges to the solution
of (6.2) shown in Table 2.

Type-II:
Now, we consider the nonlinear fractional differential equation

Dγ y(x) + Dδy(x) + φ
(
x, y(x)

)
= 0, 0 ≤ x ≤ 1, and 0 < δ < γ < 1, (6.4)

with the boundary conditions y(0) = 1 and y(1) = 1, and φ : [0, 1] ×R→R is a continuous
function. The Green function associated with (6.4) is given by G(t) = tγ –1Eγ –δ,γ (–tγ –δ),
where Ep,q(z) :=

∑∞
m=0

zm

�(mp+q) , p, q > 0, denotes the two parameter Mittag-Leffler function
(see [12]).
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Theorem 6.3 Consider the Banach space B := C[0, 1] equipped with the sup-norm and
{un}, which is a sequence defined by JF-iterative scheme for the function Υ : B → B defined
by

Υ y(x) =
∫ x

0
G(x – s)φ

(
s, y(s)

)
ds ∀x ∈ [0, 1] and y ∈ B.

Moreover, assume that φ satisfies the following condition:

∣
∣φ

(
x, y1(x)

)
– φ

(
x, y2(x)

)∣
∣ ≤ γ

∣
∣y1(x) – y2(x)

∣
∣ for all x ∈ [0, 1] and y1, y2 ∈ B.

Then, the JF-iterative sequence converges to a solution of the fractional differential equation
(6.4).

Proof For all y1, y2 ∈ B and x ∈ [0, 1], we have

∣
∣Υ y1(x) – Υ y2(x)

∣
∣ =

∣
∣
∣
∣

∫ x

0
G(x – s)φ

(
s, y1(s)

)
ds –

∫ x

0
G(x – s)φ

(
s, y2(s)

)
ds

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ x

0
G(x – s)

(
φ
(
s, y1(s)

)
– φ

(
s, y2(s)

))
∣
∣
∣
∣ds

≤
∫ x

0

∣
∣G(x – s)

∣
∣
∣
∣φ

(
s, y1(s)

)
– φ

(
s, y2(s)

)∣
∣ds

≤
∫ x

0

∣
∣G(x – s)

∣
∣.γ

∣
∣y1(s) – y2(s)

∣
∣ds

≤ γ ‖y1 – y2‖.
(

sup
x∈[0,1]

∫ x

0

∣
∣G(x – s)

∣
∣ds

)

.

Using the properties of the Mittag-Leffler function, it can be seen [12, 13] that G(t) =
tγ –1Eγ –δ,γ (–tγ –δ) ≤ tγ –1 for all t ∈ [0, 1]. Then, supx∈[0,1]

∫ x
0 |G(x – s)|ds ≤ supx∈[0,1]

xγ

γ
= 1

γ
.

Therefore, we get ‖Υ y1 – Υ y2‖ ≤ ‖y1 – y2‖ for all y1, y2 ∈ B. Thus, Υ is a weakly
K-nonexpansive mapping for K = 0, and hence the JF-iterative scheme converges to a
fixed point of Υ . Again, it is well known that the exact solution of (6.4) is given by
y(x) =

∫ x
0 G(x – s)φ(s, y(s)) ds. Consequently, the JF-iterative scheme converges to the solu-

tion of the equation (6.4). �

7 Conclusion
The main purpose of this paper is to introduce a new type of non-expansive mappings,
which is different from any other previously defined non-expensive type mappings. We
have used the latest JF-iterative algorithm to approximate fixed points for our new non-
expansive mappings, and we have established some weak and strong convergence theo-
rems. Also, here, we have introduced the concept of (α, K)-nonexpansive mappings and
have proved a stability result for the JF-iterative process, which is more general than other
previous stability results. Furthermore, we have presented a numerical example for our
mappings and have compared the convergence behavior of various iterative processes
with respect to it. We have also shown that α-nonexpansive mappings and generalized
α-nonexpansive mappings are independent of each other. Moreover, an application of our
fixed point theorems is given to the nonlinear fractional differential equations.
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1. Ðukić, D., Pounović, L., Radenović, S.: Convergence of iterates with errors of uniformly quasi-Lipschitzian mappings in

cone metric spaces. Kragujev. J. Math. 35(3), 399–410 (2011)
2. Agrawal, R.P., O’Regan, D., Sahu, D.R.: Iterative construction of fixed points of nearly asymptotically non-expansive

mappings. J. Nonlinear Convex Anal. 8(1), 61–79 (2007)
3. Al-Habahbeh, A.: Exact solution for commensurate and incommensurate linear systems of fractional differential

equations. J. Math. Comput. Sci. 28, 123–136 (2023)
4. Al-Issa, S.M., Mawed, N.M.: Results on solvability of nonlinear quadratic integral equations of fractional orders in

Banach algebra. J. Nonlinear Sci. Appl. 14, 181–195 (2021)
5. Al-Sadi, W., Alkhazan, A., Abdullah, T.Q.S., Al-Sowsa, M.: Stability and existence the solution for a coupled system of

hybrid fractional differential equation with uniqueness. Arab J. Basic Appl. Sci. 28(1), 340–350 (2021)
6. Ali, F., Ali, J., Nieto, J.J.: Some observations on generalized non-expansive mappings with an application. Comput.

Appl. Math. 39, 74 (2020)
7. Ali, J., Jubair, M., Ali, F.: Stability and convergence of F iterative scheme with an application to the fractional

differential equation. Eng. Comput. 38, 693–702 (2022)
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