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1. Introduction

In 1905, the famous French mathematician Maurice Fréchet [1] introduced the concept of metric
spaces. Metric spaces are a class of useful spaces since when coping with the practical or theoretical
problems we often consider the distance of two objects discussed. For instance, a choice of a suitable
definition of distance between images naturally leads to an environment in which many possible
metrics can be considered simultaneously. Fortunately, cone metric spaces can play a crucial role
because they lend themselves to this requirement. One specific instance of this is in the analysis of
the structural similarity (SSIM) index of images. SSIM is used to improve the measuring of visual
distortion between images. In both of these contexts the difference between two images is calculated
using multiple criteria, which leads in a natural way to consider vector-valued distances. In 1934,
Kurepa [2] introduced an abstract metric space, in which the metric takes values in an ordered vector
space. The metric spaces with vector valued metrics are studied under various names.

In 1980, Rzepecki [3] introduced a generalized metric dE on a set X in a way that dE : X × X → K,
replacing the set of real numbers with a Banach space E in the metric function where K is a normal
cone in E with a partial order ≤. Seven years later, Lin [4] considered the notion of K-metric spaces
by replacing the set of non-negative real numbers with a cone K in the metric function. Twenty years
after Lin’s work, Huang and Zhang [5] announced the notion of a cone metric space by replacing real
numbers with an ordering Banach space, which is the same as either the definition of Rzepecki or of
Lin. Huang and Zhang in 2007 called such spaces as cone metric spaces. Beg, Abbas, and Nazir [6] nad
Beg, Azam, and Arshad [7]replaced the set of an ordered Banach space by a locally convex Hausdorff
topological vector space in the definition of a cone metric and a generalized cone metric space. The
connection between topological vector space valued cone metric spaces and standard metric spaces
and the respective fixed point results were considered by several authors. There are a number of fixed
point results concerning generalization of Banach contraction principle in the setting of metric spaces
as well as all kinds of abstract spaces (see [8–58]).

In 1964, Perov [8] used used the concept of vector valued metric space, and obtained a Banach-like
fixed point theorem on such a complete generalized metric space. After that, fixed point results of
Perov type in vector valued metric spaces were studied by many other authors (see e.g., [9–15]). It
is known that Perov theorem and related results have many applications in fixed point problems and
differential functions and integral equations.

In 2007, Huang and Zhang [5] used the concept of cone metric spaces as a generalization of metric
spaces. They have replaced the real numbers by an ordered Banach space. The authors also defined
the convergence and completeness in cone metric spaces and proved some fixed point theorems for
contractive type mappings in cone metric spaces. Later on, the existence of a fixed point or common
fixed point on cone metric spaces was considered (see [16–21]). Recently, Hussain and Shah [22]
introduced cone b-metric spaces, as a generalization of b-metric spaces and cone metric spaces, and
established some important topological properties in such spaces. Following Hussain and Shah, Huang
and Xu [23] obtained some interesting fixed point results for contractive mappings in cone b-metric
spaces. Similar results can be seen in [24,25].

Let (X, d) be a complete metric space. Recall that a mapping T : X → X is called a quasi-
contraction if, for some k ∈ [0, 1) and for all x, y ∈ X, one has

d(T x, Ty) 6 k max{d(x, y), d(x, T x), d(y, Ty), d(x, Ty), d(y, T x)}.
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Ćirić [26] introduced and studied quasi-contractions as one of the most general classes of contractive-
type mappings. He proved the well-known theorem that any quasi-contraction T has a unique fixed
point. Recently, scholars obtained various similar results on cone b-metric spaces (some authors call
such spaces cone metric type spaces) and cone metric spaces. See, for instance, [19–21,27,28].

Recently, some authors investigated the problem of whether cone metric spaces are equivalent to
metric spaces in terms of the existence of the fixed points of the mappings involved. They used to
establish the equivalence between some fixed point results in metric and in (topological vector spaces
valued) cone metric spaces (see [29–33]). Very recently, based on the concept of cone metric spaces,
Liu and Xu [34] studied cone metric spaces with Banach algebras, replacing Banach spaces by Banach
algebras as the underlying spaces of cone metric spaces. We may state that it is significant to study
cone metric spaces with Banach algebras (which we would like to call cone metric spaces over Banach
algebras in this paper). This is because there are examples to show that one is unable to conclude
that the cone metric space (X, d) over a Banach algebra A discussed is equivalent to the metric space
(X, d∗), where the metric d∗ is defined by d∗ = ξe ◦ d. Here the nonlinear scalarization function
ξe : A → R (e ∈ intP) is defined by

ξe(y) = inf{r ∈ R : y ∈ re − P}.

See [34, Remark 2.3] for more details. In [35], the authors proved some fixed point theorems of
quasi-contractions in cone metric spaces over Banach algebras, but the proof relied strongly on the
assumption that the underlying cone is normal.

There are a number of generalization of Banach contraction principle. One such generalization is
given by Perov [8]. Perov proved the following theorem (also see [9]).
Theorem 1.1. Let (X, d) be a complete generalized metric space and d : X × X → Rk, f : X → X and
A ∈ Mk(R+) be a matrix convergent to zero, such that

d ( f (x) , f (y)) � A · d (x, y) , x, y ∈ X. (1.1)

Then:
(i) f has a unique fixed point x∗ ∈ X;
(ii) the sequence of successive approximations xn = f (xn−1) , n ∈ N, converges to x∗ for all x0 ∈ X;
(iii) d (xn, x∗) � An (Ik − A)−1 (d (x0, x1)) , n ∈ N;
(iv) if g : X → X satisfies the condition d ( f (x) , g (y)) � c for all x ∈ X and some c ∈ Rk, then by

considering the sequence yn = gn (x0) , n ∈ N, one has

d (yn, x∗) � (Ik − A)−1 (c) + An (Ik − A)−1 (d (x0, x1)) , n ∈ N.

Obviously, in previous theorem (X, d) is actually a cone metric space over the normal solid cone
K = {(x, y) : x ≥ 0, y ≥ 0} in the Banach space Rk.

There are two aspects to extend Banach contraction principle to the case of cone metric space. One
is the case for the mappings of Perov type. A typical result for this case similar to Theorem 1.1 is
indicated by the following Theorem 1.2 (see [11, Theorem 2.2]). The other is the case for the so-
called generalized Lipschitz mappings in the setting of cone metric spaces over Banach algebras. A
typical result for this case similar to Theorem 1.1 is described by the following Theorem 1.3 (see [34,
Theorem 2.1]).
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Theorem 1.2. Let (X, d) be a complete cone metric space, d : X × X → E, f : X → X and
A ∈ B(E),with the spectral radius r(A) satisfying r(A) < 1 and AP ⊂ P where P is the solid cone of
the Banach space E, such that

d ( f (x) , f (y)) � Ad (x, y) , x, y ∈ X. (1.2)

Then:
(i) f has a unique fixed point x∗ ∈ X;
(ii) the sequence of successive approximations xn = f (xn−1) , n ∈ N, converges to x∗ for all x0 ∈ X;
(iii) d (xn, x∗) � An (I − A)−1 (d (x0, x1)) , n ∈ N;
(iv) if g : X → X satisfies the conditiond ( f (x) , g (y)) � c for all x ∈ X and some c ∈ P, then by

considering the sequence yn = gn (x0) , n ∈ N, one has

d (yn, x∗) � (I − A)−1 (c) + An (I − A)−1 (d (x0, x1)) , n ∈ N.

Theorem 1.3. Let (X, d) be a complete cone metric space over Banach algebra, d : X × X → E,
f : X → X and a ∈ P where P is the solid cone of the Banach space E, with r(a) < 1 such that

d ( f (x) , f (y)) � ad (x, y) , x, y ∈ X. (1.3)

Then:
(i) f has a unique fixed point x∗ ∈ X;
(ii) the sequence of successive approximations xn = f (xn−1) , n ∈ N, converges to x∗ for all x0 ∈ X;
(iii) d (xn, x∗) � an (e − a)−1 (d (x0, x1)) , n ∈ N;
(iv) if g : X → X satisfies the condition d ( f (x) , g (y)) � c for all x ∈ X and some c ∈ P, then by

considering the sequence yn = gn (x0) , n ∈ N, one has

d (yn, x∗) � (e − a)−1 (c) + an (e − a)−1 (d (x0, x1)) , n ∈ N.

It is well known that Theorem 1.2 implies Theorem 1.1. Then a natural question arises, what is the
relationship between Theorems 1.2 and 1.3? Does Theorem 1.2 also imply Theorem 1.3?

In the present paper we will first present some common fixed point results for g-quasi-contractions
of Perov type in cone b-metric spaces without the assumption of continuity. Next, by constructing
a non-expansive mapping from a real Banach algebra A to B(A), the space of all of its bounded
linear operators, we explore the relationship between the results for the mappings of Perov type on
cone metric (cone b-metric) spaces and that for the corresponding mappings on cone metric (cone
b-metric) spaces over Banach algebras. As consequences, without the assumption of normality, we
obtain common fixed point theorems for the generalized g-quasi-contractions with the spectral radius
r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈ [0, 1

s ) (where s ≥ 1) in the setting of
cone b-metric spaces over Banach algebras. As a result, we obtain some fixed point results for quasi-
contractions in cone b-metric spaces over Banach algebras, without the assumption that the underlying
cone is normal. In addition, we also get some fixed point theorems for nonlinear contractions of Perov
type in the setting of cone normed spaces. These results improve the main result of [10–12,35,40,49].
Finally, we apply our main results to a class of nonlinear equations.
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2. Preliminaries

Let A always be a real Banach algebra. That is, A is a real Banach space in which an operation
of multiplication is defined, subject to the following properties (for all x, y, z ∈ A, α ∈ R): (1)
(xy)z = x(yz); (2) x(y + z) = xy + xz and (x + y)z = xz + yz; (3) α(xy) = (αx)y = x(αy); (4)
‖xy‖ 6 ‖x‖ ‖y‖. Throughout this paper, we shall assume that a Banach algebra A has a unit (i.e., a
multiplicative identity) e such that ex = xe = x for all x ∈ A. An element x ∈ A is said to be invertible
if there is an inverse element y ∈ A such that xy = yx = e. The inverse of x is denoted by x−1. For
more details, we refer to [36].

Now let us recall the concepts of cone and partial ordering for a Banach algebraA. A subset P ofA
is called a cone if (1) P is non-empty closed and {θ, e} ⊂ P; (2) αP + βP ⊂ P for all non-negative real
numbers α, β; (3) P2 = PP ⊂ P; (4) P ∩ (−P) = {θ}, where θ denotes the null of the Banach algebra
A. For a given cone P ⊂ A, we can define a partial ordering � with respect to P by x � y if and only
if y − x ∈ P. x ≺ y will stand for x � y and x , y, while x � y will stand for y − x ∈ intP, where intP
denotes the interior of P. If E is a real Banach space, and B(E) denotes the space of all the bounded
linear operators from E to E. For the given cone P ⊂ E, the partial ordering can be defined similarly.

The cone P is called normal if there is a number M > 0 such that for all x, y ∈ A,

θ � x � y⇒ ‖x‖ 6 M‖y‖.

The least positive number satisfying above is called the normal constant of P.
Proposition 2.1. Let A ∈ B(E). If the spectral radius r(A) of A is less than 1, i.e.,

r(A) = lim
n→∞
‖An‖

1
n = inf

n>1
‖An‖

1
n < 1,

then I − A is invertible. Actually,

(I − A)−1 =

∞∑
i=0

Ai.

Remark 2.1. Let A, B ∈ B(E). We say A ≤ B (or B ≥ A) if Ax � Bx for any x ∈ P. AP ⊂ P if
and only if A is increasing if and only if A ≥ O. Here O denotes the null operator from E to E. So we
sometime say that A is a positive operator if it is increasing.
Remark 2.2. Let A, B,C ∈ B(E). We have the following properties.

(i) A ≤ B ⇐⇒ B − A ≥ O.
(ii) If A ≤ B, B ≤ C, then A ≤ C.
(iii) If A ≤ B, C ≥ O, then CA ≤ CB, where we define CA as the usual composite C ◦ A of A and C,

i.e., (CA)x = C(Ax) for any x ∈ E.
(iv) If A ≥ O, B ≥ O, then A + B ≥ O.
(v) If Ai ≥ O (i = 1, 2, ...), and A =

∑∞
i=1 Ai, then A ≥ O.

(vi) If r(A) < 1, then ‖An‖ → 0 (n→ ∞).
Proposition 2.2. Let A ∈ B(E) with A ≥ O. If r(A) < 1 , then the following assertions hold true.

(i) Suppose that for some T ∈ B(E), T is invertible with T−1 ≥ O must imply T ≥ O, then for any
integer n ≥ 1, we have An ≤ A ≤ I;

(ii) For any u � θ, we have u � Au. Moreover, we have u � Anu for any integer n ≥ 1;
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(iii) If A ≥ O, then (I − A)−1 ≥ I ≥ O. In addition, we have An ≤ (I − A)−1An ≤ (I − A)−1A for any
integer n ≥ 1.
Proof. (i) Since r(A) < 1, by Proposition 2.1, the element I − A is invertible. Considering

I = (I − A)(I − A)−1 = (I − A)
∞∑

i=0

Ai,

we have

A = (I − A)
∞∑

i=1

Ai ≤ (I − A)
∞∑

i=0

Ai = (I − A)(I − A)−1 = I

which implies that, by induction on n,
An ≤ A

for all n ≥ 1 by induction. Therefore, the conclusion of (i) is true.
(ii) If it is not true, then there exists an element u0 ∈ E with u0 � θ such that

u0 � Au0.

Hence, it follows that
(I − A)u0 � θ.

Then, multiplying the both sides with (I − A)−1, it follows that u0 = θ, a contradiction.
(iii) It is obvious.
In the following, we always assume that P is a cone in Banach algebraA with intP , ∅ and � is the

partial ordering with respect to P. For the sake of the main theorems, we need the following auxiliary
results.
Lemma 2.1. ([36–42]) (1) If E is a real Banach space with a cone P and if a � λa with a ∈ P and
0 ≤ λ < 1, then a = θ.
(2) If E is a real Banach space with a solid cone P and ‖xn‖ → 0 (n → ∞), then for any θ � ε, there
exists N ∈ N such that for any n > N, we have xn � ε.
Definition 2.1. ([27,34,35]) Let X be a nonempty set and s ≥ 1 a given real number. A mapping
d : X × X → A is said to be a cone b-metric if and only if for all x, y, z ∈ X the following conditions
are satisfied:

(i) θ ≺ d(x, y) with x , y and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) � s[d(x, z) + d(z, y)].

The pair (X, d) is called a cone b-metric space over a Banach algebraA.
If we replace Banach algebraA by Banach space E and take s = 1 in the above definition, then the

corresponding (X, d) is called a cone metric space (see [14]).
Example 2.1. Denote by Lp (0 < p < 1) the set of all real measurable functions x(t) (t ∈ [0, 1]) such
that

∫ 1

0
|x(t)|pdt < ∞. Let X = Lp, A = R2, P = {(x, y) ∈ A | x, y ≥ 0} ⊂ R2 and d : X × X → A such

that

d(x, y) =

(
α
{ ∫ 1

0
|x(t) − y(t)|pdt

} 1
p

, β
{ ∫ 1

0
|x(t) − y(t)|pdt

} 1
p
)
,
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where α, β ≥ 0 are constants. Then (X, d) is a cone b-metric space over a Banach algebra A with the
coefficient s = 2

1
p−1.

Example 2.2. Let X = R, A = C1
R[0, 1] and P = { f ∈ A : f ≥ 0}. Define d : X × X → A by

d(x, y) = |x − y|1.5ϕ(t) where ϕ : [0, 1] → R is a function such that ϕ(t) = exp(t). It is easy to see that
(X, d) is a cone b-metric space over a Banach algebra A with the coefficient s = 20.5, but it is not a
cone metric space.
Definition 2.2. ([22,27,34,35]) Let (X, d) be a cone b-metric space over a Banach algebra A, x ∈ X
and {xn} be a sequence in X.

(i) {xn} converges to x whenever for every c ∈ E with θ � c there is a natural number N such that
d(xn, x) � c for all n ≥ N. We denote this by lim

n→∞
xn = x or xn → x(n→ ∞).

(ii) {xn} is a Cauchy sequence whenever for every c ∈ E with θ � c there is a natural number N
such that d(xn, xm) � c for all n,m ≥ N.

(iii) (X, d) is a complete cone b-metric space over a Banach algebraA if every Cauchy sequence is
convergent.
Lemma 2.2. ([22,27,34,35,39]) Let � be the partial ordering with respect to P, where P is the given
cone P of the Banach algebra A. The following properties are often used while dealing with cone
b-metric spaces where the underlying cone is not necessarily normal.

(1) If u � v and v � w, then u � w.
(2) If θ � u � c for each c ∈ intP, then u = θ.
(3) If a � b + c for each c ∈ intP, then a � b.
(4) If c ∈ intP and an → θ, then there exists n0 ∈ N such that an � c for all n > n0.
(5) Let (X, d) be a cone b-metric space over a Banach algebra A, x ∈ X and {xn} be a sequence in

X. If d(xn, x) � bn and bn → θ, then xn → x.
Lemma 2.3. ([22]) The limit of a convergent sequence in cone b-metric space is unique.
Definition 2.3. ([47]) Let X be a vector space over R. Suppose the mapping ‖ · ‖P : X → E satisfies

(N1) ‖x‖P > 0 for all x ∈ X;
(N2) ‖x‖P = 0 if and only if x = 0;
(N3) ‖x + y‖P ≤ ‖x‖P + ‖y‖P for all x, y ∈ X;
(N4) ‖kx‖P = |k|‖x‖P for all k ∈ R.

Then ‖ · ‖P is called cone norm on X, and the pair (X, ‖ · ‖P) is called a cone normed space (CNS).
Definition 2.4. ([48]) Let (X, ‖ · ‖P) be a CNS, x ∈ X and {xn} be a sequence in X. Then

(i) {xn} converges to x whenever for every c ∈ E with 0 � c there is a natural number N such that
‖xn − x‖P � c for all n ≥ N. It is denoted by limn→∞ xn = x or xn → x;

(ii) {xn} is a Cauchy sequence whenever for every c ∈ E with 0 � c there is a natural number N,
such that ‖xn − x‖P � c for all n,m ≥ N;

(iii) (X, ‖ · ‖P) is a complete cone normed space if every Cauchy sequence is convergent. Complete
cone normed spaces will be called cone Banach spaces.
Proposition 2.3. ([36]) If a ∈ P and b < P, then a � b does not hold.
Remark 2.3. Note that each cone normed space is a cone metric space. Indeed, suppose (X, ‖ · ‖P)
is a cone normed space. Let d(x, y) = ‖x − y‖P for all x, y ∈ X. Then (X, d) is a cone metric space.
Moreover, the following conclusions are true.

(i) If x ∈ X and {xn} is a convergence sequence in (X, ‖ · ‖P), limn→∞ xn = x, then {xn} is a
convergence sequence in (X, d) and limn→∞ xn = x.
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(ii) If x ∈ X and {xn} is a Cauchy sequence in (X, ‖ · ‖P), then {xn} is a Cauchy sequence in (X, d).
(iii) If (X, ‖ · ‖P) is a complete cone normed space, then (X, d) is a complete cone metric space.

Definition 2.5. ([16,24]) The mappings f , g : X → X are called weakly compatible, if for every x ∈ X
holds f gx = g f x whenever f x = gx.
Definition 2.6. ([16,24,27]) Let f and g be self-maps of a set X. If w = f x = gx for some x in X, then
x is called a coincidence point of f and g, and w is called a point of coincidence of f and g.
Lemma 2.4. ([16,24,27]) Let f and g be weakly compatible self-maps of a set X. If f and g have a
unique point of coincidence w = f x = gx, then w is the unique common fixed point of f and g.
Lemma 2.5. LetA be a real Banach algebra and denote by B(A) the space of all of its bounded linear
operators. Then there exists a mapping ψ : A → B(A) satisfying the following

(i) for any a ∈ A, there exists ψ(a) ∈ B(A) such that

ψ(a)(x) = ax, x ∈ A; (2.1)

(ii) r(ψ(a)) ≤ r(a);
(iii) ψ : A → B(A) is injective. Moreover, it is non-expansive, i.e.,

‖ψ(a) − ψ(b)‖ ≤ ‖a − b‖, a, b ∈ A.

Proof. (i) For each a ∈ A, there exists an operator A : A → A such that

Ax = ax, x ∈ A. (2.2)

Firstly, we prove A ∈ B(A). In fact, for x, y ∈ A, k ∈ R, we see

A(x + y) = a(x + y) = ax + ay = Ax + Ay,

A(kx) = a(kx) = k(ax) = k(Ax)

and
‖Ax‖ = ‖ax‖ ≤ ‖a‖‖x‖,

which imply A ∈ B(A) and ‖A‖ ≤ ‖a‖.
Next, we prove that for a ∈ A, the operator A is unique. In fact, if there exists an operator A1 ∈ B(A)

such that A1x = ax, x ∈ A, then A1x = Ax, x ∈ A. So we have (A1 − A)x = θ for any x ∈ A. Thus,
A1 − A = O, i.e., A1 = A.

Define ψ : A → B(A) as ψ(a) = A. It is well defined and satisfies (2.1).
(ii) Let ψ(a) = A, as indicated above. By (2.1), for any x ∈ A we have

A2x = A(Ax) = A(ax) = a2x.

By induction on n, we have
Anx = anx, n ∈ N.

Hence, we get
‖Anx‖ = ‖anx‖ ≤ ‖an‖‖x‖,
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and so it deduces that ‖An‖ ≤ ‖an‖, which implies that

r(A) = lim
n→∞
‖An‖

1
n ≤ lim

n→∞
‖an‖

1
n = r(a).

(iii) For any b ∈ A with b , a, by (i), there exists B ∈ B(A) such that

Bx = bx, x ∈ A. (2.3)

Since b , a, there is x0 ∈ A with x0 , θ such that bx0 , ax0. Thus by (2.2) and (2.3) we have
Bx0 , Ax0, which shows that B , A. That is, ψ is injective. Now we prove that it is non-expansive.
In fact, for any a, b ∈ A, by (i), there exist A, B ∈ B(A) such that ψ(a) = A, ψ(b) = B satisfying (2.2)
and (2.3). Then, for any x ∈ A, we have

‖(ψ(a) − ψ(b))(x)‖ = ‖ψ(a)(x) − ψ(b)(x)‖ = ‖ax − bx‖ = ‖(a − b)x‖ ≤ ‖a − b‖‖x‖,

so
‖ψ(a) − ψ(b)‖ ≤ ‖a − b‖, a, b ∈ A.

3. Fixed point results for g-quasi-contraction of Perov type in cone b-metric spaces

In this section, we give some common fixed point results for g-quasi-contractions of Perov type with
the quasi-contractive constant operator A satisfying r(A) ∈ [0, 1

s ) in the setting of cone b-metric spaces
without the assumption of normality or continuity. We recall the definition of g-quasi-contraction in
cone b-metric spaces.
Definition 3.1. ([24]) Let (X, d) be a cone b-metric space with the coefficient s ≥ 1. A mapping
f : X → X is called a g-quasi-contraction where g : X → X, f (X) ⊂ g(X), if for some real number λ
with λ ∈ [0, 1/s) and for all x, y ∈ X, one has

d( f x, f y) � λu,

where
u ∈ C(g; x, y) = {d(gx, gy), d(gx, f x), d(gy, f y), d(gx, f y), d(gy, f x)}.

Similarly, we also have the following definition of g-quasi-contraction of Perov type in cone b-
metric spaces.
Definition 3.2. Let (X, d) be a cone b-metric space, with the coefficient s ≥ 1 and f , g : X → X. Then,
f is called a g-quasi-contraction of Perov type if for some bounded linear operator A ∈ B (E) , with
r (A) < 1

s and for all x, y ∈ X, there exists

u ∈ C(g; x, y) = {d(gx, gy), d(gx, f x), d(gy, f y), d(gx, f y), d(gy, f x)}

such that
d( f x, f y) � A (u (x, y)) ,

where r (A) denotes the spectral radius of A. Furthermore, if g = Ix (the identity mapping from X to
X), then f is called a quasi-contraction of Perov type.
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Remark 3.1. Definition 3.2 extends the concept of g-quasi-contraction of Perov type in cone metric
spaces to the one in the setting of cone b-metric spaces.
Theorem 3.1. Let (X, d) be a cone b-metric space over a Banach space E with the coefficient s ≥ 1
and the underlying solid cone P. Let the mapping f : X → X be the g-quasi-contraction of Perov type
with the g-quasi-contractive constant operator A satisfying r(A) ∈ [0, 1

s ) and AP ⊂ P. If f (X) ⊆ g(X)
and g(X) or f (X) is a complete subspace of X, then f and g have a unique point of coincidence in X.
Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

We begin the proof of Theorem 3.1 with a useful lemma. For each x0 ∈ X, set gx1 = f x0 and
gxn+1 = f xn. We will prove that {gxn} is a Cauchy sequence. First, we shall show the following
lemmas. Note that for these lemmas, we suppose that all the conditions of Theorem 3.1 are satisfied.
Lemma 3.1. For any N ≥ 2 and 1 ≤ m ≤ N − 1, one has that

d(gxN , gxm) � sA(I − sA)−1d(gx1, gx0). (3.1)

Proof. We prove Lemma 3.1 by induction. When N = 2,m = 1, since f : X → X is a g-quasi-
contraction, there exists

u1 ∈ C(g; x1, x0) = {d(gx1, gx0), d(gx1, gx2), d(gx0, gx1), d(gx1, gx1), d(gx0, gx2)}

such that
d(gx2, gx1) � Au1.

Hence, u1 = d(gx1, gx0) or u1 = d(gx0, gx2). (Note that it is obvious that u1 , d(gx1, gx2) since
d(gx2, gx1) � Ad(gx1, gx2) and u1 , d(gx1, gx1) since d(gx1, gx2) , θ.)

When u1 = d(gx1, gx0), then we have

d(gx2, gx1) � Ad(gx0, gx1) � sAd(gx0, gx1) � sA(I − sA)−1d(gx1, gx0).

When u1 = d(gx2, gx0), then we have

d(gx2, gx1) � Ad(gx2, gx0) � sA[d(gx2, gx1) + d(gx1, gx0)].

So we get
(I − sA)d(gx2, gx1) � sAd(gx1, gx0),

which implies that
d(gx2, gx1) � sA(I − sA)−1d(gx1, gx0).

Hence, (3.1) holds for N = 2 and m = 1.
Suppose that for some N ≥ 2 and for any 2 ≤ p ≤ N and 1 ≤ n < p, one has

d(gxp, gxn) � sA(I − sA)−1d(gx1, gx0). (3.2)

That is,
d(gxp, gx1) � sA(I − sA)−1d(gx1, gx0), (3.2.1)

d(gxp, gx2) � sA(I − sA)−1d(gx1, gx0), (3.2.2)

......
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d(gxp, gxp−1) � sA(I − sA)−1d(gx1, gx0). (3.2.p − 1)

Then, we need to prove that for N + 1 ≥ 2 and any 1 ≤ n < N + 1, one has

d(gxN+1, gxn) � sA(I − sA)−1d(gx1, gx0). (3.3)

That is,
d(gxN+1, gx1) � sA(I − sA)−1d(gx1, gx0), (3.3.1)

d(gxN+1, gx2) � sA(I − sA)−1d(gx1, gx0), (3.3.2)

......

d(gxN+1, gxN−1) � sA(I − sA)−1d(gx1, gx0), (3.3.N − 1)

d(gxN+1, gxN) � sA(I − sA)−1d(gx1, gx0). (3.3.N)

In fact, since f : X → X is a g-quasi-contraction, there exists

u1 ∈ C(g; xN , x0) = {d(gxN , gx0), d(gxN , gxN+1), d(gx0, gx1), d(gxN , gx1), d(gx0, gxN+1)}

such that
d(gxN+1, gx1) � Au1.

If u1 = d(gxN , gx1), then by (3.2.1) we have

d(gxN+1, gx1) � sA2(I − sA)−1d(gx1, gx0) � (sA)2(I − sA)−1d(gx1, gx0) � sA(I − sA)−1d(gx1, gx0).

If u1 = d(gx0, gx1), then we have

d(gxN+1, gx1) � Ad(gx1, gx0) � sAd(gx1, gx0) � sA(I − sA)−1d(gx1, gx0).

If u1 = d(gxN , gx0), then by (3.2.1) we have

d(gxN+1, gx1) � Ad(gxN , gx0) � sA(d(gxN , gx1) + d(gx1, gx0))
� sA(sA(I − sA)−1d(gx1, gx0) + d(gx1, gx0))
= sA(sA(I − sA)−1 + e)d(gx1, gx0)
= sA(I − sA)−1d(gx1, gx0).

If u1 = d(gx0, gxN+1), then we have

d(gxN+1, gx1) � Ad(gx0, gxN+1) � sA(d(gx0, gx1) + d(gx1, gxN+1)).

Hence, we see
(I − sA)d(gxN+1, gx1) � sAd(gx0, gx1),

which implies that
d(gxN+1, gx1) � (I − sA)−1sAd(gx0, gx1).
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Without loss of generality, suppose that u1 = d(gxN , gxN+1). Since f : X → X is a g-quasi-
contraction, there exists u2 ∈ C(g; xN−1, xN) such that

u1 = d(gxN , gxN+1) � Au2,

where

C(g; xN−1, xN) = {d(gxN−1, gxN), d(gxN−1, gxN), d(gxN , gxN+1), d(gxN−1, gxN+1), d(gxN , gxN)}.

So, we get
d(gxN+1, gx1) � Au1 � A2u2.

Similarly, it is easy to see that u2 , d(gxN , gxN) since u2 , θ and u2 , d(gxN , gxN+1) since
d(gxN , gxN+1) � A2d(gxN , gxN+1).

If u2 = d(gxN−1, gxN), then by the induction assumption (3.2) we have

d(gxN+1, gx1) � A2u2 � sA3(I − sA)−1d(gx1, gx0)
� (sA)3(I − sA)−1d(gx1, gx0)
� sA(I − sA)−1d(gx1, gx0).

Without loss of generality, suppose that u2 = d(gxN−1, gxN+1). There exists u3 ∈ C(g; xN−2, xN) such
that

u2 = d(gxN−1, gxN+1) � Au3,

where

C(g; xN−2, xN) = {d(gxN−2, gxN), d(gxN−2, gxN−1), d(gxN , gxN+1), d(gxN−2, gxN+1), d(gxN , gxN−1)}.

In general, suppose that ui−1 = d(gxN−i+2, gxN+1). Since f : X → X is a g-quasi-contraction, by using
similar arguments as above, there exists ui ∈ C(g; xN−i+1, xN) such that

ui−1 = d(gxN−i+2, gxN+1) � Aui,

for which we obtain

d(gxN+1, gx1) � Au1 � A2u2 � · · · � Aiui,

where

C(g; xN−i+1, xN) = {d(gxN−i+1, gxN), d(gxN−i+1, gxN−i+2), d(gxN , gxN+1),
d(gxN−i+1, gxN+1), d(gxN , gxN−i+2)}.

Similarly, it is easy to see that ui , d(gxN , gxN+1). Namely, by Proposition 2.2(ii), we have

Au1 � Ai−1(Au1) = Aiu1 = Aid(gxN , gxN+1),

So we know that if ui = d(gxN−i+1, gxN) or ui = d(gxN−i+1, gxN−i+2) or ui = d(gxN , gxN−i+2) then by the
induction assumption (3.2) we have ui � sA(I − sA)−1d(gx1, gx0). Hence,

d(gxN+1, gx1) � Aiui � sAi+1(I − sA)−1d(gx1, gx0)
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� (sA)i+1(I − sA)−1d(gx1, gx0)
� sA(I − sA)−1d(gx1, gx0),

and (3.3.1) is true. Without loss of generality, suppose that ui = d(gxN−i+1, gxN+1). Then by the similar
arguments as above we have ui � Aui+1, where ui+1 ∈ C(g; xN−i, xN). Hence, there is a sequence {un}

such that

d(gxN+1, gx1) � Au1 � A2u2 � · · · � AN−1uN−1 � ANuN ,

where
uN−1 = d(gx2, gxN+1) � AuN

and

uN ∈ C(g; x1, xN) = {d(gx1, gxN), d(gx1, gx2), d(gxN , gxN+1), d(gxN , gx2), d(gx1, gxN+1)}.

Obviously, uN , d(gx1, gxN+1) and uN , d(gxN , gxN+1). On the contrary, if uN = d(gx1, gxN+1), then
uN � ANuN , a contradiction. If uN = d(gxN , gxN+1) = u1, then we have

u1 = d(gxN , gxN+1) � A2u2 � · · · � AN−1uN−1 � AN−1u1,

a contradiction. Hence, it follows that uN = d(gx1, gxN), uN = d(gx1, gx2) or uN = d(gxN , gx2). By the
induction assumption (3.2), in any case, we have

uN � sA(I − sA)−1d(gx1, gx0). (3.4)

Therefore, we get

d(gxN+1, gx1) � Au1 � A2u2 � · · · � ANuN

� AN(I − sA)−1sAd(gx1, gx0)
� (sA)N+1(I − sA)−1d(gx1, gx0)
� sA(I − sA)−1d(gx1, gx0). (3.5)

That is to say, (3.3.1) is true. By (3.5), we have

u1 � AN−1sA(I − sA)−1d(gx1, gx0).

Thus,

d(gxN , gxN+1) = u1 � AN−1sA(I − sA)−1d(gx1, gx0)
� (sA)N(I − sA)−1d(gx1, gx0)
� sA(I − sA)−1d(gx1, gx0),

which implies that (3.3.N) is true. Similarly, since

u2 = d(gxN−1, gxN+1), . . . , ui = d(gxN−i+1, gxN+1), . . . ,
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by (3.4) and (3.5) we get

ui � AN−iuN � sAn−i+1(I − sA)−1d(gx1, gx0). (3.6)

Hence, it follows from (3.6) that (3.3.2) and (3.3.N − 1) are all true. That is, (3.3) is true. Therefore,
we conclude that Lemma 3.1 holds true.

By Lemma 3.1, we immediately obtain the following result.
Lemma 3.2. For all i, j ∈ N, one has

d(gxi, gx j) � sA(I − sA)−1d(gx0, gx1). (3.7)

Now, we begin to prove Theorem 3.1. First, we need to show that {gxn} is a Cauchy sequence. For
all n > m, there exists

ν1 ∈ C(g; xn−1, xm−1) = {d(gxn−1, gxm−1), d(gxn−1, gxn),

d(gxm−1, gxm), d(gxn−1, gxm), d(gxm−1, gxn)}

such that
d( f xn−1, f xm−1) � Aν1.

Using the g-quasi-contractive condition repeatedly, we easily show by induction that there must
exist

νk ∈ {d(gxi, gx j) : 0 ≤ i < j ≤ n}, k = 2, 3, . . . ,m

such that
νk � Aνk+1, k = 1, 2, . . . ,m − 1. (3.8)

For convenience, we write νm = d(gxi, gx j) for some 0 ≤ i < j ≤ n.
By Lemma 3.2 we obtain

d(gxn, gxm) = d( f xn−1, f xm−1)
� Aν1 � A2ν2 � · · · � Amνm

� Amd(gxi, gx j)
� sAm+1(I − sA)−1d(gx1, gx0).

Since r(A) < 1
s ≤ 1, by Remark 2.2(vi), we have sAm+1(I − sA)−1d(gx1, gx0)→ θ as m→ ∞. Thus,

it is easy to see that for any c ∈ intP, there exists n0 ∈ N such that for all n > m > n0,

d(gxn, gxm) � sAm+1(I − sA)−1d(gx1, gx0) � c.

So, {gxn} is a Cauchy sequence in g(X). If g(X) ⊂ X is complete, there exist q ∈ g(X) and p ∈ X such
that gxn → q as n→ ∞ and gp = q.

Now, we get
d( f xn, f p) � Aν

where
ν ∈ C(g; xn, p) = {d(gxn, gp), d(gxn, f xn), d(gp, f p), d(gxn, f p), d( f xn, gp)}.

AIMS Mathematics Volume 7, Issue 8, 14895–14921.



14909

Clearly at least one of the following five cases holds for infinitely many n.
(1) d( f xn, f p) � Ad(gxn, gp) � sAd(gxn+1, gp) + sAd(gxn+1, gxn);
(2) d( f xn, f p) � Ad(gxn, f xn) = Ad(gxn, gxn+1);
(3) d( f xn, f p) � Ad(gp, f p) � sAd(gxn+1, gp) + sAd(gxn+1, f p),

that is, d( f xn, f p) � sA(I − sA)−1d(gxn+1, gp);
(4) d( f xn, f p) � Ad(gxn, f p) � sAd(gxn+1, f p) + sAd(gxn+1, gxn),

that is, d( f xn, f p) � sA(I − sA)−1d(gxn+1, gxn);
(5) d( f xn, f p) � Ad( f xn, gp) = Ad(gxn+1, gp).
As sA � sA(I − sA)−1 (since θ � sA and r(sA) < 1 ), we obtain that

d(gxn+1, f p) � sA(I − sA)−1[d(gxn+1, gxn) + d(gxn+1, q)].

Since gxn → q as n → ∞, we get that for any c ∈ intP, there exists n1 ∈ N such that for all n > n1,
one has

d(gxn+1, f p) � c.

By Lemmas 2.2 and 2.3, we have gxn → f p as n→ ∞ and q = f p.
Now if w is another point such that gu = f u = w, hence d(w, q) = d( f u, f p) � Aν, where r(A) ∈

[0, 1
s ) and

ν ∈ C(g; u, p) = {d(gu, gp), d(gu, f u), d(gp, f p), d(gu, f p), d( f u, gp)}.

It is obvious that d(w, q) = θ, i.e., w = q. Therefore, q is the unique point of coincidence of f and g
in X. Moreover, the mappings f and g are weakly compatible, by Lemma 2.4 we know that q is the
unique common fixed point of f and g.

Similarly, if f (X) is complete, the above conclusion is also established.
Corollary 3.1. Let (X, d) be a complete cone b-metric space over a Banach space E with the coefficient
s ≥ 1 and the underlying solid cone P. Let the mapping f : X → X be a quasi-contraction of Perov
type with the quasi-contractive constant operator A satisfying r(A) ∈ [0, 1

s ) and AP ⊂ P. That is, there
exists a constant operator A ∈ B(E) with r(A) ∈ [0, 1

s ) and AP ⊂ P such that for all x, y ∈ X, one has

d( f x, f y) � Au,

where
u ∈ C(IX; x, y) = {d(x, y), d(x, f x), d(y, f y), d(x, f y), d(y, f x)}.

Then f has a unique fixed point in X. And for any x0 ∈ X, the iterative sequence { f nx0} converges to
the fixed point.
Proof. Set g = IX, the identity mapping from X to X. It is obvious to see that Theorem 3.1 yields
Corollary 3.1.
Corollary 3.2. ([10]) Let E be a real Banach space with a solid cone P and (X, d) be a complete cone
metric space. The mapping f : X → X is a quasi-contraction of Perov type. Then f has a unique fixed
point in X. Moreover, for any x0 ∈ X, { f nx0} converges to the fixed point.
Remark 3.2. Theorem 3.1 generalizes [12, Corollary 3.5] and [10, Theorem 3.1].
Remark 3.3. Corollary 3.1 does not involve any assumptions about continuity of the mappings
discussed. So Corollary 3.1 improves and generalizes Corollary 3.5 in [12].
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Remark 3.4. From the proof of Theorem 3.1, we note that the technique of induction appearing in
Theorem 3.1 is somewhat different from that in [12, Corollary 3.5], and also different from that in [10,
Theorem 3.1], which is more interesting and easily to understood.

The following corollary is the Jungck’s result in the setting of cone b-metric spaces.
Corollary 3.3. Let (X, d) be a cone b-metric space over a Banach space E with the coefficient s ≥ 1 and
the underlying solid cone P. Let the mappings f , g : X → X satisfy the condition that for A ∈ B(E)
with r(A) ∈ [0, 1

s ) and AP ⊂ P, and for every x, y ∈ X holds d( f x, f y) � Ad(gx, gy). If g(X) ⊂ f (X)
and g(X) or f (X) is a complete subspace of X, then f and g have a unique point of coincidence in X.
Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

The next result is the Banach contraction principle for the mappings of Perov type in the setting of
cone b-metric spaces.
Corollary 3.4. Let (X, d) be a cone b-metric space over a Banach algebraA with the coefficient s ≥ 1
and the underlying solid cone P. Let the mapping f : X → X satisfy the condition that for A ∈ B(E)
with r(A) ∈ [0, 1

s ) and AP ⊂ P, and for every x, y ∈ X holds d( f x, f y) � Ad(x, y). If f (X) is a complete
subspace of X, then f has a unique point in X.

4. Applications to fixed point theory in the setting of cone b-metric spaces over Banach algebras

In this section, we use the main results obtained in the last section to give some common fixed
point results for generalized g-quasi-contractions with the quasi-contractive constant vector satisfying
r(λ) ∈ [0, 1/s) in the setting of cone b-metric spaces over Banach algebras without the assumption of
normality. The following definition is needed.
Definition 4.1. Let (X, d) be a cone b-metric space with the coefficient s ≥ 1 over a Banach algebra
A. A mapping f : X → X is called a generalized g-quasi-contraction where g : X → X, f (X) ⊂ g(X),
if for some λ ∈ P with r(λ) ∈ [0, 1/s) and for all x, y ∈ X, one has

d( f x, f y) � λu,

where
u ∈ C(g; x, y) = {d(gx, gy), d(gx, f x), d(gy, f y), d(gx, f y), d(gy, f x)}.

Moreover, if g = IX (the identity mapping from X to X), then the mapping f is called a quasi-
contraction.
Theorem 4.1. Let (X, d) be a cone b-metric space over a Banach algebra A with the coefficient s ≥ 1
and the underlying solid cone P. Let the mapping f : X → X be the g-quasi-contraction with the
g-quasi-contractive constant vector satisfying r(λ) ∈ [0, 1/s). If f (X) ⊆ g(X) and g(X) or f (X) is a
complete subspace of X, then f and g have a unique point of coincidence in X. Moreover, if f and g
are weakly compatible, then f and g have a unique common fixed point in X.
Proof. Since f : X → X be the g-quasi-contraction with the g-quasi-contractive constant vector
satisfying r(λ) ∈ [0, 1/s), by Definition 4.1, there exists some λ ∈ P with r(λ) ∈ [0, 1/s) such that for
all x, y ∈ X, one has

d( f x, f y) � λu, (4.1)

where
u ∈ C(g; x, y) = {d(gx, gy), d(gx, f x), d(gy, f y), d(gx, f y), d(gy, f x)}. (4.2)
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By Lemma 2.5, there exists ψ(λ) (denoted by B) ∈ B(A) with r(ψ(λ)) ≤ r(λ) such that

B(x) = λx , x ∈ A. (4.3)

Thus, there exists B ∈ B(A) with r(B) ≤ r(λ) ≤ 1
s such that

d( f x, f y) � Bu, (4.4)

where u is as indicated in (4.2). Hence, by Theorem 3.1 we know that all the conclusions of
Theorem 4.1 hold.
Corollary 4.1. Let (X, d) be a complete cone b-metric space over a Banach algebraA and let P be the
underlying cone with k ∈ P. If the mapping T : X → X is a quasi-contraction, then T has a unique
fixed point in X and for any x ∈ X, the iterative sequence {T nx} converges to the fixed point.
Proof. Set g = IX. It is obvious to see that Theorem 4.1 yields Corollary 4.1.
Remark 4.1. Corollary 4.1 does not need to require the assumption of normality of the cone P. So,
Corollary 4.1 improves and generalizes Theorem 9 in [35].
Remark 4.2. Taking E = R, P = [0,+∞), λ ∈ [0, 1/s) in Theorem 4.1, we get Das-Naik’s result
from [43]; if g = IX we get Ćirić’s result, both in the setting of b-metric spaces.

The following corollary is the Jungck’s result in the setting of cone b-metric spaces.
Corollary 4.2. Let (X, d) be a cone b-metric space over a Banach algebraA with the coefficient s ≥ 1
and the underlying solid cone P. Let the mappings f , g : X → X satisfy the condition that for λ ∈ P
with r(λ) ∈ [0, 1/s) and for every x, y ∈ X holds d( f x, f y) � λd(gx, gy). If g(X) ⊂ f (X) and g(X) or
f (X) is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover, if
f and g are weakly compatible, then f and g have a unique common fixed point.

The next result is the Banach contraction principle in the setting of cone b-metric spaces.
Corollary 4.3. ([40]) Let (X, d) be a cone b-metric space over a Banach algebraA with the coefficient
s ≥ 1 and the underlying solid cone P. Let the mapping f : X → X satisfy the condition that
d( f x, f y) � λd(x, y) for λ ∈ P with r(λ) ∈ [0, 1/s) and every x, y ∈ X (namely, f is a generalized
Lipschitz contraction). If f (X) is a complete subspace of X, then f has a unique point in X.
Remark 4.3. Corollary 4.3 generalizes Theorem 3.1 in [40].

5. Applications to fixed point theory in the setting of cone normed spaces

In this section, we use the fixed point results for nonlinear contractions of Perov type in cone metric
space to obtain some fixed point results for nonlinear contractions of Perov type in the setting of cone
normed spaces without the assumption of normality.
Definition 5.1. Let (X, d) be a cone metric space over a Banach space E with a solid cone P and
(X, ‖ · ‖P) be a cone normed space. The mapping f : X → X is called a quasi-contraction of Perov type
if for some bounded linear operator A ∈ B (E) with r (A) < 1 and A(P) ⊂ P we have

d( f x, f y) � A (u (x, y)) ,

where
u(x, y) ∈ {‖x − y‖P, ‖x − f x‖P, ‖y − f y‖P, ‖x − f y‖P, ‖y − f x‖P}, (5.1)

for arbitrary x, y ∈ X.
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Lemma 5.1. ([11]) Let E be a real Banach space with a solid cone P and (X, d) be a complete cone
metric space. There exist bounded linear operators A, B ∈ B (E) with r (A + B) < 1 and A(P) ⊂ P,
B(P) ⊂ P. For any x, y ∈ X, the mapping f : X → X satisfies:

d( f x, f y) � Ad(x, y) + Bd(x, f y).

Then f has a unique fixed point in F. Moreover, for any x0 ∈ X, { f nx0} converges to the fixed point.
Theorem 5.1. Let E be a Banach space with a solid cone P, (X, ‖ · ‖P) be a complete cone normed
space and F be a closed subset of (X, ‖ · ‖P). Let f : F → F satisfy the quasi-contraction of Perov type
condition: there exists a bounded linear operator A ∈ B (E) with r (A) < 1 and A(P) ⊂ P such that for
any x, y ∈ X,

d( f x, f y) � A (u (x, y)) ,

where u(x, y) satisfies (5.1). Then f has a unique fixed point in F. Moreover, for any x0 ∈ F, { f nx0}

converges to the fixed point.
Proof. For any x, y ∈ X, let d(x, y) = ‖x − y‖P, then (X, d) and (F, d) are cone metric spaces. By (5.1),
for any x, y ∈ F, we have

d( f x, f y) � A (u (x, y)) ,

where
u(x, y) ∈ {d(x, y), d(x, f x), d(y, f y), d(x, f y), d(y, f x)}.

Since F is a closed subset of (X, ‖ · ‖P), it follows that (F, d) is a complete cone metric space. In fact,
if {xn} is a Cauchy sequence of (F, d) and F ⊂ X, then {xn} is a Cauchy sequence of (X, d). By the
completeness of (X, ‖ · ‖P), (X, d) is complete. Thus, {xn} is a convergence sequence in (X, d). Suppose
limn→∞ xn = x, that is, limn→∞ d(xn, x) = θ, then ‖xn − x‖P = θ. Note that F is a closed subset of
(X, ‖ · ‖P), so x ∈ F, which implies (F, d) is complete. By Corollary 3.2, the conclusion is true.
Theorem 5.2. Let E be a Banach space with a solid cone P, (X, ‖ · ‖P) be a complete cone normed
space and F be a closed subset of (X, ‖ · ‖P). If f : F → F satisfies: there exist bounded linear operators
A, B ∈ B (E) , with r (A + B) < 1 and A(P) ⊂ P, B(P) ⊂ P such that for any x, y ∈ F

d( f x, f y) � A‖x − y‖P + B‖x − f y‖P, (5.2)

then f has a unique fixed point in F. Moreover, for any x0 ∈ F, { f nx0} converges to the fixed point.
Proof. For any x, y ∈ X, let d(x, y) = ‖x − y‖P. Then (X, d) and (F, d) are cone metric spaces. By (5.2),
for any x, y ∈ F, we have

d( f x, f y) � Ad(x, y) + Bd(x, f y).

As in the proof of Theorem 5.1, Lemma 5.1 gives the conclusion.
By symmetry, we immediately have the next assertion.

Theorem 5.3. Let E be a Banach space with a solid cone P, (X, ‖ · ‖P) be a complete cone normed
space and F be a closed subset of (X, ‖ · ‖P). If f : F → F satisfies: there exist bounded linear operators
A, B ∈ B (E) , with r (A + B) < 1 such that for any x, y ∈ F

d( f x, f y) � A‖x − y‖P + B‖y − f x‖P,

then f has a unique fixed point in F. Moreover, for any x0 ∈ F, { f nx0} converges to the fixed point.
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Corollary 5.1. Let E be a Banach space with a solid cone P, (X, ‖ · ‖P) be a complete cone normed
space and F be a closed subset of (X, ‖ · ‖P). If f : F → F satisfies: there exists a bounded linear
operator A ∈ B (E) with r (A) < 1 such that for any x, y ∈ F, d( f x, f y) � A‖x−y‖P, then f has a unique
fixed point in F. Moreover, for any x0 ∈ F, { f nx0} converges to the fixed point.
Proof. By Proposition 2.3, the operator A satisfies A(P) ⊂ P. Otherwise, there exists a ∈ P with
Aa ∈ P. Take u, v ∈ X such that a = ‖u − v‖P. Then A(‖u − v‖P) = Aa < P. However, ‖ f u − f v‖P ∈ P,
then d( f x, f y) � A‖x − y‖P does not hold by Proposition 2.3, which is a contradiction. Thus, the
conclusion is true.

By Theorem 5.1, we obtain the following fixed point theorems in cone normed spaces.
Corollary 5.2. Let E be a Banach space with a solid cone P, (X, ‖ · ‖P) be a complete cone normed
space and F be a closed subset of (X, ‖ · ‖P). If f : F → F satisfies: there exists a bounded linear
operator A ∈ B (E) with r (A) < 1 such that for any x, y ∈ F, d( f x, f y) � A‖x − f y‖P, then f has a
unique fixed point in F. Moreover, for any x0 ∈ F, { f nx0} converges to the fixed point.
Corollary 5.3. Let E be a Banach space with a solid cone P, (X, ‖ · ‖P) be a complete cone normed
space and F be a closed subset of (X, ‖ · ‖P). If f : F → F satisfies: there exists a bounded linear
operator A ∈ B (E) with r (A) < 1 such that for any x, y ∈ F, d( f x, f y) � A‖ f x − y‖P, then f has a
unique fixed point in F. Moreover, for any x0 ∈ F, { f nx0} converges to the fixed point.
Corollary 5.4. Let E be a Banach space with a solid cone P, (X, ‖ · ‖P) be a complete cone normed
space and F be a closed subset of (X, ‖ · ‖P). If f : F → F satisfies: there exists a bounded linear
operator A ∈ B (E) with r (A) < 1 such that for any x, y ∈ F, d( f x, f y) � A‖x − f x‖P, then f has a
unique fixed point in F. Moreover, for any x0 ∈ F, { f nx0} converges to the fixed point.
Corollary 5.5. Let E be a Banach space with a solid cone P, (X, ‖ · ‖P) be a complete cone normed
space and F be a closed subset of (X, ‖ · ‖P). If f : F → F satisfies: there exists a bounded linear
operator A ∈ B (E) with r (A) < 1 such that for any x, y ∈ F, d( f x, f y) � A‖y − f y‖P, then f has a
unique fixed point in F. Moreover, for any x0 ∈ F, { f nx0} converges to the fixed point.
Remark 5.1. Compared with [49, Theorem 1.3], we do not require the solid cone is normal in our
theorems. Therefore, Theorem 5.1 and Corollary 5.1 improve and generalize [49, Theorem 1.3] in the
solid cone. In addition, Theorem 5.1 and the corollaries are obtained by applying Perov-type fixed
point theory in cone metric spaces. The techniques and methods in the proof are different from [49]
and the related literatures. The main results of this paper are beneficial supplements to [20].

6. Applications to nonlinear equations

We present some examples to show that the main results obtained in the previous sections have
meaningful applications in nonlinear equations.
Example 6.1. Let A = C1

R [0, 1] denote the set of all real-valued functions on [0,1] which also have
continuous derivatives on [0,1] and define a norm on A by ‖x‖ = ‖x‖∞ + ‖x′‖∞ for x ∈ A. Define
multiplication in A just as the pointwise multiplication. Then A is a real Banach algebra with the
unit e = 1 (e(t) = 1 for all t ∈ [0, 1]). The set P = {x ∈ A : x(t) ≥ 0 for all t ∈ [0, 1]} is a cone in A.
Moreover P is not normal (see [33]).

Let X = {0, 1, 3} . Define d : X × X → A by d (0, 1) (t) = d (1, 0) (t) = exp(t), d (0, 3) (t) =

d (3, 0) (t) = 9 exp(t), d (3, 1) (t) = d (1, 3) (t) = 4 exp(t) and d (x, x) (t) = θ for all t ∈ [0, 1] and x ∈ X.
It is clear that (X, d) is a solid cone b-metric space over Banach algebraAwith s = 9

5 without normality.

AIMS Mathematics Volume 7, Issue 8, 14895–14921.



14914

Further, let f : X → X be a mapping defined with f (0) = f (1) = 1 and f (3) = 0 and λ ∈ P defined by
λ(t) = 11

38 t + 1
4 . By the careful calculations, one can get that all conditions of Theorem 4.1 for g = IX

are fulfilled. The point x = 1 is the unique fixed point of f .
Example 6.2. Let X = C1

R [0, 1] andA = C1
R [0, 1]. Consider the following nonlinear integral equation∫ 1

0
F(t, f (s)) ds = f (t), (6.1)

where F satisfies:
(a) F : [0, 1] × R→ R is a continuous function,
(b) the partial derivative Fy of F with respect to y exists and |Fy(x, y)| ≤ L for some L ∈ [0, 1

2 ).
Theorem 6.1. The Eq (6.1) has a unique solution in C1

R [0, 1].
Proof. Let P = {x ∈ C1

R [0, 1] | x = x(t) ≥ 0, t ∈ [0, 1]}. Then P is a non-normal cone of the real Banach
algebraA with the operations as

(x + y)(t) = x(t) + y(t),

(cx)(t) = cx(t),

(xy)(t) = x(t)x(t),

for all x = x(t), y = y(t) ∈ A and c ∈ R. Moreover, A owns the unit element e = 1. Define a norm on
A by ‖ f ‖ = ‖ f ‖∞ + ‖ f ′‖∞ for f ∈ A where ‖ f ‖∞ = max0≤t≤1 | f (t)| and let T be a self map of X defined
by T f (t) =

∫ 1

0
F(t, f (s)) ds.

It is easy shown that (X, d) is a complete cone b-metric space (where s = 2p (p > 1)) over Banach
algebra A where the cone b-metric is defined by d(x, y) = exp(t) ‖(x − y)p‖∞ but not a cone metric
space. In fact, for x, y, z ∈ X, set u = x − z, v = z − y, so x − y = u + v. From the inequality

(a + b)p ≤ (2 max{a, b})p ≤ 2p(ap + bp), a, b > 0,

we have
|x − y|p = |u + v|p ≤ (|u| + |v|)p ≤ 2p(|x − z|p + |z − y|p),

|x − y|p exp(t) ≤ 2p(|x − z|p exp(t) + |z − y|p exp(t)),

which implies that
d(x, y) � s[d(x, z) + d(z, y)]

where s = 2p > 1. Then, we can check that T : X → X is a generalized Lipschitz contraction with the
generalized Lipschitz coefficient Lp satisfying the spectral radius r(Lp) ≤ ‖Lp‖ = Lp < 1

2p = 1
s . In fact,

we see

d(T f ,Tg) = ‖(T f − Tg)p‖∞ exp(t)

= exp(t) max
0≤x≤1

∣∣∣∣∣ ∫ 1

0

(
F(x, f (t)) − F(x, g(t))

)
dt

∣∣∣∣∣p
≤ exp(t) max

0≤x≤1

( ∫ 1

0

∣∣∣F(x, f (t)) − F(x, g(t))
∣∣∣dt

)p

≤ exp(t)
( ∫ 1

0
L
∣∣∣ f (t) − g(t)

∣∣∣dt
)p
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≤ exp(t)
∫ 1

0

(
L
∣∣∣ f (t) − g(t)

∣∣∣)pdt

≤ Lp exp(t) max
0≤t≤1

∣∣∣ f (t) − g(t)
∣∣∣p

= Lpd
(
f , g

)
.

Thus by Corollary 4.3, the integral equation (6.1) has a unique continuous solution in C1
R [0, 1].

Remark 6.1. Compared with [44, Theorem 3.1], Example 6.2 shows that the unique solution of the
integral equation (6.1) is not only continuous but differentiable in [0,1] under the same conditions,
while [44, Theorem 3.1] does only show that it is continuous. In addition, the techniques of
Example 6.2 are new and interesting since Example 6.2 is discussed in the setting of the cone b-metric
space over a Banach algebra and does not require the normality of the underlying cone, while [44,
Theorem 3.1] is proved in the setting of a cone metric space and relies strongly on the normality of the
underlying cone.
Example 6.3. Let X = R2, f = f (s, t) : X → R, g = g(s, t) : X → R. Consider the following group of
nonlinear coupled equations

(I)
{

f (x, y) = x,
g(x, y) = y − px,

where p ≥ 0. Suppose that there exists 0 < k < 1 such that∣∣∣∣∣∂ f
∂s

∣∣∣∣∣ ≤ k,
∣∣∣∣∣∂g
∂t

∣∣∣∣∣ ≤ k

for all (s, t) ∈ X.
Theorem 6.2. The coupled equations in (I) have a unique common solution in X.
Proof. LetA = R2 with the norm defined as ‖(x, y)‖ = |x|+ |y| for each (x, y) ∈ A. ThenA is a Banach
algebra with the operations as

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

c(x1, y1) = (cx1, cy1),

(x1, y1)(x2, y2) = (x1x2, x1y2 + x2y1),

for all (x1, y1), (x2, y2) ∈ A and c ∈ R. Moreover,A owns the unit element e = (1, 0).
Let P = {(x, y) ∈ R2 | x, y ≥ 0}. Then P is a cone ofA.
Let X = R2 and the metric d : X × X → A be defined by

d ((x1, y1), (x2, y2)) = (|x1 − x2|, |y1 − y2|) ∈ P.

Then (X, d) is a complete cone b-metric space over a Banach algebraA with the coefficient s = 1.
Now define mapping T : X → X by

T (x, y) = ( f (x, y), g(x, y) + px) . (6.2)

From Lagrange mean value theorem, we have

d
(
T (x1, y1),T (x2, y2)

)
= d

(
( f (x1, y1), g(x1, y1) + px1) , ( f (x2, y2), g(x2, y2) + px2)

)
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=
(∣∣∣ f (x1, y1) − f (x2, y2)

∣∣∣, ∣∣∣g(x1, y1) − g(x2, y2) + p(x1 − x2)
∣∣∣)

≤ (k|x1 − x2|, k|y1 − y2| + p|x1 − x2|)

= (k, p)
(∣∣∣x1 − x2

∣∣∣, ∣∣∣y1 − y2

∣∣∣)
= (k, p) d

(
(x1, y1), (x2, y2)

)
,

and

‖(k, p)n
‖

1
n =

∥∥∥∥(kn, pnkn−1
)∥∥∥∥ 1

n
= (kn + pnkn−1)

1
n → k < 1 (n→ ∞),

which implies r((k, p)) < 1
s . Then by Corollary 4.3, T has a unique fixed point in X.

The following example is a direct result of Theorem 6.2.
Example 6.4. Consider the following group of nonlinear coupled equations

(II)
{

log(m + x) = x,
arctan(n + y) = y − px,

where p ≥ 0,m > 1 and n ≥
√

m − 1. The coupled equations in (II) have a unique common solution.
In fact, set f (t, s) = log(m + s), g(t, s) = arctan(n + y). Then all the conditions of Theorem 6.2

are satisfied. Thus it follows from Theorem 6.2 that the coupled equations (II) have a unique positive
common solution.
Remark 6.2. In Example 6.3, the mapping T (x, y) described by (6.2) is related to the famous Poincaré
mapping

T (x, y) = ( f (x, y), y + g(x, y))

which is useful in Poincaré fixed point theorem and Poincaré geometry theorem (see, for instance, [45,
46]).
Remark 6.3. In Example 6.3, if p > 1, then ‖(k, p)‖ = k + p > 1, so by the arguments in Theorem 6.2,
T is not a contraction in the Euclidean metric on X. Hence, one is unable to directly use Banach
contraction principle to show T has a unique fixed point in X.
Example 6.5. Suppose E = (E, ‖ · ‖) is a real Banach space, T > 0, 0 ≤ α < 1, I = [0,T ], F ⊂ C[I, E],
while C[I, E] is the set of all continuous abstract functions in interval I. Consider Volterra type integral
equation

x(t) = ( f x)(t) =
1
tα

∫ t

0
h(s, t, x(s))ds, t ∈ [0,T ]. (6.3)

Theorem 6.3. Suppose h : [0,T ] × [0,T ] × F → F is continuous and satisfies

‖h(t, s, u) − h(t, s, v)‖ ≤ M‖u − v‖,

where MT 1−α < 1. Then the integral equation (6.3) has a unique solution in F.
Proof. By (6.3), we have

( f u)(t) − ( f v)(t) =
1
tα

∫ t

0
(h(s, t, u(s)) − h(s, t, v(s))) ds, t ∈ [0,T ].

Let 0 = T0 < T1 < · · · < Tk−1 < Tk = T be a division of interval I = [0,T ]. Denote

Is = [Ts−1,Ts] , s = 1, . . . , k (k > 1, k ∈ N).
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For any u ∈ C[I, E], define
‖u‖P = (max

σ∈I1
‖u(σ)‖, . . . ,max

σ∈Ik
‖u(σ)‖),

then ‖u‖P is a complete norm on the linear space C[I, E]. Denote

‖ f u − f v‖P = (( f u − f v)1, . . . , ( f u − f v)k) ∈ Rk,

then

( f u − f v)1 = max
t∈I1
‖ f u − f v‖

= max
t∈I1

1
tα

∥∥∥∥∥∥
∫ t

0
[h(s, t, u(s)) − h(s, t, v(s))]ds

∥∥∥∥∥∥
≤ max

t∈I1

1
tα

∫ t

0
‖h(s, t, u(s)) − h(s, t, v(s))‖ds

≤ max
t∈I1

1
tα

∫ t

0
‖u(s) − v(s)‖ds

≤ max
t∈I1

1
tα

∫ t

0

(
sup
s∈I1

‖u(s) − v(s)‖
)

ds

≤ max
t∈I1

1
tα

∫ t

0
M(u − v)1ds

≤ max
t∈I1

Mt1−α(u − v)1

≤ MT 1−α(u − v)1.

In a similar analysis, we obtain ( f u − f v)i ≤ MT 1−α(u − v)i, i = 1, . . . , k. Thus, ‖ f u − f v‖P ≤
A(‖u − v‖P), while

A =


MT 1−α

MT 1−α

. . .

MT 1−α

 .
As MT 1−α < 1, we see r(A) < 1. Taking u(x, y) = ‖x − y‖P, we observe that the conclusion is true by
Theorem 5.1.

7. Conclusions

In this manuscript, we introduced g-quasi-contractions of Perov type in cone b-metric spaces and
established fixed point results for such kind of nonlinear contractions. Moreover, we use the main
results to obtain some theoretical results, such as the common fixed point results for generalized
g-quasi-contractions in cone b-metric spaces over Banach algebra as well as fixed point results for
nonlinear contractions of Perov type in cone normed spaces without the assumption of normality.
Further, we provided several applications to nonlinear equations that elaborated on the usability of our
results.
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fixed points theorems in ordered abstract metric spaces, Far East J. Math. Sci., 97 (2015), 809–839.
http://dx.doi.org/10.17654/FJMSAug2015 809 839
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