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Abstract:  
This article aims to demonstrate the difference in results for minimal weight 
optimization for a 17 bar truss sizing and shape optimization problem. In 
order to attain results which can be produced in practice Euler bucking, 
minimal element length, maximal stress and maximal displacement 
constraints were used. Using the same initial setup, optimization was 
conducted using particle swarm optimization algorithm and compared to 
genetic algorithm. Optimal results for both algorithms are compared to 
initial values which are analytically calculated. The individual element 
lengths are observed, along with the overall weight, surface area and 
included number of different cross-sections. 

ARTICLE HISTORY 
Received: 04.07.2022. 
Accepted: 12.10.2022. 
Available: 31.12.2022. 

 
 
KEYWORDS 
Truss optimization, sizing and 
shape, minimal weight, 
element length 

 

 
1. INTRODUCTION  
 

Truss structural optimization in general 
considers the optimization of sizing, shape and 
topology of a structure. The implementation of all 
of these aspects is not always possible, or even in 
some cases favorable, so combinations of two are 
most frequently employed. Previous research [1] 
shows the difference in results comparing 
individual aspect optimization and combinations of 
optimization aspects. Aside from a complete 
simultaneous sizing, shape, and topology 
optimization, the next most favorable type in 
terms of mass decrease is sizing and shape 
combined. The decrease in complexity of this 
approach is also an important factor, since the 
search-space becomes drastically more discretized 
when including topological optimization, making a 
global optimum even harder to achieve. A balance 
of input effort and achieved effects is grater using 
this combination. 

The bulk of research in the truss optimization 
field is generally based on applying novel 
optimization algorithms to solve standardized 
problems [2-7]. This type of research provides 
valuable data on parameter settings for truss 

problems and shows improvements in 
convergence and resulting weights. 

In order for the optimization process to result in 
trusses which can be implemented in practice, 
realistic variables and constraints. For sizing 
optimization discrete cross-section sets must be 
used to give results representative of available 
stock in a given material. This is best described in 
papers [1,8,9] where authors showed how 
continuous sizing variables lead to unusable 
solutions. Realistic and definable constraints are 
just as important, and they allow for the design of 
trusses which can hold up in practice. These 
include, other than the typical stress and 
displacement constraints, Euler bucking 
constraints, minimal element length and 
cardinality constraints [10-13]. The use of these 
constraints in research are more and more 
frequent and are becoming a norm in truss 
optimization.   

 
2. MATERIAL AND METHOD 
 

This research is aimed at presenting the 
improvements gained using sizing and shape 
optimization simultaneously on a 17 bar truss 

mailto:npetrovic@kg.ac.rs
https://orcid.org/0000-0002-7563-9883
https://orcid.org/0000-0002-0157-7501
https://orcid.org/0000-0002-8441-4328
https://orcid.org/0000-0001-6862-3595
https://orcid.org/0000-0001-8605-3696


N. Petrovic et al. / Advanced Engineering Letters Vol.1, No.4, 142-147 (2022) 

 143 

example. The proposed optimization algorithms 
used are genetic algorithm and particle swarm 
optimization. These optimization algorithms are 
not novel, however they provide comparable 
results to newer methods, and their greatest 
advantage is their availability and ease of use. The 
results will be compared not just in terms of goal 
function, but also the other important aspects of 
total length, outer area and used number of 
different cross-sections. 

For the purposes of this research an original 
software was developed in Rhino 6 using 
Grasshopper’s Karamba 3D and Silvereye plugins 
which use genetic algorithm and particle swarm 
optimization operators. 

 
3. OPTIMIZATION 

 
Structural optimization problems mostly have 

the goal function of finding the minimal weight, 
which is also the case in this research. In order to 
validate only practically applicable results a variety 
of constraints must be introduced. The static 
constraints used are minimal and maximal allowed 
stress and minimal length of individual elements 
and point displacement while buckling constraints 
is a dynamic constraint. The goal function for 
minimal weight is given as follows (Eg. 1): 
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where the number of truss elements is n, the 
length of the ith element is li, the number of nodes 
is k, the cross-section diameter is d, the ith element 
stress is σi and jth node displacement is uj. Axial 
compression force is FAicomp and Euler’s critical load 
of the ith element is FKi, Eg. 2:  
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E is the modulus of elasticity for the defined 

material, and the minimum area moment of inertia 
of the ith element cross-section which changes in 
each iteration with the change of element 
diameter is Ii. The change in element length with 

the change in node position also changes in each 
iteration. The complexity of finding a global 
maximum is therefore very complex as the search-
space has a varying, or dynamic, constraint. 

In addition to these constraints, the minimal 
element length constraint is implemented due to 
the possibility of a global extreme value having a 
small length which could not be produced. The 
value assigned to this constraint is taken from 
engineer experience or design guidelines given in 
literature or corresponding standards [1]. This 
constraint is given as (Eg. 3): 
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The ith element length li is between nodes a (xia, 

yia) and b (xib, yib), in that order. 

 
3.1 PSO Algorithm 

 
Particle swarm optimization (PSO) is a swarm 

intelligent-based algorithm which searches the 
entirety of the acceptable domain. This gives it an 
advantage in that it uses only one phase, which 
effects the algorithm’s performance and 
controllability. Due to its outstanding 
characteristics PSO has been used in many fields to 
solve complex problems. 

The key operating principle is centered on 
particle acceleration, the distance from a particle 
position to the best value of a particle and its 
position from the globally best particle. Potential 
solutions are the positions of particles in a given 
moment. Only the best position is accepted and 
passed through an iterative process of 
optimization. Every new result is defined by two 
components, velocity, νi, and position, xi. The 
number of positions and accelerations is n 
depending on the total defined number of particles. 
Every new value is derived as follows (Eg. 4):  

 

, , ,new i old i new ix x = +
   (4) 

 
where i=1,2,…,N, is the total size of the 

population (Eg. 5): 
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 (5) 

 
Constants cp and cg are both suggested in 

literature as 1.5. Random values rp and rg are from 
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the interval between 0 and 1. Current particle 
position is defined as xx,i. Particle intensity is ω 
(inertia weight) and is defined as (Eg. 6): 
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  (6) 
Values ωmax=0.9 and ωmin=0.4 are defined in 

literature.  
 

3.2 Genetic algorithm 
 
Genetic algorithm, or GA, is a heuristic method 

for optimizing whose operation is based on 
mimicking natural processes [14]. The algorithm 
contains three basic operators: selection, 
crossover, and mutation which are illustrated in Fig. 
1. 

 

 

Fig. 1. Genetic algorithm 
 

Selection is the process of transferring genetic 
information through generations, while crossover 
represents the operations between two parents, 
where an exchange of genetic information and 
new generations are made. A mutation operator 
creates a random change in the genetic 
composition for some individuals for overcoming 
early convergence. 

Algorithm operation is founded on survival of 
the fittest through evolution by exchanging genetic 

material. Selection ranks individuals using values 
from the fitness function that defines the quality of 
an individual. 

Both these algorithms have been used in 
research over the years. Their application spans 
many different fields and they have been used 
successfully to find optimal solutions for complex 
problems with few known inputs [15]. 

 
4. TEST EXAMPLE 
 

The initial truss model bar and node layout for 
the 17 bar truss example is given in Fig.  2. This is a 
commonly used example. The material 
characteristics for all bars are: Young modulus 
206842.719 MPa and density of 7.4 g/cm3. There is 
only one point load applied in node 9 which is 
444.82 kN, in the - y direction.  

 

 

Fig. 2. The 17  bar truss problem [12] 

 
Each bar cross-section is an independent 

variable. There is only one fixed constraint for 
displacement on all nodes of ±0.0508 m in any 
direction. Cross-section variables are taken from 
the same discrete set as in [12].   
 
5. RESULTS AND DISCUSSIONS 
 

The initial model was first analytically 
calculated and it was determined that the cross-
section for all elements should be a diameter of 
105 mm (86.590 cm2), resulting in a structure 
weighing 3181.777 kg. This result matches the 
result in [12] and will be used as a benchmark to 
measure the improvement made by using sizing 
and shape optimization.  

The optimal solution achieved using GA used a 
population size of 100 with a 2x initial boost, 45% 
inbreeding and maintaining 5% from previous 
generations. The optimal solution using PSO used 
100 iterations with a max velocity of 0.200 and a 
swarm size of 20. Both algorithms used the same 
initial setup with the layout from Fig. 2 and 
diameters for all bars from the analytical 
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calculation. All results were achieved using an 
original software solution developed for Rhino 6 
using Grasshopper’s Karamba 3D and Silvereye 
plugins. 

Table 1 gives the optimal cross-sections for 
each bar including the total weight, length and 
outer area for both GA and PSO. 

Table 1. Optimal results 

Element 
Cross-section areas (cm2) 

Analytical GA PSO 

1 86.590 70.882 38.485 

2 86.590 23.758 50.265 

3 86.590 86.590 122.718 

4 86.590 7.069 3.801 

5 86.590 33.183 63.617 

6 86.590 28.274 4.524 

7 86.590 70.882 78.540 

8 86.590 9.621 44.179 

9 86.590 63.617 4.524 

10 86.590 2.545 63.617 

11 86.590 50.265 56.745 

12 86.590 11.341 9.621 

13 86.590 33.183 44.179 

14 86.590 63.617 23.758 

15 86.590 56.745 0.283 

16 86.590 23.758 38.485 

17 86.590 63.617 44.179 

Weight (kg) 3181.777 1456.573 1455.92 

Total length (m) 50.545 48.145 49.401 

Total area (m2) 4.377 0.200 0.200 

 
Table 2 gives the optimal coordinates of nodes 

for each solution. 
 
Table 2. Optimal node positions 

Node 

Coordinates [m] 

GA PSO 

x y x y 

1 0 0 0 0 

2 0 2.54 0 2.54 

3 2.694 -0.122 3.304 -0.275 

4 2.749 2.41 2.451 2.343 

5 5.124 0.136 5.497 0.425 

6 5.228 2.389 6.275 2.426 

7 7.52 0.458 7.883 2.12 

8 7.992 2.21 7.883 -0.051 

9 10.16 1.118 10.16 0.513 

 
Fig. 3 shows the differences in element length 

between the analytical, GA and PSO solutions. 
For both optimization algorithms the process 

was repeated ten times each, and the best result 
was used from each algorithm. It should also be 

noted that the resulting optimal solutions did not 
vary greatly between each of the 10 solutions. Fig. 
4 and 5 show the resulting shapes for GA and PSO 
respectively. 
 

 
Fig. 3. Individual element lengths for all solutions 

 

 
Fig. 4. GA optimized shape 

 

 

Fig. 5. PSO optimized shape 
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Both the GA and PSO optimal structures use 12 

different cross-sections on 17 bars. This is an 
unrealistically high number. The use of a 
cardinality constraint, such as the one used in 
[12,13] is warranted.  

 
6. CONCLUSION  

 
With the increase in computer memory and 

processing power, the increase of complexity of 
possible optimization problems has increased as 
well. Truss structural optimization has followed 
this trend with the increase in the number of 
variables, constraints and possible iterations 
aiming to finding the best possible solutions. 
Implementing realistic constraints which mimic 
analytical calculations is important in order to have 
this technology used successfully and widely in 
practice.  

The research presented in this paper shows the 
implementation of such constraints on a typical 
sizing and shape optimization problem. The 

minimization of weight is in 54% for both 
optimization algorithms showing that it is possible 
to half the weight of such a structure through the 
use of this technology. Overall element length is 
decreased by 2.3% and 4.7% using GA and PSO, 
respectively. The greatest savings aside from 
weight can be seen in outer surface area where 

there is a 95%. The small decrease in length is a 
negligible but necessary step as the new shape 
allows for a better stress distribution and the use 
of much thinner profiles in most of the structure. 
The GA optimized model only has one element the 
same thickness as the analytically calculated model, 
which is subjected to compression and sized 
according to limiting bucking load. The PSO model 
has the same element with a slightly larger profile 
for that specific bar, allowing for other bars to be 
sized accordingly and achieving similar results. 
Further research in this field should see a greater 
implementation of cardinality constraints in order 
to limit the impractical use of a large number of 
different cross-sections. 

The different shapes, but similar weights and 
areas achieved using two different optimization 
methods shows that in a large search-space there 
are many results which are applicable and have a 
drastically decreased weight than the analytically 
calculated model. 

 
 
 

REFERENCES  

 
[1] N. Petrović, N. Kostić, N. Marjanović, V. 

Marjanović, Influence of Using Discrete Cross-
Section Variables for All Types of Truss 
Structural Optimization with Dynamic 
Constraints for Buckling. Applied Engineering 
Letters, 3(2), 2018: 78-83. 
https://doi.org/10.18485/aeletters.2018.3.2.5  

[2] H. Cao, W. Sun, Y. Chen, F. Kong, L. Feng, 
Sizing and Shape Optimization of Truss 
Employing a Hybrid Constraint-Handling 
Technique and Manta Ray Foraging 
Optimization. Expert Systems with 
Applications, 213(Part B), 2023: 118999. 
https://doi.org/10.1016/j.eswa.2022.118999  

[3] S. Anosri, N. Panagant, S. Bureerat, N. Pholdee, 
Success History Based Adaptive Multi-
Objective Differential Evolution Variants with 
an Interval Scheme for Solving Simultaneous 
Topology, Shape and Sizing Truss Reliability 
Optimization. Knowledge-Based Systems, 253, 
2022: 109533. 
https://doi.org/10.1016/j.knosys.2022.109533  

[4] S. Zheng, L. Qiu, F. Lan, TSO-GCN: A Graph 
Convolutional Network Approach for Real-
Time and Generalizable Truss Structural 
Optimization. Applied Soft Computing, 134, 
2023: 110015. 
https://doi.org/10.1016/j.asoc.2023.110015  

[5] M.S. Gonçalves, R.H. Lopez, L.F.F. Miguel, 
Search Group Algorithm: A New Metaheuristic 
Method for the Optimization of Truss 
Structures. Computers & Structures, 153, 
2015: 165-184.  
https://doi.org/10.1016/j.compstruc.2015.03.
003  

[6] H.-A. Pham, T.-D. Tran, Optimal Truss Sizing by 
Modified Rao Algorithm Combined with 
Feasible Boundary Search Method. Expert 
Systems with Applications, 191, 2022: 116337. 
https://doi.org/10.1016/j.eswa.2021.116337  

[7] M. Shahabsafa, A. Mohammad-Nezhad, T. 
Terlaky, L. Zuluaga, S. He, J.T. Hwang, J.R.R.A. 
Martins, A Novel Approach to Discrete Truss 
Design Problems Using Mixed Integer 
Neighborhood Search. Structural and 
Multidisciplinary Optimization, 58, 2018: 
2411-2429.  
https://doi.org/10.1007/s00158-018-2099-8  

[8] G. Bekdaş, S.M. Nigdeli, X.-S. Yang, Sizing 
optimization of truss structures using flower 
pollination algorithm. Applied Soft Computing, 
37, 2015: 322-331. 

https://doi.org/10.18485/aeletters.2018.3.2.5
https://doi.org/10.1016/j.eswa.2022.118999
https://doi.org/10.1016/j.knosys.2022.109533
https://doi.org/10.1016/j.asoc.2023.110015
https://doi.org/10.1016/j.compstruc.2015.03.003
https://doi.org/10.1016/j.compstruc.2015.03.003
https://doi.org/10.1016/j.eswa.2021.116337
https://doi.org/10.1007/s00158-018-2099-8


N. Petrovic et al. / Advanced Engineering Letters Vol.1, No.4, 142-147 (2022) 

 147 

https://doi.org/10.1016/j.asoc.2015.08.037  
[9] V. Ho-Huu, D. Duong-Gia, T. Vo-Duy, T. Le-Duc, 

T. Nguyen-Thoi, An Efficient Combination of 
Multi-Objective Evolutionary Optimization and 
Reliability Analysis for Reliability-Based Design 
Optimization of Truss Structures. Expert 
Systems with Applications, 102, 2018: 262-272. 
https://doi.org/10.1016/j.eswa.2018.02.040 

[10] S. Gholizadeh, Layout Optimization of Truss 
Structures by Hybridizing Cellular Automata 
and Particle Swarm Optimization. Computers 
& Structures, 125, 2013: 86-99. 
https://doi.org/10.1016/j.compstruc.2013.04.
024 

[11] H. Madah, O. Amir, Truss Optimization with 
Buckling Considerations Using Geometrically 
Nonlinear Beam Modeling. Computers & 
Structures, 192, 2017: 233-247. 
https://doi.org/10.1016/j.compstruc.2017.07.
023  

[12] N. Petrović, V. Marjanović, N. Kostić, N. 
Marjanović, Means and Effects оf Constraining 
the Number of Used Cross-Sections in Truss 

Sizing Optimization. Transactions of FAMENA, 
44(3), 2020: 35-46. 
https://doi.org/10.21278/TOF.44303  

[13] J.P.G. Carvalho, A.C.C. Lemonge, É.C.R. 
Carvalho, P.H. Hallak, H.S. Bernardino, Truss 
Optimization with Multiple Frequency 
Constraints and Automatic Member Grouping. 
Structural and Multidisciplinary Optimization, 
57, 2017: 547-577. 
https://doi.org/10.1007/s00158-017-1761-x  

[14] E.G. Shopova, N.G. Vaklieva-Bancheva, BASIC-
A Genetic Algorithm for Engineering Problems 
Solution. Computers & Chemical Engineering, 
30(8), 2006: 1293-1309.  
https://doi.org/10.1016/j.compchemeng.2006
.03.003 

[15] B. Stojanović, S. Gajević, N. Kostić, S. 
Miladinović, A. Vencl, Optimization of 
Parameters that Affect Wear of A356/Al2O3 
Nanocomposites Using RSM, ANN, GA and 
PSO Methods. Industrial Lubrication and 
Tribology, 74(3), 2022: 350-359.  
https://doi.org/10.1108/ILT-07-2021-0262 
 

 

 
This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License (CC BY-NC 4.0) 
 

https://doi.org/10.1016/j.asoc.2015.08.037
https://doi.org/10.1016/j.eswa.2018.02.040
https://doi.org/10.1016/j.compstruc.2013.04.024
https://doi.org/10.1016/j.compstruc.2013.04.024
https://doi.org/10.1016/j.compstruc.2017.07.023
https://doi.org/10.1016/j.compstruc.2017.07.023
https://doi.org/10.21278/TOF.44303
https://doi.org/10.1007/s00158-017-1761-x
https://doi.org/10.1016/j.compchemeng.2006.03.003
https://doi.org/10.1016/j.compchemeng.2006.03.003
https://doi.org/10.1108/ILT-07-2021-0262
https://creativecommons.org/licenses/by-nc/4.0/

