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Abstract. In this paper an accurate and efficient numerical algorithm for simulation of 
three-dimensional turbomachinery flows is presented. This model is used later for 
turbomachinery performance prediction. Mathematical model is based on the RANS 
equations that are written in non-inertial frame of reference. Reynolds stresses are 
approximated with Boussinesq hypothesis using two-equation k-ω near-wall turbulence 
closure. Discretization of convective fluxes of the mean flow equation is performed 
using central differences, by explicitly added eigenvalue scaling non-isotropic matrix-
valued artificial dissipation. In turbulence closure equations, numerical convective 
fluxes are approximated according to Roe second order upwind scheme in conjunction 
with monotone (TVD) variable extrapolations. The semi-discrete equations are 
advanced in time using a four stage explicit Runge-Kutta scheme enhanced with local 
time stepping, variable coefficient implicit residual smoothing and multigrid 
acceleration. Developed software is applied for numerical analysis of work processes 
in the model of NEL mixed-flow bowl pump. Obtained numerical results are in good 
agreement with the available experimental data in the operating conditions at the best 
efficiency point (BEP). Also, turbopump performances are simulated for number flow 
rates and constant shaft speed, corresponding to the off-design operating conditions. 
According to information from numerical experiment, methodology for design 
performance characteristics is shown. By further improvement of mathematical model, 
the developed methodology enables that, from an engineer's perspective, numerical 
experiment could be a useful, low-cost tool in comparison with the expensive 
measurements. Using the dimensionless characteristics as well as theory of conformity, 
the turbopump performance can be calculated within the wide operating regimes in a 
relatively simple way. 
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1. INTRODUCTION  

Advances in computing resources account for the fact that the recent trend in Compu-
tational Fluid Dynamics is to predict practical engineering problems by solving Navier-
Stokes equations with high resolution schemes. An incompressible turbulent flow through 
turbomachinery impeller is probably one of the most challenging problems in CFD. The 
numerical simulation of high Re number turbulent flows, occurring in complex geometry 
from the inlet to the exit of hydraulic turbomachinery, requires both a very large number 
of grid points and extremely small grid spacing in order to resolve phenomena in the near-
wall region. Such meshes can dramatically deteriorate the convergence rate of numerical 
procedure. In order to make an accurate, efficient and low-cost code for engineering pur-
pose, it is very desirable to apply acceleration techniques. Among the acceleration tech-
niques, the multigrid method is said to be the most efficient and general technique known 
today [1]. 

The advantage of the multigrid method over the other acceleration techniques is the 
fact that the rate of convergence is independent of the size of the system to be solved. 
With much success, the multigrid method has been applied in CFD applications, both 
compressible [2,3] and incompressible [4,5,6]. The multistage Runge-Kutta scheme, 
developed by Jameson [7], in conjunction with local time stepping, implicit residual 
smoothing and the multigrid method is a powerful tool for solving turbomachinery flow 
problems [8,9,10,11].  

In this paper an incompressible multigrid three-dimensional Reynolds-Averaged Na-
vier-Stokes code for analysis of the turbomachinery blade rows and other internal flows is 
presented. This code is extension of 3D compressible Euler code developed by J. V. 
Soulis [12]. The application of the 3D incompressible turbulent flow computation, in the 
NEL mixed-flow bowl pump blade passages, is described and compared to the experi-
mental data [13]. The information from numerical experiment, and the appropriate meth-
odology for design performance characteristics (head, powers, and efficiency in terms of 
flow rates), presented here, are coupled in order to make a useful tool for high perform-
ance turbomachinery design.  

2. GOVERNING EQUATIONS 

For mathematical modeling of viscous fluid flow in turbomachinery passages, full 
three- dimensional unsteady Reynolds-averaged Navier-Stokes equations are written first 
in Descartes coordinate system (x1, x2, x3) rotating with constant angular velocity Ω about 
x1 − axis. The rotation introduces source terms in x2 − and x3 −momentum equations re-
lated to centrifugal and Coriolis forces. Chorin’s artificial compressibility formulation 
[14] is used to obtain coupling of velocity and pressure fields. Due to complex geometry 
in curved passages, the conservation forms of governing Descartes equation, based on 
primitive variables, are mapped to a general body-fitted (ξ1, ξ2 , ξ3) coordinate system 
using standard techniques. An artificial compressibility form of three-dimensional incom-
pressible mean flow equations, non-dimensionalized by the fluid density, reference veloc-
ity and reference length, in curvilinear coordinates may be written in tensor notation [4, 
15], where repeated indices imply summation, as: 
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In the above equation, J represents Jacobian of geometrical transformation, while 
vectors fQ , j

fF , j
fνF  and fS are defined as follows: 
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where P is defined as p + (2 / 3)k, p is pressure, k is turbulent kinetic energy, ui are Des-
cartes velocity components, i

x j
ξ  are metrics of transformation, Ui are contravariant veloc-

ity components, gij are components of contravariant metric tensor, and tensor Rij is defined 
as follows: 
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In the equation (4) Re is Reynolds number and νt is eddy viscosity. For turbulence 
closure, two-equation k − ω near-wall model [16] is employed and eddy viscosity is ex-
pressed in terms of turbulent kinetic energy k and specific dissipation rate ω. In curvilin-
ear coordinates, equations of turbulence model may be written as [17]: 
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Production of turbulence kinetic energy Pk expressed in terms of tensor Rij (6) is: 

 ijjiijtk RRRP )( +ν= . (12) 

and eddy viscosity is given as: 
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In the equations of turbulence model, ** ,,,,, σσββαα ω k  are closure coefficients [16]. 

3. NUMERICAL METHOD 

The governing equations are discretized in space using cell vertex finite volume 
method. The viscous fluxes at the cell face are approximated with central differencing. 
Discretization of the convective fluxes of the mean flow equations is performed using 
central differences, by explicitly added eigenvalue scaling non-isotropic matrix-valued 
artificial dissipation [17]. At the cell face i+1/2 artificial dissipation flux can be written as: 

 ),,2/1(
11

),,2/1(
~

111 kjifCDMkji +ξξξ+ δδε= QAD . (14) 

where εCDM is positive constant which controls the amount of artificial dissipation intro-
duced into numerical solution, fQ~  is variable vector normalized by J, δξ j is central 
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convective flux. The convective fluxes of turbulence closure equations, at the cell face 
i + ½, are formed using Roe-scheme [1]: 
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where ψ (r) is slope limiter which is a function of consecutive gradients of the solution: 

 
),,1(),,2(

),,(),,1(
),,2/1( ~~

~~
~

kjitkjit

kjitkjitR
kji

++

+
+

−

−
=

QQ

QQ
r ,    

),,1(),,(

),,(),,1(
),,2/1( ~~

~~
~

kjitkjit

kjitkjitL
kji

−

+
+

−

−
=

QQ

QQ
r . (18) 



 Performance Prediction of Hydraulic Turbomachinery 45 

Slope limiter is introduced in a variable extrapolation in order to avoid numerical 
problems related to extremely high gradients which turbulence quantities reach in near-
wall regions. Differentiable R-κ limiter [18]: 
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is implemented and κ = 2/3 ensure third order of accuracy. The above limiter has a prop-
erty that for r → ∞, ψ (r) → 2(1+κ)and in extreme, where r < 0, ψ (r) =0 leading to ex-
trapolation with first order of accuracy.  

The system of the differential equations is advanced in time using an explicit four 
stage Runge-Kutta scheme until the steady-state solution is reached. For economy, vis-
cous terms are evaluated only at the first stage and then unchanging used for the remain-
ing stages. Artificial dissipative terms are evaluated at the first and second stage [8]. 
Runge-Kutta scheme can be explained as: 
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where Q(1) ≡ Q(n) and Q(4) ≡ Q(n +1), p is number of Runge-Kutta stages, n denotes the cur-
rent time level, αp are multistage coefficients, ∆t is the pseudo-time increment and k = 1 
for p = 1 and k = 2 for p = 2, 3, 4. In the equation (20) C, V, AD and S represent discrete 
approximation of the convective, viscous, artificial dissipation and source terms, respec-
tively. 

In order to reduce the computational cost, local time-stepping, implicit residual 
smoothing and multigrid are employed to speed up convergence to the steady-state solu-
tions. 

Local time step limit ∆t is computed with scaled spectral radii of the flux Jacobian 
matrices for the convective terms. The time step at every grid point is calculated as: 
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where iξ
λ  are the spectral radii of the Jacobian matrices, given as: 
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An implicit smoothing of residuals [19] is used to extend the stability limit and ro-
bustness of the basic scheme. This procedure in 3D can be defined as: 
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where residual R includes the contribution of the variable time step and R~  is residual 
after a sequence of smoothing in all three directions. Variable coefficients ε depend on 
spectral radii of the flux Jacobian matrices as well as Courant numbers of the smoothed 
and unsmoothed scheme [20]. Hence, 
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where repeated indices in Eq. (24) and (25) imply no summation. 
A nonlinear FAS (Full Approximation Storage) multigrid is used to accelerate the 

convergence of the explicit four stage Runge-Kutta scheme. Multigrid process starts on 
the finest grid with grid size h. The coarser grids can be created by doubling the grid 
spacing along three (full-coarsening) or two direction (semi-coarsening). This implies that 
the grid sizes are 2h, 4h, etc. After one or more Runge-Kutta time steps a new solution 
( 41

h
n
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hh QR is calculated. In order to 
improve the solution on the fine grid with aid of a coarse grids, the following steps are 
carried out [3]. 

a) Transfer of the solution and the residual to the coarser grid. In the case of the 
cell vertex scheme the solution on the coarse grid is stored at the grid points 
corresponding to every second grid point of the fine grid. The fine grid solution can be 
transferred to the coarser grid using injection: 
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is employed. The residual from the fine grid is needed on the coarser grid in order to re-
tain the spatial accuracy of the fine grid. For this purpose, one can define a source term 
"forcing function" as follows: 
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b) Calculation of the new solution on the coarser grid. On the coarser grid, a new 
solution is obtained in a similar way as on a fine grid. The only change is that forcing 
function h2℘ is now added to the residual. Hence,  
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c) Interpolation from the coarser to the fine grid. Once the coarsest grid is reached, 
the accumulated corrections are transferred back to the finest grid using a series of trilin-
ear interpolations on successively finer grids [1]. Then, the new solution on the finest grid 
becomes: 
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where ∆Q2h is correction from coarser grid containing accumulated correction from other 
coarser grids (4h, 8h,...). Interpolations of the correction introduce high frequency errors 
which have to be prevented by using constant coefficient implicit correction smoothing 
operator before updating solution on the finer grid. Through numerical experiments 
values 321 ξξξ

ε=ε=ε  of (0.8 ÷ 1) are considered to be nearly optimal. On each grid, the 
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boundary conditions are treated in the same way and updated at every Runge-Kutta step. 
A three level V-cycle multigrid algorithm with semi-coarsening in the transverse plane is 
applied only to the mean flow equations with one, two and three iterations performed on 
the first, second and third grid level, respectively. The turbulence closure equations are 
solved only on the finest mesh and eddy viscosity is injected to the coarser meshes and 
kept frozen during the multigrid process. Three single-grid iterations are performed on the 
turbulence closure equations per multigrid cycle. 

In turbomachine channel calculations we had four different types of boundary condi-
tions: inlet, outlet, solid walls and periodicity. Boundary conditions are specified at the 
inlet and outlet according to the theory of characteristics. At the inlet, in cross-section A1, 
(Fig. 1), velocity components, turbulent kinetic energy (k) and specific dissipation rate (ω) 
are prescribed and pressure is extrapolated from the interior of the domain. 

 
Fig. 1. Impeller Blade Passage 

At outlet A2, pressure at the hub is prescribed and radial equilibrium equation is used 
to determine the spanwise distribution of the pressure. Velocity components, turbulent 
kinetic energy (k) and specific dissipation rate (ω), at the outlet, are determined in manner 
of extrapolation. On solid walls, suction side (A5), pressure side (A6) and hub and shroud 
(A9) no-slip condition is used as well as two-point extrapolation formula to compute 
pressure. Turbulent kinetic energy is set to zero at solid walls. The specific dissipation 
rate at the solid walls, following Menter [21], is calculated as: 
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where n1 is minimal normal distance of the first grid node to the solid wall. If the rotating 
frame of reference is employed, the stationary walls in the inertial frame are treated as 
moving walls with the rotation velocity of the frame in the reverse direction. Periodicity at 
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the inlet (A3 and A4) and outlet (A7 and A8) from one blade passage to another is obtained 
by using virtual cells.  

4. APPLICATIONS 

The method described above is implemented in three-dimensional RANS solver and 
applied to numerical analysis of work processes in the model of mixed-flow pump.  

  
 a) b) 

Fig. 2. a) Impeller Blade Profiles Showing Inlet and Outlet Angles, 
b) Meridian Section through Pump Showing Measuring Station Position  

The obtained results are compared to the experimental data obtained by using the La-
ser Doppler Anemometry method [22]. The experiment is done at the National Engineer-
ing Laboratory in Glasgow, UK. The experimental pump is with five blades mounted on a 
conical hub, without stator, so that the working fluid is approaching the impeller without 
circular velocity component. Both the hub and casing have a cone shape with semiangles 
32,3o and 17,6o respectively. The impeller outlet diameter is 430 mm. Fig. 2.a shows the 
profiles and inlet and outlet angles of the blades on conical surfaces of revolution de-
scribed by section lines h-h, p-p, q-q, r-r and c-c at 0, 25, 50, 75, and 100 per cent span, 
respectively. The measurement is performed at six coaxial surfaces (SGL) and five trans-
versal planes (TGL) (Fig. 2.b). At the same location the results have been obtained by 
using the developed RANS solver.  

Because of the complexity of geometry of the annular flow passage in this machine, 
the results are plotted in terms of the following velocity components (Fig. 3), which are 
resolved geometrically from the measured axial, radial and tangential components: 
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Vp − the component parallel to the streamwise grid line on which the measurements is 
made; 

Vn − the component normal to the streamwise grid line on which the measurement is made 
(i.e. the spanwise component), the outward direction being defined as positive; 

Vu − the tangential (whirl) component in the stationary frame of reference; 
Wu −the tangential (whirl) component in the relative (rotating) frame of reference. 

Vp

O

a

Wr

Vn

Vu
WuWuWu

SGL

b

W

Vp

r

z

 
Fig. 3. Description of Velocity Components 

Because of the limit of experimental facilities inside the boundary layer it is possible 
to compare only the values related to the points located at the some distance from the 
wall. Throughout the presentation of results, all fluid velocities are normalized by the 
blade velocity at the mid-point of the trailing edge, which is 27 m/s at the 1200 r/min. At 
the best efficiency point (BEP) the flowrate is 1.01 m3/s. A grid of 53 x 101 is used for 
the blade to blade surface with 33 points in the hub to shroud direction (Fig 4.). 
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Fig. 4. Computational Grid 

The obtained numerical results are in good agreement with the available experimental 
data in the operating conditions at the best efficiency point (BEP) in the whole region 
except in a small part of the outer region close to the turbopump casing. In that region the 
main flow is strongly influenced by the tip leakage that is not considered in this study. 
Figure 5 shows the blade to blade velocities distributions, both numerical and experi-
mental, from suction to pressure side for mid-span grid line, SGL3. Figure 6 shows pas-
sage averaged inlet and outlet relative flow angles, and passage averaged deflection of the 
flow obtained using numerical model and compared with experimental data. 

Also, the turbopump performances are simulated for a number of flow rates and con-
stant shaft speed, corresponding to the off-design operating conditions. The flow rates 
have been varying from 30% to 110% of BEP flow rate. By decreasing the flow rate the 
convergence rate of numerical procedure is deteriorated (Fig. 7). Also, at the pump 
working regimes bellow 50% of BEP flow rates, in outer part of flow field, near to the 
suction side of blade, the strong flow separation and recirculation, i.e., a backward flow 
towards the annulus, are noticed (Fig. 8). These phenomena have considerable influence 
on energy losses at off design operating conditions. 
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Fig. 5. Blade to Blade Distribution of Velocities on SGL3 

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

R

o

(-)

( )β

β1L

β0(exp.)

β0

Ulaz - TGL1

0 0.2 0.4 0.6 0.8 10

10

20

30

40

50

60

R

o

(-)

( )β

β2L

β3(exp.)

β3

Izlaz - TGL5

0 0.2 0.4 0.6 0.8 1

-8

-4

0

4

8

R

o

(-)

( )∆β

(exp.)∆β
∆β

 
 a) b) c) 

Fig. 6. Passage Averaged 

a) Inlet Relative Flow Angles, 
b) Outlet Relative Flow Angles, 
c) Flow Deflection. 
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Fig. 7. Convergence History Fig. 8. Streamlines Near the Casing  

5. METHODOLOGY FOR DESIGN PERFORMANCE CHARACTERISTICS 

According to the information obtained from numerical experiment, in the following 
text, the methodology for design turbopump performance characteristics (torque, head, 
powers, and efficiency in terms of flow rates) is shown. The similar procedure for calcu-
lation of hydro turbine performance parameters can be found in [23]. 

Force 
)(

~
iFd  that acts on an element )(idA  at point C on the ξi = const. surface [Fig. 9], 

in Descartes coordinate can be written as: 
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In equations (32), p is pressure, ~
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is unit normal 
vector for element dA(i).  
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Fig. 9. Computational Element in Global and Local Coordinates 
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where ξi
xj are metrics of transformation and gij are components of contravariant metric 

tensor. Wall shear stress vector is defined as inner product of stress tensor and unit nor-
mal vector, i.e: 
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In relations (34) and (35), ταβ, αβ = (1,2,3) represents Descartes stress tensor components 
and δβγ is the Kronecker delta.  
The fluid torque that acts on an element )(idA  can be written as: 

 ~~~
)()( ii dFrdM ×= , (36) 

Torque components around the turbopump axis (x1) is: 
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i
x

i
x dFxdFxdM −= , (37) 

Hence, torque that acts on the .consti =ξ  surface may be written as: 
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and can be calculated numerically. Assuming that surfaces j = 1 and j = jm denote hub and 
shroud, and that surface k = 1 and k = km represent blade pressure and suction side, total 
torque around the turbopump axis, acts on an impeller passage is: 

 )3(
)(

)3(
)1(

)2(
)(

)2(
)1( 11111 kmkxkxjjxjxx MMMMM

m ==== +++= , (39) 

Impeller acts on fluid by the same torque but in opposite direction, i.e,  

 
1xLK MZM −= , (40) 

where ZL denotes number of blades. During rotation with angular velocity Ω, mechanical 
power of turbopump impeller is: 

 KK MP Ω= , (41) 

Hydraulic power can be defined according to the energy balance between inlet (i = 1) and 
outlet (i = im) of the turbopump: 
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, (42) 

Turbopump efficiency represents ratio between output (PH) and input power (PK) as: 

 
K

H
i P

P
=η , (43) 

Hence, turbopump head is: 

 
V

PY H

ρ
= , (44) 

where V  denotes volume flow (m3/s). 
Dimensionless turbopump characteristics, torque, mechanical and hydraulic power can 

be written as [24]: 
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where L0 and U0 represent referent length and velocity, respectively. Dimensionless tur-
bopump head is head coefficient i.e: 

 2
0

2
U

Y
=ψ  (46)  

Using the numerical procedure presented in this paper, as well as results from the nu-
merical experiment, turbopump dimensionless performance characteristics are designed in 
term of the flow coefficient (dimensionless volume flow) that is shown in Figure 10. 
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Fig. 10. Turbopump Dimensionless Performance Characteristics 

In the regime which is defined by the experiment as a regime at the best efficiency 
point, the flow coefficient is ϕ = 0.26, while the numerical value of the head coefficient is 
ψ = 0.5. Turbopump efficiency obtained by the numerical simulation is 0.88 that is very 
close to the measured value of efficiency that is 0.87. But, the difference noticed between 
numerical (192 J/kg) and experimental turbopump head value (202 J/kg) indicates that an 
appropriate empirical relation should take into account mechanical losses, neglected in 
numerical algorithm. 

6. CONCLUSION 

The developed mathematical model is applied to a model of mixed-flow bowl pump 
and the numerical solutions for the regime at the best efficiency point, in comparison with 
the experimental data are reasonable and correctly represent the complex turbomachinery 
flow phenomena. Also, the turbopump performances are simulated for a number of flow 
rates and the constant shaft speed, corresponding to the off-design operating conditions. 
Using information obtained from numerical experiment, methodology for design perform-
ance characteristics (head, powers, and efficiency in terms of flow rates) is presented and 
applied to the turbopump model. By further improvement of the mathematical model, the 
developed methodology enables that, from an engineer's perspective, numerical experi-
ment could be useful, low-cost tool in comparison with the expensive measurements. Us-
ing the dimensionless characteristics as well as theory of conformity, the turbopump per-
formance can be calculated within the wide operating regimes in a relatively simple way. 
Thus, the turbopump behavior can be predicted very well for all exploitation conditions. 
These numerical results can be very useful for flow field prediction and presents the basic 
tool in the high performance turbomachinery design. 
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SIMULACIJA RADNIH KARAKTERISTIKA HIDRAULIČKIH 
TURBOMAŠINA  

Nebojša Jovičić, Milun Babić, Gordana Jovičić, Dušan Gordić 

U ovom radu prikazan je numerički algoritam za simulaciju trodimenzijskog strujanja realnog 
fluida kroz pokretne i nepokretne lopatične organe hidrauličnih turbomašina. Razvijeni 
programski paket primenjen je za numeričku analizu radnih procesa u dijagonalnoj turbompumpi. 
Na osnovu poređenja rezultata proračuna sa postojećim eksperimentalnim podatacima za 
optimalni režim rada turbopumpe, utvrđen je visok stepen pouzdanosti numeričkog algoritma u 
većem delu protočnog prostora. Takođe, izvršene su simulacije i detaljna analiza radnih režima pri 
nižim vrednostima zapreminskog protoka. Prikazana je i metodologija za formiranje radnih 
karakterisitka turbopumpe (napor, snage i stepen korisnosti u funkciji protoka) na osnovu 
sprovedenog numeričkog eksperimenta. Izložena metodologija otvara mogućnost da sa daljim 
razvojem i unapređenjem matematičkog modela, numerički eksperiment obezbedi projektantima 
informacije do kojih se dolazi isključivo merenjima uz angažovanje skupe opreme. 

Ključne reči: Numerički metod, RANS, dijagonalna pumpa, radne karakteristike 
 


