
Atom-Bond Sum-Connectivity Index

Akbar Ali1, Boris Furtula2,∗, Izudin Redžepović2, Ivan Gutman2
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Abstract

The branching index (also known as the connectivity index), introduced in Milan Randić’s

seminal paper [J. Am. Chem. Soc. 97(23) (1975) 6609–6615], is one of the most famous,

investigated, and applied among the graph-theoretical molecular descriptors. The atom-

bond connectivity (ABC) index [E. Estrada et al., Indian J. Chem. A 37 (1998) 849–855]

and the sum-connectivity (SC) index [B. Zhou, N. Trinajstić, J. Math. Chem. 46 (2009)

1252–1270] belong to the class of successful variants of the connectivity index. In the

present paper, by amalgamating the core idea of the SC and ABC indices, a new molecu-

lar descriptor is put forward – the atom-bond sum-connectivity (ABS) index. The graphs

attaining the extreme values of the ABS index are determined over the classes of (molec-

ular) trees and general graphs of a fixed order. A noteworthy property of the ABC index

is that it increases when a non-isolated edge is inserted between any two non-adjacent

vertices. It is proved that this property holds also for the ABS index.

Keywords: molecular descriptor; topological index; connectivity index; atom-bond con-

nectivity index; sum-connectivity index.
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1 Introduction

All graphs considered in this paper are assumed to be finite. We use standard graph-

theoretical notation and terminology. Those used in this paper without being defined,

can be found in the books [?,?,?,?].

In chemical graph theory, graph-based molecular structure descriptors are usually

referred to as topological indices. The branching index (also known as the connectivity

index or Randić index ) of a (molecular) graph is defined as

R(G) =
∑

uv∈E(G)

1√
dG(u) dG(v)

, (1)

where dG(w) represents the degree of an arbitrary vertex w in G and uv is the edge

between the vertices u and v.

This index was introduced by Milan Randić in the mid of 1970s [?], as a measure

of the extent of branching in saturated hydrocarbons. It is appropriate to say that the

connectivity index is one of the most studied and frequently applied topological indices in

chemical graph theory, see the books [?,?], surveys [?,?,?], the recent papers [?,?,?,?],

and the references mentioned therein.

The connectivity index was modified in [?] by taking into consideration not only the

degree of the end-vertices of the edge uv, but also the degree dG(u) + dG(v) − 2 of this

edge. The resulting index was called atom-bond connectivity index (ABC), and is defined

as [?]

ABC(G) =
∑

uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u) dG(v)
.

Note that in the original definition of the ABC index a factor
√
2 was present (see [?]),

but it was dropped later.

The reader interested in chemical applications of the ABC index is referred to the

papers [?,?,?,?]. We refer the reader interested in its mathematical aspects to the recent

review [?] where most of the mathematical properties of the ABC index established till

2021 can be found.

Zhou and Trinajstić [?] proposed another modified version of the connectivity index

by replacing in Eq. (??) dG(u) dG(v) by dG(u) + dG(v). They named the resulting index

sum-connectivity index . The connectivity index and the sum-connectivity index have a

strong correlation, and their predicting abilities are almost identical in the majority of



situations, see [?,?,?]. Details about mathematical aspects of the sum-connectivity index

can be found in the survey [?] and in the references quoted therein.

The primary goal of the present paper is to modify the definition of the ABC index

by keeping in mind the idea of the sum-connectivity index. We propose to call this new

variant of the ABC index (and hence a variant of the connectivity and sum-connectivity

indices) the atom-bond sum-connectivity index . For a (molecular) graph G, its atom-bond

sum-connectivity (ABS) index is defined as

ABS(G) =
∑

uv∈E(G)

√
dG(u) + dG(v)− 2

dG(u) + dG(v)
=

∑
uv∈E(G)

√
1− 2

dG(u) + dG(v)
.

At this point it is worth noting that the so-called harmonic index H(G) is [?]

H(G) =
∑

uv∈E(G)

2

dG(u) + dG(v)
. (2)

In this paper, the graphs that achieve the ABS index’s extreme values are found

over the classes of all (molecular) trees and general graphs of a fixed order. One of the

properties of the ABC index of a (molecular) graph G is that it increases when a non-

isolated edge is placed between any two non-adjacent vertices of G (an edge uv ∈ E(G) is

said to be a non-isolated edge if its degree dG(u) + dG(v)− 2 is non-zero). We now show

that this property holds also for the ABS index.

One should note that the ABS index is a special case of the so-called t-index, intro-

duced and studied in [?]. Although, the t-index was studied for several choices of the

parameters, none of these include the ABS index.

2 ABS Index of General Trees and Graphs

In this section, some fundamental mathematical properties of the ABS index are estab-

lished. First, an extremal result for this index concerning graphs (including disconnected

ones) is given.

Proposition 1 If G is a non-trivial graph with n vertices, then

0 ≤ ABS(G) ≤
n
√
(n− 2)(n− 1)

2
, (3)

where the left equality holds if and only if the maximum degree of G is at most 1, whereas

the right equality sign holds if and only if G ∼= Kn. In other words, among all non-trivial



graphs with n vertices, only the graphs having the maximum degree at most 1 possess the

minimum value of the ABS index and the complete graph uniquely attains the maximum

value of the ABS index.

Proof: If the size of G is 0, then ABS(G) = 0. In what follows, assume that the size of

G is at least 1. For every edge uv ∈ E(G), it holds that√
1− 2

dG(u) + dG(v)
≥ 0 , (4)

with equality if and only if dG(u) + dG(v) = 2, that is, if and only if dG(u) = dG(v) = 1.

Thus, by applying the summation over all edges on (??), one obtains the left inequality

of (??).

Now, we derive the right inequality of (??). For every edge uv ∈ E(G), it holds that

dG(u)+dG(v) ≤ 2(n− 1) with equality if and only if dG(u) = dG(v) = n− 1. Since n ≥ 2,

the last sentence is equivalent to: for every edge uv ∈ E(G), it holds that√
1− 2

dG(u) + dG(v)
≤
√

n− 2

n− 1
, (5)

with equality if and only if dG(u) = dG(v) = n − 1. Applying the summation over all

edges on (??) yields

ABS(G) ≤
∣∣E(G)

∣∣√n− 2

n− 1
, (6)

which gives the desired inequality because of the fact
∣∣E(G)

∣∣ ≤ n(n− 1)/2. □

We remark here that (??) gives an upper bound on the ABS index of a graph G in

terms of its order and size, and this bound is attained if and only if G ∼= Kn.

Next, we solve the problem of characterizing the trees possessing the maximum and

minimum values of the ABS index among all trees of a fixed order. For solving the

maximal part of this problem, we derive an upper bound on the ABS index, given in the

following proposition.

Proposition 2 Let H(G) be the harmonic index of the graph G, Eq. (??). If G is a

graph with m edges, then

ABS(G) ≤
√

m(m−H(G)) (7)

with equality if and only if either m = 0 or there is a fixed number k such that dG(u) +

dG(v) = k holds for every edge uv ∈ E(G).



Proof: For m = 0, the result is trivial. Assume that m ≥ 1. By using the Cauchy–

Bunyakovsky–Schwarz inequality, one has ∑
uv∈E(G)

√
1− 2

dG(u) + dG(v)

2

≤

 ∑
uv∈E(G)

(
1− 2

dG(u) + dG(v)

) ∑
uv∈E(G)

(1)


where the equality holds if and only if there is a fixed number k′ such that√

1− 2

dG(u) + dG(v)
= k′

for every uv ∈ E(G). □

In the literature, there exist various lower bounds on the harmonic index, see the

survey [?]. From each such lower bound and (??), one can obtain an upper bound on the

ABS index. Zhong [?] proved that for any non-trivial tree T of order n, the inequality

H(T ) ≥ 2(n − 1)/n holds with equality if and only if T is the star graph Sn. From this

fact and Proposition ??, the next result follows.

Proposition 3 If T is a non-trivial tree of order n, then

ABS(T ) ≤ (n− 1)

√
n− 2

n
(8)

with equality if and only if T ∼= Sn. In other words, among all non-trivial trees of order

n ≥ 4, the star graph uniquely attains the maximum value of the ABS index.

Proposition ?? follows also from the fact that the ABS index increases when the graph

transformation used in the proof of Lemma 2.1 of [?] is applied to a tree of order n ≥ 4

with maximum degree at most n− 2.

A pendent path of a graph G is a path u1u2 · · ·uk such that min{dG(u1), dG(uk)} = 1,

max{dG(u1), dG(uk)} ≥ 3, and dG(ui) = 2 whenever 2 ≤ i ≤ k−1. By a branching vertex

of a graph, we mean a vertex of degree at least 3. Two pendent paths P and P ′ of a graph

are said to be adjacent if their branching vertices are the same. For a vertex u ∈ V (G) of

a graph G, define NG(u) = {v ∈ V (G) : uv ∈ E(G)}. The members of NG(u) are called

neighbors of u. In the rest of this paper, we take

Φ(x, y) =

√
1− 2

x+ y
,

where min{x, y} ≥ 1.

Next, we prove a result that is crucial for characterizing the tree(s) possessing the

minimum value of the ABS index among all trees of a fixed order.



Proposition 4 If a graph G contains at least one pair of adjacent pendent paths, then

there exists at least one graph G′ containing no pair of adjacent pendent paths such that

ABS(G) > ABS(G′).

Proof: Let uu1u2 · · ·ur and uv1v2 · · · vs be two adjacent pendent paths of G, where

dG(ur) = dG(vs) = 1. Let G′ be the graph formed by deleting the edge uv1 and inserting

the edge urv1. In the following, we prove that ABS(G)− ABS(G′) > 0; thus, if G′ does

not contain any pair of adjacent pendent paths then we are done. Otherwise, we repeat

the aforementioned graph transformation (on other adjacent pendent paths) unless we

arrive at the desired graph.

If r = s = 1, then by keeping in mind the fact that dG(u) ≥ 3 and that the function Φ

defined by

Φ(x, y) =

√
1− 2

x+ y
,

is strictly increasing in both x and y for x ≥ 1 and y ≥ 1, one has

ABS(G)− ABS(G′) =
∑

w∈NG(u)\{u1,v1}

[Φ(dG(u), dG(w))− Φ(dG(u)− 1, dG(w))]

+ Φ(dG(u), 1)− Φ(2, 1) > 0 ,

as desired.

Let exactly one of r and s is equal to 1. Without loss of generality, assume that r = 1

and s ≥ 2. Then,

ABS(G)− ABS(G′) =
∑

w∈NG(u)\{u1,v1}

[Φ(dG(u), dG(w))− Φ(dG(u)− 1, dG(w))]

+ Φ(dG(u), 2)− Φ(2, 2) > 0 ,

which is again the desired inequality.

In what follows, it is assumed that r ≥ 2 and s ≥ 2. Note that the function f defined by

f(x) = 2Φ(x, 2)− Φ(x− 1, 2), is strictly increasing for x ≥ 3. Thus,

ABS(G)− ABS(G′) =
∑

w∈NG(u)\{u1,v1}

[Φ(dG(u), dG(w))− Φ(dG(u)− 1, dG(w))]

+ 2Φ(dG(u), 2)− Φ(dG(u)− 1, 2) + Φ(1, 2)− 2Φ(2, 2)

> [2Φ(dG(u), 2)− Φ(dG(u)− 1, 2)] + Φ(1, 2)− 2Φ(2, 2)

≥ [2Φ(3, 2)− Φ(2, 2)] + Φ(1, 2)− 2Φ(2, 2) > 0 .



□

The next result follows immediately from Proposition ??.

Corollary 5 Among all trees of order n ≥ 4, the path graph Pn uniquely attains the

minimum value of the ABS index.

We now observe another notable aspect of the ABS index, concerned with the behavior

of the ABS when an edge in a graph is inserted. We give a more general result in this

regard.

Proposition 6 Let u and v be non-adjacent vertices of a graph G, satisfying the inequality

max{dG(u), dG(v)} ≥ 1. Denote by G+uv the graph formed by inserting the edge uv to G.

Let ϕ(x, y) be a non-negative symmetric real-valued function. If the function ϕ is strictly

increasing in x for x ≥ 1 and y ≥ 1, then

BIDϕ(G+ uv) =
∑

wz∈E(G+uv)

ϕ(dG(w), dG(z)) >
∑

wz∈E(G)

ϕ(dG(w), dG(z)) = BIDϕ(G) .

Proof: Without loss of generality, we assume that dG(u) ≥ dG(v) ≥ 0. If dG(v) = 0,

then dG(u) ≥ 1 and hence

BIDϕ(G)−BIDϕ(G+ uv) =
∑

a∈NG(u)

[ϕ(dG(u), dG(a))− ϕ(dG(u) + 1, dG(a))]

− ϕ(dG(u) + 1, 1) < 0 ,

as desired.

If dG(v) ≥ 1, then

BIDϕ(G)−BIDϕ(G+ uv) =
∑

a∈NG(u)

[ϕ(dG(u), dG(a))− ϕ(dG(u) + 1, dG(a))]

+
∑

b∈NG(v)

[ϕ(dG(v), dG(b))− ϕ(dG(v) + 1, dG(b))]

− ϕ(dG(u) + 1, dG(v) + 1) < 0 .

□

The next corollary is a direct consequence of Proposition ??.



Corollary 7 (see [?]) If u and v are non-adjacent non-isolated vertices of a graph G,

then

ISI(G+ uv) =
∑

wz∈E(G+uv)

dG(w) dG(z)

dG(w) + dG(z)
>

∑
wz∈E(G)

dG(w) dG(z)

dG(w) + dG(z)
= ISI(G) .

If x1 > x2 ≥ 1 and y ≥ 1, then

Φ(x1, y) =

√
1− 2

x1 + y
>

√
1− 2

x2 + y
= Φ(x2, y) ,

which implies that the function Φ is strictly increasing in x for x ≥ 1 and y ≥ 1. Thus,

the next result is another direct consequence of Proposition ??.

Corollary 8 If u and v are non-adjacent non-isolated vertices of a graph G, then

ABS(G+ uv) > ABS(G) .

Corollaries ?? and ?? imply the next result.

Proposition 9 Among all connected graphs of order n ≥ 3, the path graph Pn and the

complete graph Kn uniquely attain the minimum value and maximum value, respectively,

of the ABS index.

3 ABS Index of Chemical Trees

In this section, we characterize the trees possessing the maximum and minimum values

of the ABS index among all chemical trees of a fixed order n for n ≥ 11. The solution to

the minimal part of this problem follows directly from Corollary ??.

Corollary 10 If n ≥ 4, then among all chemical trees of order n, the path graph Pn

uniquely attains the smallest value of the ABS index.

The remaining part of this section is concerned with the problem of characterizing the

trees possessing the greatest value of the ABS index for n ≥ 11. The number of vertices

in a chemical tree T with degree i is denoted by ni. Let mi,j be the number of edges in

T with degrees i and j of their end-vertices. If T is a chemical tree of order n for n ≥ 3,

then

ABS(T ) =
∑

1≤i≤j≤4

mi,j

√
1− 2

i+ j
, (9)



n1 + n2 + n3 + n4 = n , (10)

n1 + 2n2 + 3n3 + 4n4 = 2(n− 1) , (11)∑
1≤i≤4
i ̸=j

mj,i + 2mj,j = j · nj for j = 1, 2, 3, 4. (12)

By solving the system of equations (??)–(??) for the unknowns m1,4,m4,4, n1, n2, n3, n4

and then inserting the values of m4,4 and m1,4 (these two values are well-known, see for

example [?]) into Eq. (??), one gets

ABS(T ) =

(
5
√
3 + 4

√
15

30

)
n+

(
4
√
15− 25

√
3

30

)
+

(
15
√
3− 8

√
15

30

)
m1,2

+

(
9
√
2 +

√
3− 4

√
15

18

)
m1,3 +

(
15
√
2− 5

√
3− 4

√
15

30

)
m2,2

+

(
2
√
15− 5

√
3

18

)
m2,3 +

(
5
√
6− 5

√
3−

√
15

15

)
m2,4

+

(
30
√
6− 35

√
3− 4

√
15

90

)
m3,3 +

(
45
√
35− 140

√
3− 7

√
15

315

)
m3,4 . (13)

We take

ΓABS(T ) =

(
15
√
3− 8

√
15

30

)
m1,2 +

(
9
√
2 +

√
3− 4

√
15

18

)
m1,3

+

(
15
√
2− 5

√
3− 4

√
15

30

)
m2,2 +

(
2
√
15− 5

√
3

18

)
m2,3

+

(
5
√
6− 5

√
3−

√
15

15

)
m2,4 +

(
30
√
6− 35

√
3− 4

√
15

90

)
m3,3

+

(
45
√
35− 140

√
3− 7

√
15

315

)
m3,4

≈ −0.16677m1,2 − 0.05733m1,3 − 0.09797m2,2 − 0.05079m2,3

− 0.01905m2,4 − 0.02921m3,3 − 0.01071m3,4 . (14)

Then, Eq. (??) can be written as

ABS(T ) =

(
1

2
√
3
+

2√
15

)
n+

(
2√
15

− 5

2
√
3

)
+ ΓABS(T ) . (15)



For any given integer n greater than 4, it is evident from Eq. (??) that a tree T attains

the greatest value of the ABS index among all chemical trees of order n if and only if T

possess the greatest value of ΓABS in the class of chemical trees under consideration. As

a consequence, we consider ΓABS(T ) instead of ABS(T ) in the next lemma.

Lemma 1 Let T be a chemical tree. The inequality

ΓABS(T ) < 2

(
5
√
6− 5

√
3−

√
15

15

)
(≈ −0.03811) ,

holds if any of the following conditions holds:

(i) max{m1,2,m1,3,m2,2,m2,3} ≥ 1,

(ii) n2 + n3 ≥ 2.

Proof: If either m3,3 ≥ 2 or any of m1,2,m1,3,m2,2,m2,3 is positive, then the required

inequality follows from (??). Assume that m1,2 = m2,2 = m2,3 = m1,3 = 0, n2 + n3 ≥ 2,

and m3,3 ≤ 1. Suppose, to the contrary, that

ΓABS(T ) ≥ 2

(
5
√
6− 5

√
3−

√
15

15

)
. (16)

The equations m3,4 = 3n3−2m3,3 and m2,4 = 2n2 hold because of the system of equations

(??). Then by using (??) we have

ΓABS(T ) = 2

(
5
√
6− 5

√
3−

√
15

15

)
n2 +

(
30
√
6− 35

√
3− 4

√
15

90

)
m3,3

+

(
45
√
35− 140

√
3− 7

√
15

315

)
(3n3 − 2m3,3)

≈ −0.03811n2 − 0.02921m3,3 − 0.01071(3n3 − 2m3,3) . (17)

If m3,3 = 1, then n3 ≥ 2 and hence from (??) it follows that ΓABS(T ) attains its maximum

value when n2 = 0 and n3 = 2. Thus, (??) yields

ΓABS(T ) ≤

(
30
√
6− 35

√
3− 4

√
15

90

)
+ 4

(
45
√
35− 140

√
3− 7

√
15

315

)

< 2

(
5
√
6− 5

√
3−

√
15

15

)



which contradicts the assumption (??).

If m3,3 = 0, then (??) gives

ΓABS(T ) = 2

(
5
√
6− 5

√
3−

√
15

15

)
n2 + 3

(
45
√
35− 140

√
3− 7

√
15

315

)
n3

≈ −0.03811n2 − 0.03214n3 ,

which together with (??) implies that n2+n3 ≤ 1. This is a contradiction to the assump-

tion n2 + n3 ≥ 2.

□

The degree set of a graph G is the set of all unequal degrees of vertices of G.

Theorem 2 For n ≥ 11, if T is a chemical tree of order n, then

ABS(T ) ≤

(
5
√
3 + 4

√
15

30

)
n+

(
4
√
15− 25

√
3

30

)

+



2

(
5
√
6− 5

√
3−

√
15

15

)
if n ≡ 0 (mod 3)

45
√
35− 140

√
3− 7

√
15

105
if n ≡ 1 (mod 3)

0 if n ≡ 2 (mod 3)

with equality if and only if the degree set of T is

• {1, 2, 4} and T contains only one vertex of degree 2, which has neighbors of degree 4

only, whenever n ≡ 0 (mod 3);

• {1, 3, 4} and T contains only one vertex of degree 3, which has neighbors of degree 4

only, whenever n ≡ 1 (mod 3);

• {1, 4} whenever n ≡ 2 (mod 3).

Proof: If any of the inequalities n2 + n3 ≥ 2 and max{m1,2,m1,3,m2,2,m2,3} ≥ 1 holds,

then by using Lemma ?? and Eq. (??), one has

ABS(T ) <

(
5
√
3 + 4

√
15

30

)
n+

(
4
√
15− 25

√
3

30

)
+ 2

(
5
√
6− 5

√
3−

√
15

15

)

<

(
5
√
3 + 4

√
15

30

)
n+

(
4
√
15− 25

√
3

30

)
+

45
√
35− 140

√
3− 7

√
15

105



<

(
5
√
3 + 4

√
15

30

)
n+

(
4
√
15− 25

√
3

30

)
,

as desired.

In the remaining, assume that max{m1,2,m1,3,m2,2,m2,3} = 0 and n2 + n3 ≤ 1. Then,

(n2, n3) ∈ {(0, 0), (1, 0), (0, 1)} and m3,3 = 0. From Eqs. (??) and (??), it follows that

n2 + 2n3 ≡ n− 2 (mod 3), which gives

(n2, n3) =


(1, 0) if n ≡ 0 (mod 3),

(0, 1) if n ≡ 1 (mod 3),

(0, 0) if n ≡ 2 (mod 3),

which together with the system of equations (??) implies that

(m2,4,m3,4) =


(2, 0) if n ≡ 0 (mod 3),

(0, 3) if n ≡ 1 (mod 3),

(0, 0) if n ≡ 2 (mod 3).

The required result follows now from Eq. (??). □
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Redžepović gratefully acknowledge financial support of the Serbian Ministry of Education,

Science and Technological Development (Grant No. 451-03-68/2022-14/200122).

References

[1] A. Ali, K. C. Das, D. Dimitrov, B. Furtula, Atom-bond connectivity index of graphs:

a review over extremal results and bounds, Discrete Math. Lett. 5 (2021) 68–93.

[2] A. Ali, D. Dimitrov, On the extremal graphs with respect to bond incident degree

indices, Discrete Appl. Math. 238 (2018) 32–40.

[3] A. Ali, Z. Du, On the difference between atom-bond connectivity index and Randić
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