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�e concept of measure of noncompactness in a Banach space is used in this paper to extend some tripled �xed point theorems.
We prove the existence of fractional integral equation solutions using a generalized Darbo �xed point theorem. To demonstrate
the validity of the main result, an example is provided.

1. Introduction

Noncompactness measure has ushered in a new branch of
nonlinear analysis. It covers a wide range of applications in
operator theory. Noncompactness measures have a wide range
of applications in FP theory and are particularly useful in
di�erential and integral equations, as well as fractional calculus.
Kuratowski [1] investigated the �rst de�nition of a non-
compactnessmeasure. In 1955, Darbo [2] ensured the existence
of �xed points for some mappings using the notion of non-
compactness measures, which were obtained by generalizing
the Schauder FP theorem [3] and the Banach contraction
principle. Many authors use the term “noncompactness
measure” to make Darbo FP theorem more general.

�e goal of this paper is to extend Darbo’s FP theorem
and to apply our �ndings to determine the existence of
solutions of fractional integral equations.

We begin with preliminaries, notations, concepts, and
de�nitions that will be used throughout the paper.

Let us have a real Banach space (B, ‖ . ‖), and
B(g, r) � v ∈ B: ‖v − g‖≤ r{ }. Let S(≠ϕ)⊆B. Also, let

(a) R � (− ∞,∞).

(b) R+ � [0,∞).
(c) S � the closure of S.
(d) ConvS � the convex closure of S.
(e) GB � the set of all nonempty and bounded subsets ofB.
(f ) HB � the set of all relatively compact sets.

We provide the below de�nition of MNC, which is
referenced in [4].

De�nition 1. Amapping Λ: GB⟶ R+ is said to be a MNC
in B if it ful�lls the following axioms:

(i) �e family ker Λ � S ∈ GB: Λ(S) � 0{ }≠ϕ and ker
Λ ⊂ HB.

(ii) S⊆P⇒Λ(S)≤Λ(P).
(iii) Λ(S) � Λ(S).
(iv) Λ(ConvS) � Λ(S).
(v) Λ(LS + (1 − L)P)≤ LΛ(S) + (1 − L)Λ(P) for any

L ∈ [0, 1].
(vi) If Sq ∈ GB, Sq � Sq, Sq+1 ⊂ Sq for q � 1, 2, . . . and

limq⟶∞Λ(Sq) � 0, then S∞ � ∩∞q�1Sq ≠ ϕ.
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Since Λ(S∞)≤Λ(Sq) for all q, Λ(S∞) � 0, and so
S∞ � ∩∞q�1Sq ∈ kerΛ.

In the theory of fixed points, the Schauder FP principle
and Darbo theorem are crucial.

Theorem 1 (see [3]) (Schauder). For a nonempty, bounded,
closed, and convex subset (NBCCS) D of a Banach space B, if
Υ: D⟶ D is a continuous and compact mapping, it must
have at least one FP.

Theorem 2 (see [2]) (Darbo). For a NBCCS W of a Banach
space B, if T : W⟶W is a continuous self-mapping with

Λ(TΩ)≤pΛ(Ω), Ω⊆W, (1)

where p ∈ [0, 1) and Λ is an arbitrary MNC on B, then T has
a FP.

In fractional calculus, fixed point theorems have nu-
merous applications. Let us have a look at some of the work
that has been done in this area.

In [5], Sahoo et al. developed numerous new inequalities
for twice differentiable convex functions that are coupled
with the Hermite–Hadamard integral inequality by using an
integral equality related to the k-Riemann–Liouville frac-
tional operator. In addition, for various types of convex
functions, certain fresh examples of the established con-
clusions are derived. (is fractional integral adds the
symmetric properties of Riemann–Liouville and Hermi-
te–Hadamard inequalities. (e authors in [6] explored the
existence and uniqueness of solutions to two-dimensional
Volterra integral equations, Riemann–Liouville integrals,
and Atangana–Baleanu integral operators.

Deng et al. [7] examined the existence of mild solutions
for a class of impulsive neutral stochastic functional dif-
ferential equations in Hilbert spaces with noncompact
semigroup. (e Hausdorff measure of noncompactness and
the Mönch fixed point theorem are used to find sufficient
conditions for the existence of mild solutions. (e presence
of an almost periodic solution to a fractional differential
equation with impulse and fractional Brownian motion
under nonlocal conditions was the subject of the essay [8].

2. Main Result

We now recall some important definitions that are helpful to
our work.

Definition 2. Let V be the set of all maps v: R⟶ R

satisfying

􏽘

∞

i�1
v sn( 􏼁 �∞, (2)

for all sn􏼈 􏼉⊆R.

Definition 3 (see [9]). Let Q be the set of all functions
Q: R+ × R+⟶ R+ that fulfills the axioms:

(1) max ℓ1, ℓ2􏼈 􏼉≤Q(ℓ1, ℓ2) for ℓ1, ℓ2 ≥ 0.
(2) Q is continuous.
(3) Q(ℓ1 + ℓ2, n1 + n2)≤Q(ℓ1, n1) + Q(ℓ2, n2).

Example 1. Q(ℓ1, ℓ2) � ℓ1 + ℓ2 is an example of the class Q.

Using the above two classes of control functions, we
prove the following results.

Theorem 3. LetW be a NBCCS of a Banach spaceB. Also, let
Γ: W⟶W be a continuous mapping with

Q[Λ(ΓG),ϖ(Λ(ΓG))]≤Q Λ(G),ϖ(Λ(G)){ }

− v[Q Λ(G),ϖ(Λ(G)){ }],
(3)

for all G⊆W, whereΛ is an arbitraryMNC, v ∈ V , and Q ∈ Q.
Also, let ϖ: R+⟶ R+ be a nondecreasing continuous
mapping. So, Γ has at least one FP in W.

Proof. We define the sequence (Wn)n as follows:

W0 � W,

Wn � Conv ΓWn( 􏼁, n � 1, 2, 3, . . . .
􏼨 (4)

We can easily see through induction that

Wn+1 ⊆Wn, n � 0, 1, 2, . . . . (5)

If N ∈ N so that Q Λ(WN),ϖ(Λ(WN))􏼈 􏼉 � 0, then
Λ(WN) � 0, that is, WN is a relatively compact set. So, by
(eorem 1, Γ admits a FP in W.

Now, we may assume that Q Λ(WN),ϖ(Λ(WN))􏼈 􏼉> 0
for each N ∈ N.

On the contrary, we have

Q Λ Wn+1( 􏼁,ϖ Λ Wn+1( 􏼁( 􏼁􏼈 􏼉 � Q Λ ΓWn( 􏼁,ϖ Λ ΓWn( 􏼁( 􏼁􏼈 􏼉

⩽Q Λ Wn( 􏼁,ϖ Λ Wn( 􏼁( 􏼁􏼈 􏼉 − v Q Λ Wn( 􏼁,ϖ Λ Wn( 􏼁( 􏼁􏼈 􏼉􏼂 􏼃

⩽Q Λ Wn− 1( 􏼁,ϖ Λ Wn− 1( 􏼁( 􏼁􏼈 􏼉 − v Q Λ Wn− 1( 􏼁,ϖ Λ Wn− 1( 􏼁( 􏼁􏼈 􏼉􏼂 􏼃,

− v Q Λ Wn( 􏼁,ϖ Λ Wn( 􏼁( 􏼁􏼈 􏼉􏼂 􏼃⩽ · · ·

⩽Q Λ W0( 􏼁,ϖ Λ W0( 􏼁( 􏼁􏼈 􏼉 − 􏽘
n

i�0
v Q Λ Wi( 􏼁,ϖ Λ Wi( 􏼁( 􏼁􏼈 􏼉􏼂 􏼃.

(6)
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Since 􏽐
n
i�0 v[Q Λ(Wi),ϖ(Λ(Wi))􏼈 􏼉]⟶∞, then

Q Λ(Wn+1),􏼈 ϖ(Λ(Wn+1))}⟶ 0, as n⟶ +∞.

(is implies that

Λ Wn( 􏼁⟶ 0, as n⟶ +∞. (7)

Since Wn⊇Wn+1, by Definition 1, we obtain that W∞: �

∩∞n�1Wn is a nonempty, closed, and convex subset ofW and
W∞ is Γ invariant.

So, (eorem 1 concludes that Γ has a FP in W.
Hence, we have the completed proof. □

(e following is a crucial consequence of (eorem 3.

Corollary 1. Let W be a NBCCS of a Banach space B. Also,
let Γ: W⟶ W be a continuous mapping with

Λ(ΓG) + ϖ(Λ(ΓG))≤Λ(G) + ϖ(Λ(G))

− v[Λ(G) + ϖ(Λ(G))],
(8)

for allG⊆W, whereΛ is an arbitraryMNC and v ∈ V . Also, let
ϖ: R+⟶ R+ be a nondecreasing continuous mapping. So, Γ
has at least one FP in W.

Proof. Putting Q(ℓ1, ℓ2) � ℓ1 + ℓ2 in (eorem 3, we get the
above corollary. □

Corollary 2. Let W be a NBCCS of a Banach space B. Also,
let Γ: W⟶ W be a continuous mapping with

Λ(ΓG)≤Λ(G) − v[Λ(G)], (9)

for all G⊆W, where Λ is an arbitrary MNC and v ∈ V . So, Γ
has at least one FP in W.

Proof. Setting ϖ(ℓ) � 0 in Corollary 1, we obtain the above
corollary. □

Corollary 3. Let W be a NBCCS of a Banach space B. Also,
let Γ: W⟶ W be a continuous mapping with

Λ(ΓG)≤ σΛ(G), (10)

for all G⊆W, where Λ is an arbitrary MNC and
σ � (k/k + 1) ∈ (0, 1]. So, Γ has at least one FP in W.

Proof. Setting v(s) � (1/k + 1)s in Corollary 2, we obtain the
above corollary. □

Definition 4. (see [10]). A mapping J: W × W × W⟶ W

is called to have a tripled fixed point (a, x, Z) ∈ W3 if
J(a, x, Z) � a, J(a, x, Z) � x and J(a, x, Z) � Z.

Theorem 4 (see [4]). Let Λ1,Λ2, . . . ,Λn be an MNC in
B1,B2, . . . ,Bn, respectively. Additionally, suppose that the
mapping P: R

ρ
+⟶ R+ is convex with P(y1, y2, . . . , yρ) �

0⇔yσ � 0 for σ � 1, 2, 3, . . . , ρ. Cen, �Λ(Ω) � P(Λ1(Ω1),
Λ2(Ω2), . . . ,Λn(Ωn)) will be an MNC in B1 × B2 × · · · × Bn.

Example 2 (see [11]). Let P(a, x, Z) � a + x + Z, for
(a, x, Z) ∈ R3

+. Now, P(a, x, Z) � a + x + Z � 0⇔ a �

x � Z � 0. As P is convex which fulfills all conditions of
(eorem 4, �Λ(Ω) � P(Λ1(Ω1),Λ2(Ω2),Λ3(Ω3)) is an
MNC on B1 × B2, ×B3, whereΩσ is the natural projection of
Ω into Bσ for σ � 1, 2, 3.

Example 3 (see [12]). Let P(a, x, Z) � max a, x, Z{ }, for
(a, x, Z) ∈ R3

+. Now,
P(a, x, Z) � max a, x, Z{ } � 0⇔a � x � Z � 0. As P is con-
vex which fulfills all conditions of (eorem 4,
�Λ(Ω) � P(Λ1(Ω1),Λ2(Ω2),Λ3(Ω3)) is an MNC on
B1 × B2, ×B3, whereΩσ is the natural projection ofΩ intoBσ
for σ � 1, 2, 3.

Theorem 5. LetW be a NBCCS of a Banach spaceB. Also, let
J: W × W × W⟶W be a continuous mapping with

Q Λ J ϖ1 × ϖ2 × ϖ3( 􏼁( 􏼁,ϖ Λ J ϖ1 × ϖ2 × ϖ3( 􏼁( 􏼁( 􏼁􏼈 􏼉

≤
μ
3
Λ ϖ1 × ϖ2 × ϖ3( 􏼁 + ϖ Λ ϖ1 × ϖ2 × ϖ3( 􏼁( 􏼁􏼈 􏼉,

(11)

for all ϖ1 × ϖ2 × ϖ3⊆W, where Λ is an arbitrary MNC and ϖ
and Q are as in Ceorem 1. Also, let μ(a + x + Z)≤ μ(a) +

μ(x) + μ(Z); a, x, Z≥ 0 and ϖ(a + x + Z)≤ϖ(a)+ ϖ(x)+

ϖ(Z); a, x, Z≥ 0. So,J has at least a tripled fixed point inW.

Proof. We consider a function �J: W3⟶ W3 by

�J ϖ1,ϖ2,ϖ3( 􏼁 � J ϖ1,ϖ2,ϖ3( 􏼁,J ϖ2,ϖ3,ϖ1( 􏼁,J ϖ3,ϖ1,ϖ2( 􏼁( 􏼁,

(12)

for all (ϖ1,ϖ2,ϖ3) ∈ W. It is trivial that �J is continuous.
SinceJ is continuous, assume thatϖ ⊂ W3 is nonempty.

We have

�Λ(ϖ) � Λ ϖ1( 􏼁 + Λ ϖ2( 􏼁 + Λ ϖ3( 􏼁, (13)

where ϖ1,ϖ2,ϖ3 represent W’s natural projections.
Now, we get
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Q �Λ( �J(ϖ)),ϖ(�Λ( �J(ϖ)))􏽮 􏽯

⩽Q
�Λ J ϖ1 × ϖ2 × ϖ3( 􏼁 × J ϖ2 × ϖ3 × ϖ1( 􏼁 × J ϖ3 × ϖ1 × ϖ2( 􏼁( 􏼁,

ϖ �Λ J ϖ1 × ϖ2 × ϖ3( 􏼁 × J ϖ2 × ϖ3 × ϖ1( 􏼁 × J ϖ3 × ϖ1 × ϖ2( 􏼁( 􏼁􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦

� Q
Λ J ϖ1 × ϖ2 × ϖ3( 􏼁( 􏼁 + Λ J ϖ2 × ϖ3 × ϖ1( 􏼁( 􏼁 + Λ J ϖ3 × ϖ1 × ϖ2( 􏼁( 􏼁,

ϖ Λ J ϖ1 × ϖ2 × ϖ3( 􏼁( 􏼁( 􏼁 + Λ J ϖ2 × ϖ3 × ϖ1( 􏼁( 􏼁 + Λ J ϖ3 × ϖ1 × ϖ2( 􏼁( 􏼁
􏼢 􏼣

≤Q
Λ J ϖ1 × ϖ2 × ϖ3( 􏼁( 􏼁 + Λ J ϖ2 × ϖ3 × ϖ1( 􏼁( 􏼁 + Λ J ϖ3 × ϖ1 × ϖ2( 􏼁( 􏼁,

ϖ Λ J ϖ1 × ϖ2 × ϖ3( 􏼁( 􏼁( 􏼁 + Λ J ϖ2 × ϖ3 × ϖ1( 􏼁( 􏼁 + Λ J ϖ3 × ϖ1 × ϖ2( 􏼁( 􏼁
􏼢 􏼣

≤Q Λ J ϖ1 × ϖ2 × ϖ3( 􏼁( 􏼁,ϖ Λ J ϖ1 × ϖ2 × ϖ3( 􏼁( 􏼁( 􏼁􏼂 􏼃

+ Q Λ J ϖ2 × ϖ3 × ϖ1( 􏼁( 􏼁􏼂 􏼃,ϖ Λ J ϖ2 × ϖ3 × ϖ1( 􏼁( 􏼁( 􏼁

+ Q Λ J ϖ3 × ϖ1 × ϖ2( 􏼁( 􏼁,ϖ Λ J ϖ3 × ϖ1 × ϖ2( 􏼁( 􏼁( 􏼁􏼂 􏼃

≤ μ Λ ϖ1( 􏼁 + Λ ϖ2( 􏼁 + Λ ϖ3( 􏼁 + ϖ Λ ϖ1( 􏼁 + Λ ϖ2( 􏼁 + Λ ϖ3( 􏼁( 􏼁􏼈 􏼉

� μ �Λ(ϖ) + ϖ(�Λ(ϖ))􏽮 􏽯 � μ Q(�Λ(ϖ),ϖ(�Λ(ϖ)))􏽮 􏽯.

(14)

We can conclude from (eorem 1 that �J has a mini-
mum of one FP in W3.

Now, from (eorem 1, J admits a tripled fixed
point. □

3. Measure of Noncompactness on C([0, T])

Let B � C(I) be the space of real continuous functions on
I, where I � [0, T], which is equipped with

‖μ‖ � sup |μ(t)|: t ∈ I􏼈 􏼉, μ ∈ B. (15)

Let J(≠ϕ)⊆B be bounded. For μ ∈ J and δ > 0, denote by
Λ(μ, δ) the modulus of the continuity of μ, i.e.,

Λ(μ, δ) � sup μ h1( 􏼁 − μ h2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌: h1, h2 ∈ I, h1 − h2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ δ􏽮 􏽯.

(16)

Moreover, we set

Λ(J, δ) � sup Λ(μ, δ): μ ∈ J􏼈 􏼉; Λ0(J) � lim
δ⟶0
Λ(J, δ). (17)

It is generally known that the mappingΛ0 is a MNC inB,
and Γ(J) � (1/2)Λ0(J) will be the Hausdorff MNC (see [4]).

4. Solvability of Fractional Integral Equations

In this part, we show how our conclusions concerning the
existence of a solution to a fractional integral equation in a
Banach space can be applied.

Consider the following fractional integral equation [13]:

ψ(h) � ψ0 + f(h,ψ(h)) +
1
Γ(χ)

􏽚
h

0
(h − ℓ)χ− 1σ(ℓ,ψ(ℓ))dℓ,

(18)

where 0≤ χ < 1,ψ(0) � ψ0 ≥ 0, h ∈ I � [0, T].
Let

Qr0
� ψ ∈ B: ‖ψ‖≤ r0􏼈 􏼉. (19)

Assume that

(A) f: I × R⟶ R is a continuous function and there
exists a constant β1 ≥ 0 satisfying

f(h,ψ) − f h,ψ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1 ψ − ψ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, h ∈ I;ψ,ψ1 ∈ R.

(20)

Also,
􏽢F � sup |f(h, 0)|: h ∈ I􏼈 􏼉. (21)

(B) σ: I × R+⟶ R+ is a continuous function and
there exists a nondecreasing function ϖ: R+⟶ R+

satisfying

|σ(h,ψ)|≤ϖ(|ψ|); (h,ψ) ∈ I × R. (22)

(C) (ere exists a positive solution r0 for the following
inequality:

ψ0 + β1r0 + 􏽢F +
ϖ r0( 􏼁

Γ(χ + 1)
.T

χ ≤ r0. (23)

Theorem 6. If constraints (A)–(C) hold, equation (18) has at
least one solution in B.

Proof. Consider the following operator P: B⟶ B such
that

(Pψ)(h) � ψ0 + f(h,ψ(h))

+
1
Γ(χ)

􏽚
h

0
(h − ℓ)χ− 1σ(ℓ,ψ(ℓ))dℓ.

(24)

□

Step 1. We show that P maps Qr0
into Qr0

. Let ψ ∈ Qr0
, and

we now have
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|(Pψ)(h)|≤ ψ0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +|f(h,ψ(h))| +
1
Γ(χ)

􏽚
h

0
(h − ℓ)χ− 1σ(ℓ,ψ(ℓ))dℓ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ψ0 +|f(h,ψ(h)) − f(h, 0)| +|f(h, 0)| +
1
Γ(χ)

􏽚
h

0
(h − ℓ)χ− 1σ(ℓ,ψ(ℓ))dℓ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ψ0 + β1|ψ(h)| + 􏽢F +
1
Γ(χ)

􏽚
h

0
(h − ℓ)χ− 1σ(ℓ,ψ(ℓ))dℓ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(25)

Also,

1
Γ(χ)

􏽚
h

0
(h − ℓ)χ− 1σ(ℓ,ψ(ℓ))dℓ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

1
Γ(χ)

􏽚
h

0
(h − ℓ)χ− 1σ(ℓ,ψ(ℓ))dℓ

≤
ϖ(‖ψ‖)

Γ(χ)
􏽚

h

0
(h − ℓ)χ− 1dℓ ≤

ϖ(‖ψ‖)

Γ(χ + 1)
T
χ
.

(26)

Hence, ‖ ψ ‖ < r0 gives

‖Pψ‖≤ψ0 + β1r0 + 􏽢F +
ϖ r0( 􏼁

Γ(χ + 1)
.T

χ ≤ r0. (27)

Due to assumption (C), P maps Qr0
into Qr0

.

Step 2. We show that P is continuous on Qr0
. Let δ > 0 and

ψ,ψ1 ∈ Qr0
such that ‖ψ − ψ1‖< δ. For all h ∈ I, we have

(Pψ)(h) − Pψ1( 􏼁(h)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ψ0 − ψ0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f(h,ψ(h)) − f h,ψ1(h)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+
1
Γ(χ)

􏽚
h

0
(h − ℓ)χ− 1σ(ℓ,ψ(ℓ))dℓ −

1
Γ(χ)

􏽚
h

0
(h − ℓ)χ− 1σ ℓ,ψ1(ℓ)( 􏼁dℓ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ β1 ψ(h) − ψ1(h)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
Γ(χ)

􏽚
h

0
(h − ℓ)χ− 1σ(ℓ,ψ(ℓ)) − σ ℓ,ψ1(ℓ)( 􏼁dℓ

≤ β1 ψ − ψ1
����

���� +
1
Γ(χ)

􏽚
h

0
(h − ℓ)χ− 1 σ(ℓ,ψ(ℓ)) − σ ℓ,ψ1(ℓ)( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dℓ

< β1 ψ − ψ1
����

���� +
1
Γ(χ)
Λr0

(δ) 􏽚
h

0
(h − ℓ)χ− 1dℓ

< β1 ψ − ψ1
����

���� +
1
Γ(χ + 1)

Λr0
(δ)T

χ
,

(28)

where

Λr0
(δ) � sup

σ(ℓ,ψ(ℓ)) − σ ℓ,ψ1(ℓ)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌: ψ − ψ1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ δ; ℓ ∈ I;

ψ,ψ1 ∈ − r0, r0􏼂 􏼃

⎧⎨

⎩

⎫⎬

⎭.

(29)

Hence, ‖ψ − ψ1‖< δ gives

(Pψ)(h) − Pψ1( 􏼁(h)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< β1δ +
1
Γ(χ + 1)

Λr0
(δ)T

χ
. (30)

As δ⟶ 0, we get |(Pψ)(h) − (Pψ1)(h)|⟶ 0.
(is clearly proves that P is continuous on Qr0

.

Step 3. An estimation of P with respect to Λ0: now, assume
that Δ(≠ ϕ)⊆Qr0

. Let δ > 0 be arbitrary. Also, choose ψ ∈ Δ
with h1, h2 ∈ I such that |h2 − h1|≤ δ and h2 ≥ h1.

Now,
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(Pψ) h2( 􏼁 − (Pψ) h1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � ψ0 + f h2,ψ h2( 􏼁( 􏼁 +
1
Γ(χ)

􏽚
h2

0
h2 − ℓ( 􏼁

χ− 1σ(ℓ,ψ(ℓ))dℓ
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− ψ0 − f h1,ψ h1( 􏼁( 􏼁 −
1
Γ(χ)

􏽚
h1

0
h1 − ℓ( 􏼁

χ− 1σ(ℓ,ψ(ℓ))dℓ
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ f h2,ψ h2( 􏼁( 􏼁 − f h1,ψ h1( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
1
Γ(χ)

􏽚
h2

0
h2 − ℓ( 􏼁

χ− 1σ(ℓ,ψ(ℓ))dℓ − 􏽚
h1

0
h1 − ℓ( 􏼁

χ− 1σ(ℓ,ψ(ℓ))dℓ
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ f h2,ψ h2( 􏼁( 􏼁 − f h1,ψ h1( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+
1
Γ(χ)

􏽚
h2

h1

h2 − ℓ( 􏼁
χ− 1σ(ℓ,ψ(ℓ))dℓ + 􏽚

h1

0
h2 − ℓ( 􏼁

χ− 1
− h1 − ℓ( 􏼁

χ− 1
􏽮 􏽯σ(ℓ,ψ(ℓ))dℓ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ f h2,ψ h2( 􏼁( 􏼁 − f h2,ψ h1( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f h2,ψ h1( 􏼁( 􏼁 − f h1,ψ h1( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+
ϖ(|ψ|)

Γ(χ)
􏽚

h2

h1

h2 − ℓ( 􏼁
χ− 1dℓ + 􏽚

h1

0
h2 − ℓ( 􏼁

χ− 1
− h1 − ℓ( 􏼁

χ− 1
􏽮 􏽯dℓ􏼠 􏼡

≤ β1 ψ h2( 􏼁 − ψ h1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + f h2,ψ h1( 􏼁( 􏼁 − f h1,ψ h1( 􏼁( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 +
ϖ r0( 􏼁

Γ(χ + 1)
h
χ
2 − h

χ
1􏼂 􏼃

≤ β1Λ(ψ, δ) + Λf r0, δ( 􏼁 +
ϖ r0( 􏼁

Γ(χ + 1)
h
χ
2 − h

χ
1􏼂 􏼃,

(31)

where

Λf r0, δ( 􏼁 � sup
f h2,ψ h1( 􏼁( 􏼁 − f h1,ψ h1( 􏼁( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌: h2 − h1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ δ; h1, h2 ∈ I;

|ψ|≤ r0

⎧⎨

⎩

⎫⎬

⎭,

Λ(ψ, δ) � sup ψ h2( 􏼁 − ψ h1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ δ: h2 − h1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ δ; h1, h2 ∈ I􏽮 􏽯.

(32)

As δ⟶ 0, h2⟶ h1, so we get

lim
δ⟶0

ϖ r0( 􏼁

Γ(χ + 1)
h
χ
2 − h

χ
1􏼂 􏼃⟶ 0. (33)

Hence,

(Pψ) h2( 􏼁 − (Pψ) h1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ β1Λ(ψ, δ) + Λf r0, δ( 􏼁, (34)

i.e.,

Λ(Pψ, δ)≤ β1Λ(ψ, ε) + Λf r0, δ( 􏼁. (35)

By the uniform continuity of f onI × [− r0, r0], we now
obtain limδ⟶0Λf(r0, δ)⟶ 0, as δ⟶ 0.

Taking supψ∈Δ and δ⟶ 0, we get

Λ0(PΔ)≤ β1Λ0(Δ). (36)

Hence, by Corollary 3, P has a FP in Δ⊆Qr0
.

(at is, equation (18) has a solution in B.

Example 4. Consider the following fractional integral
equation:

ψ(h) �
|ψ|

2
+

ψ
10 + h

4 +
1
Γ(1/2)

􏽚
h

0
(h − ℓ)1/2sin− 1 ψ2

(ℓ)
1 − ℓ2

􏼠 􏼡dℓ,

(37)

for h ∈ [0, 2] � I, which is a particular case of equation (18).
Here,
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ψ0 �
|ψ|

2
,

f(h, ϕ(h)) �
ψ

10 + h
4,

χ �
1
2
,

σ(ℓ,ψ(ℓ)) � sin− 1 ψ2
(ℓ)

1 − ℓ2
􏼠 􏼡.

(38)

Also, it is trivial that f is continuous and satisfies

f(h,ψ(h)) − f h,ψ1(h)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
ψ − ψ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

10
. (39)

(erefore, β1 � 1/10.
If ‖ψ‖≤ r0, then

ψ0 �
r0

2
,

􏽢F �
r0
10

,

|σ(ℓ,ψ)|≤ ψ2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(40)

So,

ϖ r0( 􏼁 � r
2
0. (41)

Putting these values in the inequality of assumption (C),
we get

r0

2
+

1
10

r0 +
r0

10
+

r
2
0
Γ(3/2)

(2)
1/2 ≤ r0

⇒
r
2
0
Γ(3/2)

(2)
1/2 ≤

3
10

r0⇒ r0 ≤
3Γ(3/2)

10(2)
1/2.

(42)

However, assumption (C) is also fulfilled for
r0 � 3Γ(3/2)/10(2)1/2.

We can see that all of (eorem 5’s assumptions are
achieved, from (A) to (C). Equation (37), according to
(eorem 5, has a solution in B � C(I).
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